xref: /linux/arch/sh/kernel/smp.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2008 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <asm/atomic.h>
24 #include <asm/processor.h>
25 #include <asm/system.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 
31 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
32 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
33 
34 static inline void __init smp_store_cpu_info(unsigned int cpu)
35 {
36 	struct sh_cpuinfo *c = cpu_data + cpu;
37 
38 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
39 
40 	c->loops_per_jiffy = loops_per_jiffy;
41 }
42 
43 void __init smp_prepare_cpus(unsigned int max_cpus)
44 {
45 	unsigned int cpu = smp_processor_id();
46 
47 	init_new_context(current, &init_mm);
48 	current_thread_info()->cpu = cpu;
49 	plat_prepare_cpus(max_cpus);
50 
51 #ifndef CONFIG_HOTPLUG_CPU
52 	init_cpu_present(&cpu_possible_map);
53 #endif
54 }
55 
56 void __devinit smp_prepare_boot_cpu(void)
57 {
58 	unsigned int cpu = smp_processor_id();
59 
60 	__cpu_number_map[0] = cpu;
61 	__cpu_logical_map[0] = cpu;
62 
63 	set_cpu_online(cpu, true);
64 	set_cpu_possible(cpu, true);
65 }
66 
67 asmlinkage void __cpuinit start_secondary(void)
68 {
69 	unsigned int cpu;
70 	struct mm_struct *mm = &init_mm;
71 
72 	enable_mmu();
73 	atomic_inc(&mm->mm_count);
74 	atomic_inc(&mm->mm_users);
75 	current->active_mm = mm;
76 	BUG_ON(current->mm);
77 	enter_lazy_tlb(mm, current);
78 
79 	per_cpu_trap_init();
80 
81 	preempt_disable();
82 
83 	notify_cpu_starting(smp_processor_id());
84 
85 	local_irq_enable();
86 
87 	cpu = smp_processor_id();
88 
89 	/* Enable local timers */
90 	local_timer_setup(cpu);
91 	calibrate_delay();
92 
93 	smp_store_cpu_info(cpu);
94 
95 	cpu_set(cpu, cpu_online_map);
96 
97 	cpu_idle();
98 }
99 
100 extern struct {
101 	unsigned long sp;
102 	unsigned long bss_start;
103 	unsigned long bss_end;
104 	void *start_kernel_fn;
105 	void *cpu_init_fn;
106 	void *thread_info;
107 } stack_start;
108 
109 int __cpuinit __cpu_up(unsigned int cpu)
110 {
111 	struct task_struct *tsk;
112 	unsigned long timeout;
113 
114 	tsk = fork_idle(cpu);
115 	if (IS_ERR(tsk)) {
116 		printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
117 		return PTR_ERR(tsk);
118 	}
119 
120 	/* Fill in data in head.S for secondary cpus */
121 	stack_start.sp = tsk->thread.sp;
122 	stack_start.thread_info = tsk->stack;
123 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
124 	stack_start.start_kernel_fn = start_secondary;
125 
126 	flush_icache_range((unsigned long)&stack_start,
127 			   (unsigned long)&stack_start + sizeof(stack_start));
128 	wmb();
129 
130 	plat_start_cpu(cpu, (unsigned long)_stext);
131 
132 	timeout = jiffies + HZ;
133 	while (time_before(jiffies, timeout)) {
134 		if (cpu_online(cpu))
135 			break;
136 
137 		udelay(10);
138 	}
139 
140 	if (cpu_online(cpu))
141 		return 0;
142 
143 	return -ENOENT;
144 }
145 
146 void __init smp_cpus_done(unsigned int max_cpus)
147 {
148 	unsigned long bogosum = 0;
149 	int cpu;
150 
151 	for_each_online_cpu(cpu)
152 		bogosum += cpu_data[cpu].loops_per_jiffy;
153 
154 	printk(KERN_INFO "SMP: Total of %d processors activated "
155 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
156 	       bogosum / (500000/HZ),
157 	       (bogosum / (5000/HZ)) % 100);
158 }
159 
160 void smp_send_reschedule(int cpu)
161 {
162 	plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
163 }
164 
165 void smp_send_stop(void)
166 {
167 	smp_call_function(stop_this_cpu, 0, 0);
168 }
169 
170 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
171 {
172 	int cpu;
173 
174 	for_each_cpu(cpu, mask)
175 		plat_send_ipi(cpu, SMP_MSG_FUNCTION);
176 }
177 
178 void arch_send_call_function_single_ipi(int cpu)
179 {
180 	plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
181 }
182 
183 void smp_timer_broadcast(const struct cpumask *mask)
184 {
185 	int cpu;
186 
187 	for_each_cpu(cpu, mask)
188 		plat_send_ipi(cpu, SMP_MSG_TIMER);
189 }
190 
191 static void ipi_timer(void)
192 {
193 	irq_enter();
194 	local_timer_interrupt();
195 	irq_exit();
196 }
197 
198 void smp_message_recv(unsigned int msg)
199 {
200 	switch (msg) {
201 	case SMP_MSG_FUNCTION:
202 		generic_smp_call_function_interrupt();
203 		break;
204 	case SMP_MSG_RESCHEDULE:
205 		break;
206 	case SMP_MSG_FUNCTION_SINGLE:
207 		generic_smp_call_function_single_interrupt();
208 		break;
209 	case SMP_MSG_TIMER:
210 		ipi_timer();
211 		break;
212 	default:
213 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
214 		       smp_processor_id(), __func__, msg);
215 		break;
216 	}
217 }
218 
219 /* Not really SMP stuff ... */
220 int setup_profiling_timer(unsigned int multiplier)
221 {
222 	return 0;
223 }
224 
225 static void flush_tlb_all_ipi(void *info)
226 {
227 	local_flush_tlb_all();
228 }
229 
230 void flush_tlb_all(void)
231 {
232 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
233 }
234 
235 static void flush_tlb_mm_ipi(void *mm)
236 {
237 	local_flush_tlb_mm((struct mm_struct *)mm);
238 }
239 
240 /*
241  * The following tlb flush calls are invoked when old translations are
242  * being torn down, or pte attributes are changing. For single threaded
243  * address spaces, a new context is obtained on the current cpu, and tlb
244  * context on other cpus are invalidated to force a new context allocation
245  * at switch_mm time, should the mm ever be used on other cpus. For
246  * multithreaded address spaces, intercpu interrupts have to be sent.
247  * Another case where intercpu interrupts are required is when the target
248  * mm might be active on another cpu (eg debuggers doing the flushes on
249  * behalf of debugees, kswapd stealing pages from another process etc).
250  * Kanoj 07/00.
251  */
252 
253 void flush_tlb_mm(struct mm_struct *mm)
254 {
255 	preempt_disable();
256 
257 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
258 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
259 	} else {
260 		int i;
261 		for (i = 0; i < num_online_cpus(); i++)
262 			if (smp_processor_id() != i)
263 				cpu_context(i, mm) = 0;
264 	}
265 	local_flush_tlb_mm(mm);
266 
267 	preempt_enable();
268 }
269 
270 struct flush_tlb_data {
271 	struct vm_area_struct *vma;
272 	unsigned long addr1;
273 	unsigned long addr2;
274 };
275 
276 static void flush_tlb_range_ipi(void *info)
277 {
278 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
279 
280 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
281 }
282 
283 void flush_tlb_range(struct vm_area_struct *vma,
284 		     unsigned long start, unsigned long end)
285 {
286 	struct mm_struct *mm = vma->vm_mm;
287 
288 	preempt_disable();
289 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
290 		struct flush_tlb_data fd;
291 
292 		fd.vma = vma;
293 		fd.addr1 = start;
294 		fd.addr2 = end;
295 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
296 	} else {
297 		int i;
298 		for (i = 0; i < num_online_cpus(); i++)
299 			if (smp_processor_id() != i)
300 				cpu_context(i, mm) = 0;
301 	}
302 	local_flush_tlb_range(vma, start, end);
303 	preempt_enable();
304 }
305 
306 static void flush_tlb_kernel_range_ipi(void *info)
307 {
308 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
309 
310 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
311 }
312 
313 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
314 {
315 	struct flush_tlb_data fd;
316 
317 	fd.addr1 = start;
318 	fd.addr2 = end;
319 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
320 }
321 
322 static void flush_tlb_page_ipi(void *info)
323 {
324 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
325 
326 	local_flush_tlb_page(fd->vma, fd->addr1);
327 }
328 
329 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
330 {
331 	preempt_disable();
332 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
333 	    (current->mm != vma->vm_mm)) {
334 		struct flush_tlb_data fd;
335 
336 		fd.vma = vma;
337 		fd.addr1 = page;
338 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
339 	} else {
340 		int i;
341 		for (i = 0; i < num_online_cpus(); i++)
342 			if (smp_processor_id() != i)
343 				cpu_context(i, vma->vm_mm) = 0;
344 	}
345 	local_flush_tlb_page(vma, page);
346 	preempt_enable();
347 }
348 
349 static void flush_tlb_one_ipi(void *info)
350 {
351 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
352 	local_flush_tlb_one(fd->addr1, fd->addr2);
353 }
354 
355 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
356 {
357 	struct flush_tlb_data fd;
358 
359 	fd.addr1 = asid;
360 	fd.addr2 = vaddr;
361 
362 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
363 	local_flush_tlb_one(asid, vaddr);
364 }
365