xref: /linux/arch/sh/kernel/smp.c (revision 930cc144a043ff95e56b6888fa51c618b33f89e7)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2008 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <asm/atomic.h>
23 #include <asm/processor.h>
24 #include <asm/system.h>
25 #include <asm/mmu_context.h>
26 #include <asm/smp.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 
30 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
31 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
32 
33 cpumask_t cpu_possible_map;
34 EXPORT_SYMBOL(cpu_possible_map);
35 
36 cpumask_t cpu_online_map;
37 EXPORT_SYMBOL(cpu_online_map);
38 
39 static inline void __init smp_store_cpu_info(unsigned int cpu)
40 {
41 	struct sh_cpuinfo *c = cpu_data + cpu;
42 
43 	c->loops_per_jiffy = loops_per_jiffy;
44 }
45 
46 void __init smp_prepare_cpus(unsigned int max_cpus)
47 {
48 	unsigned int cpu = smp_processor_id();
49 
50 	init_new_context(current, &init_mm);
51 	current_thread_info()->cpu = cpu;
52 	plat_prepare_cpus(max_cpus);
53 
54 #ifndef CONFIG_HOTPLUG_CPU
55 	cpu_present_map = cpu_possible_map;
56 #endif
57 }
58 
59 void __devinit smp_prepare_boot_cpu(void)
60 {
61 	unsigned int cpu = smp_processor_id();
62 
63 	__cpu_number_map[0] = cpu;
64 	__cpu_logical_map[0] = cpu;
65 
66 	cpu_set(cpu, cpu_online_map);
67 	cpu_set(cpu, cpu_possible_map);
68 }
69 
70 asmlinkage void __cpuinit start_secondary(void)
71 {
72 	unsigned int cpu;
73 	struct mm_struct *mm = &init_mm;
74 
75 	atomic_inc(&mm->mm_count);
76 	atomic_inc(&mm->mm_users);
77 	current->active_mm = mm;
78 	BUG_ON(current->mm);
79 	enter_lazy_tlb(mm, current);
80 
81 	per_cpu_trap_init();
82 
83 	preempt_disable();
84 
85 	notify_cpu_starting(smp_processor_id());
86 
87 	local_irq_enable();
88 
89 	cpu = smp_processor_id();
90 
91 	/* Enable local timers */
92 	local_timer_setup(cpu);
93 	calibrate_delay();
94 
95 	smp_store_cpu_info(cpu);
96 
97 	cpu_set(cpu, cpu_online_map);
98 
99 	cpu_idle();
100 }
101 
102 extern struct {
103 	unsigned long sp;
104 	unsigned long bss_start;
105 	unsigned long bss_end;
106 	void *start_kernel_fn;
107 	void *cpu_init_fn;
108 	void *thread_info;
109 } stack_start;
110 
111 int __cpuinit __cpu_up(unsigned int cpu)
112 {
113 	struct task_struct *tsk;
114 	unsigned long timeout;
115 
116 	tsk = fork_idle(cpu);
117 	if (IS_ERR(tsk)) {
118 		printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
119 		return PTR_ERR(tsk);
120 	}
121 
122 	/* Fill in data in head.S for secondary cpus */
123 	stack_start.sp = tsk->thread.sp;
124 	stack_start.thread_info = tsk->stack;
125 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
126 	stack_start.start_kernel_fn = start_secondary;
127 
128 	flush_cache_all();
129 
130 	plat_start_cpu(cpu, (unsigned long)_stext);
131 
132 	timeout = jiffies + HZ;
133 	while (time_before(jiffies, timeout)) {
134 		if (cpu_online(cpu))
135 			break;
136 
137 		udelay(10);
138 	}
139 
140 	if (cpu_online(cpu))
141 		return 0;
142 
143 	return -ENOENT;
144 }
145 
146 void __init smp_cpus_done(unsigned int max_cpus)
147 {
148 	unsigned long bogosum = 0;
149 	int cpu;
150 
151 	for_each_online_cpu(cpu)
152 		bogosum += cpu_data[cpu].loops_per_jiffy;
153 
154 	printk(KERN_INFO "SMP: Total of %d processors activated "
155 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
156 	       bogosum / (500000/HZ),
157 	       (bogosum / (5000/HZ)) % 100);
158 }
159 
160 void smp_send_reschedule(int cpu)
161 {
162 	plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
163 }
164 
165 static void stop_this_cpu(void *unused)
166 {
167 	cpu_clear(smp_processor_id(), cpu_online_map);
168 	local_irq_disable();
169 
170 	for (;;)
171 		cpu_relax();
172 }
173 
174 void smp_send_stop(void)
175 {
176 	smp_call_function(stop_this_cpu, 0, 0);
177 }
178 
179 void arch_send_call_function_ipi(cpumask_t mask)
180 {
181 	int cpu;
182 
183 	for_each_cpu_mask(cpu, mask)
184 		plat_send_ipi(cpu, SMP_MSG_FUNCTION);
185 }
186 
187 void arch_send_call_function_single_ipi(int cpu)
188 {
189 	plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
190 }
191 
192 void smp_timer_broadcast(cpumask_t mask)
193 {
194 	int cpu;
195 
196 	for_each_cpu_mask(cpu, mask)
197 		plat_send_ipi(cpu, SMP_MSG_TIMER);
198 }
199 
200 static void ipi_timer(void)
201 {
202 	irq_enter();
203 	local_timer_interrupt();
204 	irq_exit();
205 }
206 
207 void smp_message_recv(unsigned int msg)
208 {
209 	switch (msg) {
210 	case SMP_MSG_FUNCTION:
211 		generic_smp_call_function_interrupt();
212 		break;
213 	case SMP_MSG_RESCHEDULE:
214 		break;
215 	case SMP_MSG_FUNCTION_SINGLE:
216 		generic_smp_call_function_single_interrupt();
217 		break;
218 	case SMP_MSG_TIMER:
219 		ipi_timer();
220 		break;
221 	default:
222 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
223 		       smp_processor_id(), __func__, msg);
224 		break;
225 	}
226 }
227 
228 /* Not really SMP stuff ... */
229 int setup_profiling_timer(unsigned int multiplier)
230 {
231 	return 0;
232 }
233 
234 static void flush_tlb_all_ipi(void *info)
235 {
236 	local_flush_tlb_all();
237 }
238 
239 void flush_tlb_all(void)
240 {
241 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
242 }
243 
244 static void flush_tlb_mm_ipi(void *mm)
245 {
246 	local_flush_tlb_mm((struct mm_struct *)mm);
247 }
248 
249 /*
250  * The following tlb flush calls are invoked when old translations are
251  * being torn down, or pte attributes are changing. For single threaded
252  * address spaces, a new context is obtained on the current cpu, and tlb
253  * context on other cpus are invalidated to force a new context allocation
254  * at switch_mm time, should the mm ever be used on other cpus. For
255  * multithreaded address spaces, intercpu interrupts have to be sent.
256  * Another case where intercpu interrupts are required is when the target
257  * mm might be active on another cpu (eg debuggers doing the flushes on
258  * behalf of debugees, kswapd stealing pages from another process etc).
259  * Kanoj 07/00.
260  */
261 
262 void flush_tlb_mm(struct mm_struct *mm)
263 {
264 	preempt_disable();
265 
266 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
267 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
268 	} else {
269 		int i;
270 		for (i = 0; i < num_online_cpus(); i++)
271 			if (smp_processor_id() != i)
272 				cpu_context(i, mm) = 0;
273 	}
274 	local_flush_tlb_mm(mm);
275 
276 	preempt_enable();
277 }
278 
279 struct flush_tlb_data {
280 	struct vm_area_struct *vma;
281 	unsigned long addr1;
282 	unsigned long addr2;
283 };
284 
285 static void flush_tlb_range_ipi(void *info)
286 {
287 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
288 
289 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
290 }
291 
292 void flush_tlb_range(struct vm_area_struct *vma,
293 		     unsigned long start, unsigned long end)
294 {
295 	struct mm_struct *mm = vma->vm_mm;
296 
297 	preempt_disable();
298 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
299 		struct flush_tlb_data fd;
300 
301 		fd.vma = vma;
302 		fd.addr1 = start;
303 		fd.addr2 = end;
304 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
305 	} else {
306 		int i;
307 		for (i = 0; i < num_online_cpus(); i++)
308 			if (smp_processor_id() != i)
309 				cpu_context(i, mm) = 0;
310 	}
311 	local_flush_tlb_range(vma, start, end);
312 	preempt_enable();
313 }
314 
315 static void flush_tlb_kernel_range_ipi(void *info)
316 {
317 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
318 
319 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
320 }
321 
322 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
323 {
324 	struct flush_tlb_data fd;
325 
326 	fd.addr1 = start;
327 	fd.addr2 = end;
328 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
329 }
330 
331 static void flush_tlb_page_ipi(void *info)
332 {
333 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
334 
335 	local_flush_tlb_page(fd->vma, fd->addr1);
336 }
337 
338 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
339 {
340 	preempt_disable();
341 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
342 	    (current->mm != vma->vm_mm)) {
343 		struct flush_tlb_data fd;
344 
345 		fd.vma = vma;
346 		fd.addr1 = page;
347 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
348 	} else {
349 		int i;
350 		for (i = 0; i < num_online_cpus(); i++)
351 			if (smp_processor_id() != i)
352 				cpu_context(i, vma->vm_mm) = 0;
353 	}
354 	local_flush_tlb_page(vma, page);
355 	preempt_enable();
356 }
357 
358 static void flush_tlb_one_ipi(void *info)
359 {
360 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
361 	local_flush_tlb_one(fd->addr1, fd->addr2);
362 }
363 
364 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
365 {
366 	struct flush_tlb_data fd;
367 
368 	fd.addr1 = asid;
369 	fd.addr2 = vaddr;
370 
371 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
372 	local_flush_tlb_one(asid, vaddr);
373 }
374