xref: /linux/arch/sh/mm/cache-sh4.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * arch/sh/mm/cache-sh4.c
3  *
4  * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
5  * Copyright (C) 2001 - 2009  Paul Mundt
6  * Copyright (C) 2003  Richard Curnow
7  * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/fs.h>
18 #include <linux/highmem.h>
19 #include <asm/pgtable.h>
20 #include <asm/mmu_context.h>
21 #include <asm/cache_insns.h>
22 #include <asm/cacheflush.h>
23 
24 /*
25  * The maximum number of pages we support up to when doing ranged dcache
26  * flushing. Anything exceeding this will simply flush the dcache in its
27  * entirety.
28  */
29 #define MAX_ICACHE_PAGES	32
30 
31 static void __flush_cache_one(unsigned long addr, unsigned long phys,
32 			       unsigned long exec_offset);
33 
34 /*
35  * Write back the range of D-cache, and purge the I-cache.
36  *
37  * Called from kernel/module.c:sys_init_module and routine for a.out format,
38  * signal handler code and kprobes code
39  */
40 static void sh4_flush_icache_range(void *args)
41 {
42 	struct flusher_data *data = args;
43 	unsigned long start, end;
44 	unsigned long flags, v;
45 	int i;
46 
47 	start = data->addr1;
48 	end = data->addr2;
49 
50 	/* If there are too many pages then just blow away the caches */
51 	if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
52 		local_flush_cache_all(NULL);
53 		return;
54 	}
55 
56 	/*
57 	 * Selectively flush d-cache then invalidate the i-cache.
58 	 * This is inefficient, so only use this for small ranges.
59 	 */
60 	start &= ~(L1_CACHE_BYTES-1);
61 	end += L1_CACHE_BYTES-1;
62 	end &= ~(L1_CACHE_BYTES-1);
63 
64 	local_irq_save(flags);
65 	jump_to_uncached();
66 
67 	for (v = start; v < end; v += L1_CACHE_BYTES) {
68 		unsigned long icacheaddr;
69 		int j, n;
70 
71 		__ocbwb(v);
72 
73 		icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
74 				cpu_data->icache.entry_mask);
75 
76 		/* Clear i-cache line valid-bit */
77 		n = boot_cpu_data.icache.n_aliases;
78 		for (i = 0; i < cpu_data->icache.ways; i++) {
79 			for (j = 0; j < n; j++)
80 				__raw_writel(0, icacheaddr + (j * PAGE_SIZE));
81 			icacheaddr += cpu_data->icache.way_incr;
82 		}
83 	}
84 
85 	back_to_cached();
86 	local_irq_restore(flags);
87 }
88 
89 static inline void flush_cache_one(unsigned long start, unsigned long phys)
90 {
91 	unsigned long flags, exec_offset = 0;
92 
93 	/*
94 	 * All types of SH-4 require PC to be uncached to operate on the I-cache.
95 	 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
96 	 */
97 	if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
98 	    (start < CACHE_OC_ADDRESS_ARRAY))
99 		exec_offset = cached_to_uncached;
100 
101 	local_irq_save(flags);
102 	__flush_cache_one(start, phys, exec_offset);
103 	local_irq_restore(flags);
104 }
105 
106 /*
107  * Write back & invalidate the D-cache of the page.
108  * (To avoid "alias" issues)
109  */
110 static void sh4_flush_dcache_page(void *arg)
111 {
112 	struct page *page = arg;
113 	unsigned long addr = (unsigned long)page_address(page);
114 #ifndef CONFIG_SMP
115 	struct address_space *mapping = page_mapping_file(page);
116 
117 	if (mapping && !mapping_mapped(mapping))
118 		clear_bit(PG_dcache_clean, &page->flags);
119 	else
120 #endif
121 		flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
122 				(addr & shm_align_mask), page_to_phys(page));
123 
124 	wmb();
125 }
126 
127 /* TODO: Selective icache invalidation through IC address array.. */
128 static void flush_icache_all(void)
129 {
130 	unsigned long flags, ccr;
131 
132 	local_irq_save(flags);
133 	jump_to_uncached();
134 
135 	/* Flush I-cache */
136 	ccr = __raw_readl(SH_CCR);
137 	ccr |= CCR_CACHE_ICI;
138 	__raw_writel(ccr, SH_CCR);
139 
140 	/*
141 	 * back_to_cached() will take care of the barrier for us, don't add
142 	 * another one!
143 	 */
144 
145 	back_to_cached();
146 	local_irq_restore(flags);
147 }
148 
149 static void flush_dcache_all(void)
150 {
151 	unsigned long addr, end_addr, entry_offset;
152 
153 	end_addr = CACHE_OC_ADDRESS_ARRAY +
154 		(current_cpu_data.dcache.sets <<
155 		 current_cpu_data.dcache.entry_shift) *
156 			current_cpu_data.dcache.ways;
157 
158 	entry_offset = 1 << current_cpu_data.dcache.entry_shift;
159 
160 	for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
161 		__raw_writel(0, addr); addr += entry_offset;
162 		__raw_writel(0, addr); addr += entry_offset;
163 		__raw_writel(0, addr); addr += entry_offset;
164 		__raw_writel(0, addr); addr += entry_offset;
165 		__raw_writel(0, addr); addr += entry_offset;
166 		__raw_writel(0, addr); addr += entry_offset;
167 		__raw_writel(0, addr); addr += entry_offset;
168 		__raw_writel(0, addr); addr += entry_offset;
169 	}
170 }
171 
172 static void sh4_flush_cache_all(void *unused)
173 {
174 	flush_dcache_all();
175 	flush_icache_all();
176 }
177 
178 /*
179  * Note : (RPC) since the caches are physically tagged, the only point
180  * of flush_cache_mm for SH-4 is to get rid of aliases from the
181  * D-cache.  The assumption elsewhere, e.g. flush_cache_range, is that
182  * lines can stay resident so long as the virtual address they were
183  * accessed with (hence cache set) is in accord with the physical
184  * address (i.e. tag).  It's no different here.
185  *
186  * Caller takes mm->mmap_sem.
187  */
188 static void sh4_flush_cache_mm(void *arg)
189 {
190 	struct mm_struct *mm = arg;
191 
192 	if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
193 		return;
194 
195 	flush_dcache_all();
196 }
197 
198 /*
199  * Write back and invalidate I/D-caches for the page.
200  *
201  * ADDR: Virtual Address (U0 address)
202  * PFN: Physical page number
203  */
204 static void sh4_flush_cache_page(void *args)
205 {
206 	struct flusher_data *data = args;
207 	struct vm_area_struct *vma;
208 	struct page *page;
209 	unsigned long address, pfn, phys;
210 	int map_coherent = 0;
211 	pgd_t *pgd;
212 	pud_t *pud;
213 	pmd_t *pmd;
214 	pte_t *pte;
215 	void *vaddr;
216 
217 	vma = data->vma;
218 	address = data->addr1 & PAGE_MASK;
219 	pfn = data->addr2;
220 	phys = pfn << PAGE_SHIFT;
221 	page = pfn_to_page(pfn);
222 
223 	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
224 		return;
225 
226 	pgd = pgd_offset(vma->vm_mm, address);
227 	pud = pud_offset(pgd, address);
228 	pmd = pmd_offset(pud, address);
229 	pte = pte_offset_kernel(pmd, address);
230 
231 	/* If the page isn't present, there is nothing to do here. */
232 	if (!(pte_val(*pte) & _PAGE_PRESENT))
233 		return;
234 
235 	if ((vma->vm_mm == current->active_mm))
236 		vaddr = NULL;
237 	else {
238 		/*
239 		 * Use kmap_coherent or kmap_atomic to do flushes for
240 		 * another ASID than the current one.
241 		 */
242 		map_coherent = (current_cpu_data.dcache.n_aliases &&
243 			test_bit(PG_dcache_clean, &page->flags) &&
244 			page_mapcount(page));
245 		if (map_coherent)
246 			vaddr = kmap_coherent(page, address);
247 		else
248 			vaddr = kmap_atomic(page);
249 
250 		address = (unsigned long)vaddr;
251 	}
252 
253 	flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
254 			(address & shm_align_mask), phys);
255 
256 	if (vma->vm_flags & VM_EXEC)
257 		flush_icache_all();
258 
259 	if (vaddr) {
260 		if (map_coherent)
261 			kunmap_coherent(vaddr);
262 		else
263 			kunmap_atomic(vaddr);
264 	}
265 }
266 
267 /*
268  * Write back and invalidate D-caches.
269  *
270  * START, END: Virtual Address (U0 address)
271  *
272  * NOTE: We need to flush the _physical_ page entry.
273  * Flushing the cache lines for U0 only isn't enough.
274  * We need to flush for P1 too, which may contain aliases.
275  */
276 static void sh4_flush_cache_range(void *args)
277 {
278 	struct flusher_data *data = args;
279 	struct vm_area_struct *vma;
280 	unsigned long start, end;
281 
282 	vma = data->vma;
283 	start = data->addr1;
284 	end = data->addr2;
285 
286 	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
287 		return;
288 
289 	/*
290 	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since
291 	 * the cache is physically tagged, the data can just be left in there.
292 	 */
293 	if (boot_cpu_data.dcache.n_aliases == 0)
294 		return;
295 
296 	flush_dcache_all();
297 
298 	if (vma->vm_flags & VM_EXEC)
299 		flush_icache_all();
300 }
301 
302 /**
303  * __flush_cache_one
304  *
305  * @addr:  address in memory mapped cache array
306  * @phys:  P1 address to flush (has to match tags if addr has 'A' bit
307  *         set i.e. associative write)
308  * @exec_offset: set to 0x20000000 if flush has to be executed from P2
309  *               region else 0x0
310  *
311  * The offset into the cache array implied by 'addr' selects the
312  * 'colour' of the virtual address range that will be flushed.  The
313  * operation (purge/write-back) is selected by the lower 2 bits of
314  * 'phys'.
315  */
316 static void __flush_cache_one(unsigned long addr, unsigned long phys,
317 			       unsigned long exec_offset)
318 {
319 	int way_count;
320 	unsigned long base_addr = addr;
321 	struct cache_info *dcache;
322 	unsigned long way_incr;
323 	unsigned long a, ea, p;
324 	unsigned long temp_pc;
325 
326 	dcache = &boot_cpu_data.dcache;
327 	/* Write this way for better assembly. */
328 	way_count = dcache->ways;
329 	way_incr = dcache->way_incr;
330 
331 	/*
332 	 * Apply exec_offset (i.e. branch to P2 if required.).
333 	 *
334 	 * FIXME:
335 	 *
336 	 *	If I write "=r" for the (temp_pc), it puts this in r6 hence
337 	 *	trashing exec_offset before it's been added on - why?  Hence
338 	 *	"=&r" as a 'workaround'
339 	 */
340 	asm volatile("mov.l 1f, %0\n\t"
341 		     "add   %1, %0\n\t"
342 		     "jmp   @%0\n\t"
343 		     "nop\n\t"
344 		     ".balign 4\n\t"
345 		     "1:  .long 2f\n\t"
346 		     "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
347 
348 	/*
349 	 * We know there will be >=1 iteration, so write as do-while to avoid
350 	 * pointless nead-of-loop check for 0 iterations.
351 	 */
352 	do {
353 		ea = base_addr + PAGE_SIZE;
354 		a = base_addr;
355 		p = phys;
356 
357 		do {
358 			*(volatile unsigned long *)a = p;
359 			/*
360 			 * Next line: intentionally not p+32, saves an add, p
361 			 * will do since only the cache tag bits need to
362 			 * match.
363 			 */
364 			*(volatile unsigned long *)(a+32) = p;
365 			a += 64;
366 			p += 64;
367 		} while (a < ea);
368 
369 		base_addr += way_incr;
370 	} while (--way_count != 0);
371 }
372 
373 extern void __weak sh4__flush_region_init(void);
374 
375 /*
376  * SH-4 has virtually indexed and physically tagged cache.
377  */
378 void __init sh4_cache_init(void)
379 {
380 	printk("PVR=%08x CVR=%08x PRR=%08x\n",
381 		__raw_readl(CCN_PVR),
382 		__raw_readl(CCN_CVR),
383 		__raw_readl(CCN_PRR));
384 
385 	local_flush_icache_range	= sh4_flush_icache_range;
386 	local_flush_dcache_page		= sh4_flush_dcache_page;
387 	local_flush_cache_all		= sh4_flush_cache_all;
388 	local_flush_cache_mm		= sh4_flush_cache_mm;
389 	local_flush_cache_dup_mm	= sh4_flush_cache_mm;
390 	local_flush_cache_page		= sh4_flush_cache_page;
391 	local_flush_cache_range		= sh4_flush_cache_range;
392 
393 	sh4__flush_region_init();
394 }
395