xref: /linux/arch/sh/kernel/smp.c (revision a5766f11cfd3a0c03450d99c8fe548c2940be884)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2007 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <asm/atomic.h>
23 #include <asm/processor.h>
24 #include <asm/system.h>
25 #include <asm/mmu_context.h>
26 #include <asm/smp.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 
30 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
31 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
32 
33 cpumask_t cpu_possible_map;
34 EXPORT_SYMBOL(cpu_possible_map);
35 
36 cpumask_t cpu_online_map;
37 EXPORT_SYMBOL(cpu_online_map);
38 
39 static inline void __init smp_store_cpu_info(unsigned int cpu)
40 {
41 	struct sh_cpuinfo *c = cpu_data + cpu;
42 
43 	c->loops_per_jiffy = loops_per_jiffy;
44 }
45 
46 void __init smp_prepare_cpus(unsigned int max_cpus)
47 {
48 	unsigned int cpu = smp_processor_id();
49 
50 	init_new_context(current, &init_mm);
51 	current_thread_info()->cpu = cpu;
52 	plat_prepare_cpus(max_cpus);
53 
54 #ifndef CONFIG_HOTPLUG_CPU
55 	cpu_present_map = cpu_possible_map;
56 #endif
57 }
58 
59 void __devinit smp_prepare_boot_cpu(void)
60 {
61 	unsigned int cpu = smp_processor_id();
62 
63 	__cpu_number_map[0] = cpu;
64 	__cpu_logical_map[0] = cpu;
65 
66 	cpu_set(cpu, cpu_online_map);
67 	cpu_set(cpu, cpu_possible_map);
68 }
69 
70 asmlinkage void __cpuinit start_secondary(void)
71 {
72 	unsigned int cpu;
73 	struct mm_struct *mm = &init_mm;
74 
75 	atomic_inc(&mm->mm_count);
76 	atomic_inc(&mm->mm_users);
77 	current->active_mm = mm;
78 	BUG_ON(current->mm);
79 	enter_lazy_tlb(mm, current);
80 
81 	per_cpu_trap_init();
82 
83 	preempt_disable();
84 
85 	notify_cpu_starting(smp_processor_id());
86 
87 	local_irq_enable();
88 
89 	calibrate_delay();
90 
91 	cpu = smp_processor_id();
92 	smp_store_cpu_info(cpu);
93 
94 	cpu_set(cpu, cpu_online_map);
95 
96 	cpu_idle();
97 }
98 
99 extern struct {
100 	unsigned long sp;
101 	unsigned long bss_start;
102 	unsigned long bss_end;
103 	void *start_kernel_fn;
104 	void *cpu_init_fn;
105 	void *thread_info;
106 } stack_start;
107 
108 int __cpuinit __cpu_up(unsigned int cpu)
109 {
110 	struct task_struct *tsk;
111 	unsigned long timeout;
112 
113 	tsk = fork_idle(cpu);
114 	if (IS_ERR(tsk)) {
115 		printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
116 		return PTR_ERR(tsk);
117 	}
118 
119 	/* Fill in data in head.S for secondary cpus */
120 	stack_start.sp = tsk->thread.sp;
121 	stack_start.thread_info = tsk->stack;
122 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
123 	stack_start.start_kernel_fn = start_secondary;
124 
125 	flush_cache_all();
126 
127 	plat_start_cpu(cpu, (unsigned long)_stext);
128 
129 	timeout = jiffies + HZ;
130 	while (time_before(jiffies, timeout)) {
131 		if (cpu_online(cpu))
132 			break;
133 
134 		udelay(10);
135 	}
136 
137 	if (cpu_online(cpu))
138 		return 0;
139 
140 	return -ENOENT;
141 }
142 
143 void __init smp_cpus_done(unsigned int max_cpus)
144 {
145 	unsigned long bogosum = 0;
146 	int cpu;
147 
148 	for_each_online_cpu(cpu)
149 		bogosum += cpu_data[cpu].loops_per_jiffy;
150 
151 	printk(KERN_INFO "SMP: Total of %d processors activated "
152 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
153 	       bogosum / (500000/HZ),
154 	       (bogosum / (5000/HZ)) % 100);
155 }
156 
157 void smp_send_reschedule(int cpu)
158 {
159 	plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
160 }
161 
162 static void stop_this_cpu(void *unused)
163 {
164 	cpu_clear(smp_processor_id(), cpu_online_map);
165 	local_irq_disable();
166 
167 	for (;;)
168 		cpu_relax();
169 }
170 
171 void smp_send_stop(void)
172 {
173 	smp_call_function(stop_this_cpu, 0, 0);
174 }
175 
176 void arch_send_call_function_ipi(cpumask_t mask)
177 {
178 	int cpu;
179 
180 	for_each_cpu_mask(cpu, mask)
181 		plat_send_ipi(cpu, SMP_MSG_FUNCTION);
182 }
183 
184 void arch_send_call_function_single_ipi(int cpu)
185 {
186 	plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
187 }
188 
189 /* Not really SMP stuff ... */
190 int setup_profiling_timer(unsigned int multiplier)
191 {
192 	return 0;
193 }
194 
195 static void flush_tlb_all_ipi(void *info)
196 {
197 	local_flush_tlb_all();
198 }
199 
200 void flush_tlb_all(void)
201 {
202 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
203 }
204 
205 static void flush_tlb_mm_ipi(void *mm)
206 {
207 	local_flush_tlb_mm((struct mm_struct *)mm);
208 }
209 
210 /*
211  * The following tlb flush calls are invoked when old translations are
212  * being torn down, or pte attributes are changing. For single threaded
213  * address spaces, a new context is obtained on the current cpu, and tlb
214  * context on other cpus are invalidated to force a new context allocation
215  * at switch_mm time, should the mm ever be used on other cpus. For
216  * multithreaded address spaces, intercpu interrupts have to be sent.
217  * Another case where intercpu interrupts are required is when the target
218  * mm might be active on another cpu (eg debuggers doing the flushes on
219  * behalf of debugees, kswapd stealing pages from another process etc).
220  * Kanoj 07/00.
221  */
222 
223 void flush_tlb_mm(struct mm_struct *mm)
224 {
225 	preempt_disable();
226 
227 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
228 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
229 	} else {
230 		int i;
231 		for (i = 0; i < num_online_cpus(); i++)
232 			if (smp_processor_id() != i)
233 				cpu_context(i, mm) = 0;
234 	}
235 	local_flush_tlb_mm(mm);
236 
237 	preempt_enable();
238 }
239 
240 struct flush_tlb_data {
241 	struct vm_area_struct *vma;
242 	unsigned long addr1;
243 	unsigned long addr2;
244 };
245 
246 static void flush_tlb_range_ipi(void *info)
247 {
248 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
249 
250 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
251 }
252 
253 void flush_tlb_range(struct vm_area_struct *vma,
254 		     unsigned long start, unsigned long end)
255 {
256 	struct mm_struct *mm = vma->vm_mm;
257 
258 	preempt_disable();
259 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
260 		struct flush_tlb_data fd;
261 
262 		fd.vma = vma;
263 		fd.addr1 = start;
264 		fd.addr2 = end;
265 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
266 	} else {
267 		int i;
268 		for (i = 0; i < num_online_cpus(); i++)
269 			if (smp_processor_id() != i)
270 				cpu_context(i, mm) = 0;
271 	}
272 	local_flush_tlb_range(vma, start, end);
273 	preempt_enable();
274 }
275 
276 static void flush_tlb_kernel_range_ipi(void *info)
277 {
278 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
279 
280 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
281 }
282 
283 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
284 {
285 	struct flush_tlb_data fd;
286 
287 	fd.addr1 = start;
288 	fd.addr2 = end;
289 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
290 }
291 
292 static void flush_tlb_page_ipi(void *info)
293 {
294 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
295 
296 	local_flush_tlb_page(fd->vma, fd->addr1);
297 }
298 
299 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
300 {
301 	preempt_disable();
302 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
303 	    (current->mm != vma->vm_mm)) {
304 		struct flush_tlb_data fd;
305 
306 		fd.vma = vma;
307 		fd.addr1 = page;
308 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
309 	} else {
310 		int i;
311 		for (i = 0; i < num_online_cpus(); i++)
312 			if (smp_processor_id() != i)
313 				cpu_context(i, vma->vm_mm) = 0;
314 	}
315 	local_flush_tlb_page(vma, page);
316 	preempt_enable();
317 }
318 
319 static void flush_tlb_one_ipi(void *info)
320 {
321 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
322 	local_flush_tlb_one(fd->addr1, fd->addr2);
323 }
324 
325 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
326 {
327 	struct flush_tlb_data fd;
328 
329 	fd.addr1 = asid;
330 	fd.addr2 = vaddr;
331 
332 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
333 	local_flush_tlb_one(asid, vaddr);
334 }
335