1 /* 2 * arch/sh/mm/cache-sh4.c 3 * 4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka 5 * Copyright (C) 2001 - 2007 Paul Mundt 6 * Copyright (C) 2003 Richard Curnow 7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd. 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/io.h> 16 #include <linux/mutex.h> 17 #include <linux/fs.h> 18 #include <asm/mmu_context.h> 19 #include <asm/cacheflush.h> 20 21 /* 22 * The maximum number of pages we support up to when doing ranged dcache 23 * flushing. Anything exceeding this will simply flush the dcache in its 24 * entirety. 25 */ 26 #define MAX_DCACHE_PAGES 64 /* XXX: Tune for ways */ 27 #define MAX_ICACHE_PAGES 32 28 29 static void __flush_cache_one(unsigned long addr, unsigned long phys, 30 unsigned long exec_offset); 31 32 /* 33 * This is initialised here to ensure that it is not placed in the BSS. If 34 * that were to happen, note that cache_init gets called before the BSS is 35 * cleared, so this would get nulled out which would be hopeless. 36 */ 37 static void (*__flush_dcache_segment_fn)(unsigned long, unsigned long) = 38 (void (*)(unsigned long, unsigned long))0xdeadbeef; 39 40 /* 41 * Write back the range of D-cache, and purge the I-cache. 42 * 43 * Called from kernel/module.c:sys_init_module and routine for a.out format, 44 * signal handler code and kprobes code 45 */ 46 static void __uses_jump_to_uncached sh4_flush_icache_range(void *args) 47 { 48 struct flusher_data *data = args; 49 unsigned long start, end; 50 unsigned long flags, v; 51 int i; 52 53 start = data->addr1; 54 end = data->addr2; 55 56 /* If there are too many pages then just blow away the caches */ 57 if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) { 58 local_flush_cache_all(NULL); 59 return; 60 } 61 62 /* 63 * Selectively flush d-cache then invalidate the i-cache. 64 * This is inefficient, so only use this for small ranges. 65 */ 66 start &= ~(L1_CACHE_BYTES-1); 67 end += L1_CACHE_BYTES-1; 68 end &= ~(L1_CACHE_BYTES-1); 69 70 local_irq_save(flags); 71 jump_to_uncached(); 72 73 for (v = start; v < end; v += L1_CACHE_BYTES) { 74 unsigned long icacheaddr; 75 int j, n; 76 77 __ocbwb(v); 78 79 icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v & 80 cpu_data->icache.entry_mask); 81 82 /* Clear i-cache line valid-bit */ 83 n = boot_cpu_data.icache.n_aliases; 84 for (i = 0; i < cpu_data->icache.ways; i++) { 85 for (j = 0; j < n; j++) 86 __raw_writel(0, icacheaddr + (j * PAGE_SIZE)); 87 icacheaddr += cpu_data->icache.way_incr; 88 } 89 } 90 91 back_to_cached(); 92 local_irq_restore(flags); 93 } 94 95 static inline void flush_cache_one(unsigned long start, unsigned long phys) 96 { 97 unsigned long flags, exec_offset = 0; 98 99 /* 100 * All types of SH-4 require PC to be in P2 to operate on the I-cache. 101 * Some types of SH-4 require PC to be in P2 to operate on the D-cache. 102 */ 103 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) || 104 (start < CACHE_OC_ADDRESS_ARRAY)) 105 exec_offset = 0x20000000; 106 107 local_irq_save(flags); 108 __flush_cache_one(start | SH_CACHE_ASSOC, P1SEGADDR(phys), exec_offset); 109 local_irq_restore(flags); 110 } 111 112 /* 113 * Write back & invalidate the D-cache of the page. 114 * (To avoid "alias" issues) 115 */ 116 static void sh4_flush_dcache_page(void *arg) 117 { 118 struct page *page = arg; 119 #ifndef CONFIG_SMP 120 struct address_space *mapping = page_mapping(page); 121 122 if (mapping && !mapping_mapped(mapping)) 123 set_bit(PG_dcache_dirty, &page->flags); 124 else 125 #endif 126 { 127 unsigned long phys = PHYSADDR(page_address(page)); 128 unsigned long addr = CACHE_OC_ADDRESS_ARRAY; 129 int i, n; 130 131 /* Loop all the D-cache */ 132 n = boot_cpu_data.dcache.n_aliases; 133 for (i = 0; i < n; i++, addr += PAGE_SIZE) 134 flush_cache_one(addr, phys); 135 } 136 137 wmb(); 138 } 139 140 /* TODO: Selective icache invalidation through IC address array.. */ 141 static void __uses_jump_to_uncached flush_icache_all(void) 142 { 143 unsigned long flags, ccr; 144 145 local_irq_save(flags); 146 jump_to_uncached(); 147 148 /* Flush I-cache */ 149 ccr = ctrl_inl(CCR); 150 ccr |= CCR_CACHE_ICI; 151 ctrl_outl(ccr, CCR); 152 153 /* 154 * back_to_cached() will take care of the barrier for us, don't add 155 * another one! 156 */ 157 158 back_to_cached(); 159 local_irq_restore(flags); 160 } 161 162 static inline void flush_dcache_all(void) 163 { 164 (*__flush_dcache_segment_fn)(0UL, boot_cpu_data.dcache.way_size); 165 wmb(); 166 } 167 168 static void sh4_flush_cache_all(void *unused) 169 { 170 flush_dcache_all(); 171 flush_icache_all(); 172 } 173 174 static void __flush_cache_mm(struct mm_struct *mm, unsigned long start, 175 unsigned long end) 176 { 177 unsigned long d = 0, p = start & PAGE_MASK; 178 unsigned long alias_mask = boot_cpu_data.dcache.alias_mask; 179 unsigned long n_aliases = boot_cpu_data.dcache.n_aliases; 180 unsigned long select_bit; 181 unsigned long all_aliases_mask; 182 unsigned long addr_offset; 183 pgd_t *dir; 184 pmd_t *pmd; 185 pud_t *pud; 186 pte_t *pte; 187 int i; 188 189 dir = pgd_offset(mm, p); 190 pud = pud_offset(dir, p); 191 pmd = pmd_offset(pud, p); 192 end = PAGE_ALIGN(end); 193 194 all_aliases_mask = (1 << n_aliases) - 1; 195 196 do { 197 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) { 198 p &= PMD_MASK; 199 p += PMD_SIZE; 200 pmd++; 201 202 continue; 203 } 204 205 pte = pte_offset_kernel(pmd, p); 206 207 do { 208 unsigned long phys; 209 pte_t entry = *pte; 210 211 if (!(pte_val(entry) & _PAGE_PRESENT)) { 212 pte++; 213 p += PAGE_SIZE; 214 continue; 215 } 216 217 phys = pte_val(entry) & PTE_PHYS_MASK; 218 219 if ((p ^ phys) & alias_mask) { 220 d |= 1 << ((p & alias_mask) >> PAGE_SHIFT); 221 d |= 1 << ((phys & alias_mask) >> PAGE_SHIFT); 222 223 if (d == all_aliases_mask) 224 goto loop_exit; 225 } 226 227 pte++; 228 p += PAGE_SIZE; 229 } while (p < end && ((unsigned long)pte & ~PAGE_MASK)); 230 pmd++; 231 } while (p < end); 232 233 loop_exit: 234 addr_offset = 0; 235 select_bit = 1; 236 237 for (i = 0; i < n_aliases; i++) { 238 if (d & select_bit) { 239 (*__flush_dcache_segment_fn)(addr_offset, PAGE_SIZE); 240 wmb(); 241 } 242 243 select_bit <<= 1; 244 addr_offset += PAGE_SIZE; 245 } 246 } 247 248 /* 249 * Note : (RPC) since the caches are physically tagged, the only point 250 * of flush_cache_mm for SH-4 is to get rid of aliases from the 251 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that 252 * lines can stay resident so long as the virtual address they were 253 * accessed with (hence cache set) is in accord with the physical 254 * address (i.e. tag). It's no different here. So I reckon we don't 255 * need to flush the I-cache, since aliases don't matter for that. We 256 * should try that. 257 * 258 * Caller takes mm->mmap_sem. 259 */ 260 static void sh4_flush_cache_mm(void *arg) 261 { 262 struct mm_struct *mm = arg; 263 264 if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT) 265 return; 266 267 /* 268 * If cache is only 4k-per-way, there are never any 'aliases'. Since 269 * the cache is physically tagged, the data can just be left in there. 270 */ 271 if (boot_cpu_data.dcache.n_aliases == 0) 272 return; 273 274 /* 275 * Don't bother groveling around the dcache for the VMA ranges 276 * if there are too many PTEs to make it worthwhile. 277 */ 278 if (mm->nr_ptes >= MAX_DCACHE_PAGES) 279 flush_dcache_all(); 280 else { 281 struct vm_area_struct *vma; 282 283 /* 284 * In this case there are reasonably sized ranges to flush, 285 * iterate through the VMA list and take care of any aliases. 286 */ 287 for (vma = mm->mmap; vma; vma = vma->vm_next) 288 __flush_cache_mm(mm, vma->vm_start, vma->vm_end); 289 } 290 291 /* Only touch the icache if one of the VMAs has VM_EXEC set. */ 292 if (mm->exec_vm) 293 flush_icache_all(); 294 } 295 296 /* 297 * Write back and invalidate I/D-caches for the page. 298 * 299 * ADDR: Virtual Address (U0 address) 300 * PFN: Physical page number 301 */ 302 static void sh4_flush_cache_page(void *args) 303 { 304 struct flusher_data *data = args; 305 struct vm_area_struct *vma; 306 unsigned long address, pfn, phys; 307 unsigned int alias_mask; 308 309 vma = data->vma; 310 address = data->addr1; 311 pfn = data->addr2; 312 phys = pfn << PAGE_SHIFT; 313 314 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT) 315 return; 316 317 alias_mask = boot_cpu_data.dcache.alias_mask; 318 319 /* We only need to flush D-cache when we have alias */ 320 if ((address^phys) & alias_mask) { 321 /* Loop 4K of the D-cache */ 322 flush_cache_one( 323 CACHE_OC_ADDRESS_ARRAY | (address & alias_mask), 324 phys); 325 /* Loop another 4K of the D-cache */ 326 flush_cache_one( 327 CACHE_OC_ADDRESS_ARRAY | (phys & alias_mask), 328 phys); 329 } 330 331 alias_mask = boot_cpu_data.icache.alias_mask; 332 if (vma->vm_flags & VM_EXEC) { 333 /* 334 * Evict entries from the portion of the cache from which code 335 * may have been executed at this address (virtual). There's 336 * no need to evict from the portion corresponding to the 337 * physical address as for the D-cache, because we know the 338 * kernel has never executed the code through its identity 339 * translation. 340 */ 341 flush_cache_one( 342 CACHE_IC_ADDRESS_ARRAY | (address & alias_mask), 343 phys); 344 } 345 } 346 347 /* 348 * Write back and invalidate D-caches. 349 * 350 * START, END: Virtual Address (U0 address) 351 * 352 * NOTE: We need to flush the _physical_ page entry. 353 * Flushing the cache lines for U0 only isn't enough. 354 * We need to flush for P1 too, which may contain aliases. 355 */ 356 static void sh4_flush_cache_range(void *args) 357 { 358 struct flusher_data *data = args; 359 struct vm_area_struct *vma; 360 unsigned long start, end; 361 362 vma = data->vma; 363 start = data->addr1; 364 end = data->addr2; 365 366 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT) 367 return; 368 369 /* 370 * If cache is only 4k-per-way, there are never any 'aliases'. Since 371 * the cache is physically tagged, the data can just be left in there. 372 */ 373 if (boot_cpu_data.dcache.n_aliases == 0) 374 return; 375 376 /* 377 * Don't bother with the lookup and alias check if we have a 378 * wide range to cover, just blow away the dcache in its 379 * entirety instead. -- PFM. 380 */ 381 if (((end - start) >> PAGE_SHIFT) >= MAX_DCACHE_PAGES) 382 flush_dcache_all(); 383 else 384 __flush_cache_mm(vma->vm_mm, start, end); 385 386 if (vma->vm_flags & VM_EXEC) { 387 /* 388 * TODO: Is this required??? Need to look at how I-cache 389 * coherency is assured when new programs are loaded to see if 390 * this matters. 391 */ 392 flush_icache_all(); 393 } 394 } 395 396 /** 397 * __flush_cache_one 398 * 399 * @addr: address in memory mapped cache array 400 * @phys: P1 address to flush (has to match tags if addr has 'A' bit 401 * set i.e. associative write) 402 * @exec_offset: set to 0x20000000 if flush has to be executed from P2 403 * region else 0x0 404 * 405 * The offset into the cache array implied by 'addr' selects the 406 * 'colour' of the virtual address range that will be flushed. The 407 * operation (purge/write-back) is selected by the lower 2 bits of 408 * 'phys'. 409 */ 410 static void __flush_cache_one(unsigned long addr, unsigned long phys, 411 unsigned long exec_offset) 412 { 413 int way_count; 414 unsigned long base_addr = addr; 415 struct cache_info *dcache; 416 unsigned long way_incr; 417 unsigned long a, ea, p; 418 unsigned long temp_pc; 419 420 dcache = &boot_cpu_data.dcache; 421 /* Write this way for better assembly. */ 422 way_count = dcache->ways; 423 way_incr = dcache->way_incr; 424 425 /* 426 * Apply exec_offset (i.e. branch to P2 if required.). 427 * 428 * FIXME: 429 * 430 * If I write "=r" for the (temp_pc), it puts this in r6 hence 431 * trashing exec_offset before it's been added on - why? Hence 432 * "=&r" as a 'workaround' 433 */ 434 asm volatile("mov.l 1f, %0\n\t" 435 "add %1, %0\n\t" 436 "jmp @%0\n\t" 437 "nop\n\t" 438 ".balign 4\n\t" 439 "1: .long 2f\n\t" 440 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset)); 441 442 /* 443 * We know there will be >=1 iteration, so write as do-while to avoid 444 * pointless nead-of-loop check for 0 iterations. 445 */ 446 do { 447 ea = base_addr + PAGE_SIZE; 448 a = base_addr; 449 p = phys; 450 451 do { 452 *(volatile unsigned long *)a = p; 453 /* 454 * Next line: intentionally not p+32, saves an add, p 455 * will do since only the cache tag bits need to 456 * match. 457 */ 458 *(volatile unsigned long *)(a+32) = p; 459 a += 64; 460 p += 64; 461 } while (a < ea); 462 463 base_addr += way_incr; 464 } while (--way_count != 0); 465 } 466 467 /* 468 * Break the 1, 2 and 4 way variants of this out into separate functions to 469 * avoid nearly all the overhead of having the conditional stuff in the function 470 * bodies (+ the 1 and 2 way cases avoid saving any registers too). 471 * 472 * We want to eliminate unnecessary bus transactions, so this code uses 473 * a non-obvious technique. 474 * 475 * Loop over a cache way sized block of, one cache line at a time. For each 476 * line, use movca.a to cause the current cache line contents to be written 477 * back, but without reading anything from main memory. However this has the 478 * side effect that the cache is now caching that memory location. So follow 479 * this with a cache invalidate to mark the cache line invalid. And do all 480 * this with interrupts disabled, to avoid the cache line being accidently 481 * evicted while it is holding garbage. 482 * 483 * This also breaks in a number of circumstances: 484 * - if there are modifications to the region of memory just above 485 * empty_zero_page (for example because a breakpoint has been placed 486 * there), then these can be lost. 487 * 488 * This is because the the memory address which the cache temporarily 489 * caches in the above description is empty_zero_page. So the 490 * movca.l hits the cache (it is assumed that it misses, or at least 491 * isn't dirty), modifies the line and then invalidates it, losing the 492 * required change. 493 * 494 * - If caches are disabled or configured in write-through mode, then 495 * the movca.l writes garbage directly into memory. 496 */ 497 static void __flush_dcache_segment_writethrough(unsigned long start, 498 unsigned long extent_per_way) 499 { 500 unsigned long addr; 501 int i; 502 503 addr = CACHE_OC_ADDRESS_ARRAY | (start & cpu_data->dcache.entry_mask); 504 505 while (extent_per_way) { 506 for (i = 0; i < cpu_data->dcache.ways; i++) 507 __raw_writel(0, addr + cpu_data->dcache.way_incr * i); 508 509 addr += cpu_data->dcache.linesz; 510 extent_per_way -= cpu_data->dcache.linesz; 511 } 512 } 513 514 static void __flush_dcache_segment_1way(unsigned long start, 515 unsigned long extent_per_way) 516 { 517 unsigned long orig_sr, sr_with_bl; 518 unsigned long base_addr; 519 unsigned long way_incr, linesz, way_size; 520 struct cache_info *dcache; 521 register unsigned long a0, a0e; 522 523 asm volatile("stc sr, %0" : "=r" (orig_sr)); 524 sr_with_bl = orig_sr | (1<<28); 525 base_addr = ((unsigned long)&empty_zero_page[0]); 526 527 /* 528 * The previous code aligned base_addr to 16k, i.e. the way_size of all 529 * existing SH-4 D-caches. Whilst I don't see a need to have this 530 * aligned to any better than the cache line size (which it will be 531 * anyway by construction), let's align it to at least the way_size of 532 * any existing or conceivable SH-4 D-cache. -- RPC 533 */ 534 base_addr = ((base_addr >> 16) << 16); 535 base_addr |= start; 536 537 dcache = &boot_cpu_data.dcache; 538 linesz = dcache->linesz; 539 way_incr = dcache->way_incr; 540 way_size = dcache->way_size; 541 542 a0 = base_addr; 543 a0e = base_addr + extent_per_way; 544 do { 545 asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); 546 asm volatile("movca.l r0, @%0\n\t" 547 "ocbi @%0" : : "r" (a0)); 548 a0 += linesz; 549 asm volatile("movca.l r0, @%0\n\t" 550 "ocbi @%0" : : "r" (a0)); 551 a0 += linesz; 552 asm volatile("movca.l r0, @%0\n\t" 553 "ocbi @%0" : : "r" (a0)); 554 a0 += linesz; 555 asm volatile("movca.l r0, @%0\n\t" 556 "ocbi @%0" : : "r" (a0)); 557 asm volatile("ldc %0, sr" : : "r" (orig_sr)); 558 a0 += linesz; 559 } while (a0 < a0e); 560 } 561 562 static void __flush_dcache_segment_2way(unsigned long start, 563 unsigned long extent_per_way) 564 { 565 unsigned long orig_sr, sr_with_bl; 566 unsigned long base_addr; 567 unsigned long way_incr, linesz, way_size; 568 struct cache_info *dcache; 569 register unsigned long a0, a1, a0e; 570 571 asm volatile("stc sr, %0" : "=r" (orig_sr)); 572 sr_with_bl = orig_sr | (1<<28); 573 base_addr = ((unsigned long)&empty_zero_page[0]); 574 575 /* See comment under 1-way above */ 576 base_addr = ((base_addr >> 16) << 16); 577 base_addr |= start; 578 579 dcache = &boot_cpu_data.dcache; 580 linesz = dcache->linesz; 581 way_incr = dcache->way_incr; 582 way_size = dcache->way_size; 583 584 a0 = base_addr; 585 a1 = a0 + way_incr; 586 a0e = base_addr + extent_per_way; 587 do { 588 asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); 589 asm volatile("movca.l r0, @%0\n\t" 590 "movca.l r0, @%1\n\t" 591 "ocbi @%0\n\t" 592 "ocbi @%1" : : 593 "r" (a0), "r" (a1)); 594 a0 += linesz; 595 a1 += linesz; 596 asm volatile("movca.l r0, @%0\n\t" 597 "movca.l r0, @%1\n\t" 598 "ocbi @%0\n\t" 599 "ocbi @%1" : : 600 "r" (a0), "r" (a1)); 601 a0 += linesz; 602 a1 += linesz; 603 asm volatile("movca.l r0, @%0\n\t" 604 "movca.l r0, @%1\n\t" 605 "ocbi @%0\n\t" 606 "ocbi @%1" : : 607 "r" (a0), "r" (a1)); 608 a0 += linesz; 609 a1 += linesz; 610 asm volatile("movca.l r0, @%0\n\t" 611 "movca.l r0, @%1\n\t" 612 "ocbi @%0\n\t" 613 "ocbi @%1" : : 614 "r" (a0), "r" (a1)); 615 asm volatile("ldc %0, sr" : : "r" (orig_sr)); 616 a0 += linesz; 617 a1 += linesz; 618 } while (a0 < a0e); 619 } 620 621 static void __flush_dcache_segment_4way(unsigned long start, 622 unsigned long extent_per_way) 623 { 624 unsigned long orig_sr, sr_with_bl; 625 unsigned long base_addr; 626 unsigned long way_incr, linesz, way_size; 627 struct cache_info *dcache; 628 register unsigned long a0, a1, a2, a3, a0e; 629 630 asm volatile("stc sr, %0" : "=r" (orig_sr)); 631 sr_with_bl = orig_sr | (1<<28); 632 base_addr = ((unsigned long)&empty_zero_page[0]); 633 634 /* See comment under 1-way above */ 635 base_addr = ((base_addr >> 16) << 16); 636 base_addr |= start; 637 638 dcache = &boot_cpu_data.dcache; 639 linesz = dcache->linesz; 640 way_incr = dcache->way_incr; 641 way_size = dcache->way_size; 642 643 a0 = base_addr; 644 a1 = a0 + way_incr; 645 a2 = a1 + way_incr; 646 a3 = a2 + way_incr; 647 a0e = base_addr + extent_per_way; 648 do { 649 asm volatile("ldc %0, sr" : : "r" (sr_with_bl)); 650 asm volatile("movca.l r0, @%0\n\t" 651 "movca.l r0, @%1\n\t" 652 "movca.l r0, @%2\n\t" 653 "movca.l r0, @%3\n\t" 654 "ocbi @%0\n\t" 655 "ocbi @%1\n\t" 656 "ocbi @%2\n\t" 657 "ocbi @%3\n\t" : : 658 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 659 a0 += linesz; 660 a1 += linesz; 661 a2 += linesz; 662 a3 += linesz; 663 asm volatile("movca.l r0, @%0\n\t" 664 "movca.l r0, @%1\n\t" 665 "movca.l r0, @%2\n\t" 666 "movca.l r0, @%3\n\t" 667 "ocbi @%0\n\t" 668 "ocbi @%1\n\t" 669 "ocbi @%2\n\t" 670 "ocbi @%3\n\t" : : 671 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 672 a0 += linesz; 673 a1 += linesz; 674 a2 += linesz; 675 a3 += linesz; 676 asm volatile("movca.l r0, @%0\n\t" 677 "movca.l r0, @%1\n\t" 678 "movca.l r0, @%2\n\t" 679 "movca.l r0, @%3\n\t" 680 "ocbi @%0\n\t" 681 "ocbi @%1\n\t" 682 "ocbi @%2\n\t" 683 "ocbi @%3\n\t" : : 684 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 685 a0 += linesz; 686 a1 += linesz; 687 a2 += linesz; 688 a3 += linesz; 689 asm volatile("movca.l r0, @%0\n\t" 690 "movca.l r0, @%1\n\t" 691 "movca.l r0, @%2\n\t" 692 "movca.l r0, @%3\n\t" 693 "ocbi @%0\n\t" 694 "ocbi @%1\n\t" 695 "ocbi @%2\n\t" 696 "ocbi @%3\n\t" : : 697 "r" (a0), "r" (a1), "r" (a2), "r" (a3)); 698 asm volatile("ldc %0, sr" : : "r" (orig_sr)); 699 a0 += linesz; 700 a1 += linesz; 701 a2 += linesz; 702 a3 += linesz; 703 } while (a0 < a0e); 704 } 705 706 extern void __weak sh4__flush_region_init(void); 707 708 /* 709 * SH-4 has virtually indexed and physically tagged cache. 710 */ 711 void __init sh4_cache_init(void) 712 { 713 unsigned int wt_enabled = !!(__raw_readl(CCR) & CCR_CACHE_WT); 714 715 printk("PVR=%08x CVR=%08x PRR=%08x\n", 716 ctrl_inl(CCN_PVR), 717 ctrl_inl(CCN_CVR), 718 ctrl_inl(CCN_PRR)); 719 720 if (wt_enabled) 721 __flush_dcache_segment_fn = __flush_dcache_segment_writethrough; 722 else { 723 switch (boot_cpu_data.dcache.ways) { 724 case 1: 725 __flush_dcache_segment_fn = __flush_dcache_segment_1way; 726 break; 727 case 2: 728 __flush_dcache_segment_fn = __flush_dcache_segment_2way; 729 break; 730 case 4: 731 __flush_dcache_segment_fn = __flush_dcache_segment_4way; 732 break; 733 default: 734 panic("unknown number of cache ways\n"); 735 break; 736 } 737 } 738 739 local_flush_icache_range = sh4_flush_icache_range; 740 local_flush_dcache_page = sh4_flush_dcache_page; 741 local_flush_cache_all = sh4_flush_cache_all; 742 local_flush_cache_mm = sh4_flush_cache_mm; 743 local_flush_cache_dup_mm = sh4_flush_cache_mm; 744 local_flush_cache_page = sh4_flush_cache_page; 745 local_flush_cache_range = sh4_flush_cache_range; 746 747 sh4__flush_region_init(); 748 } 749