xref: /linux/arch/sh/kernel/smp.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2008 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <asm/atomic.h>
24 #include <asm/processor.h>
25 #include <asm/system.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 
31 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
32 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
33 
34 static inline void __init smp_store_cpu_info(unsigned int cpu)
35 {
36 	struct sh_cpuinfo *c = cpu_data + cpu;
37 
38 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
39 
40 	c->loops_per_jiffy = loops_per_jiffy;
41 }
42 
43 void __init smp_prepare_cpus(unsigned int max_cpus)
44 {
45 	unsigned int cpu = smp_processor_id();
46 
47 	init_new_context(current, &init_mm);
48 	current_thread_info()->cpu = cpu;
49 	plat_prepare_cpus(max_cpus);
50 
51 #ifndef CONFIG_HOTPLUG_CPU
52 	init_cpu_present(&cpu_possible_map);
53 #endif
54 }
55 
56 void __devinit smp_prepare_boot_cpu(void)
57 {
58 	unsigned int cpu = smp_processor_id();
59 
60 	__cpu_number_map[0] = cpu;
61 	__cpu_logical_map[0] = cpu;
62 
63 	set_cpu_online(cpu, true);
64 	set_cpu_possible(cpu, true);
65 }
66 
67 asmlinkage void __cpuinit start_secondary(void)
68 {
69 	unsigned int cpu;
70 	struct mm_struct *mm = &init_mm;
71 
72 	atomic_inc(&mm->mm_count);
73 	atomic_inc(&mm->mm_users);
74 	current->active_mm = mm;
75 	BUG_ON(current->mm);
76 	enter_lazy_tlb(mm, current);
77 
78 	per_cpu_trap_init();
79 
80 	preempt_disable();
81 
82 	notify_cpu_starting(smp_processor_id());
83 
84 	local_irq_enable();
85 
86 	cpu = smp_processor_id();
87 
88 	/* Enable local timers */
89 	local_timer_setup(cpu);
90 	calibrate_delay();
91 
92 	smp_store_cpu_info(cpu);
93 
94 	cpu_set(cpu, cpu_online_map);
95 
96 	cpu_idle();
97 }
98 
99 extern struct {
100 	unsigned long sp;
101 	unsigned long bss_start;
102 	unsigned long bss_end;
103 	void *start_kernel_fn;
104 	void *cpu_init_fn;
105 	void *thread_info;
106 } stack_start;
107 
108 int __cpuinit __cpu_up(unsigned int cpu)
109 {
110 	struct task_struct *tsk;
111 	unsigned long timeout;
112 
113 	tsk = fork_idle(cpu);
114 	if (IS_ERR(tsk)) {
115 		printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
116 		return PTR_ERR(tsk);
117 	}
118 
119 	/* Fill in data in head.S for secondary cpus */
120 	stack_start.sp = tsk->thread.sp;
121 	stack_start.thread_info = tsk->stack;
122 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
123 	stack_start.start_kernel_fn = start_secondary;
124 
125 	flush_icache_range((unsigned long)&stack_start,
126 			   (unsigned long)&stack_start + sizeof(stack_start));
127 	wmb();
128 
129 	plat_start_cpu(cpu, (unsigned long)_stext);
130 
131 	timeout = jiffies + HZ;
132 	while (time_before(jiffies, timeout)) {
133 		if (cpu_online(cpu))
134 			break;
135 
136 		udelay(10);
137 	}
138 
139 	if (cpu_online(cpu))
140 		return 0;
141 
142 	return -ENOENT;
143 }
144 
145 void __init smp_cpus_done(unsigned int max_cpus)
146 {
147 	unsigned long bogosum = 0;
148 	int cpu;
149 
150 	for_each_online_cpu(cpu)
151 		bogosum += cpu_data[cpu].loops_per_jiffy;
152 
153 	printk(KERN_INFO "SMP: Total of %d processors activated "
154 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
155 	       bogosum / (500000/HZ),
156 	       (bogosum / (5000/HZ)) % 100);
157 }
158 
159 void smp_send_reschedule(int cpu)
160 {
161 	plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
162 }
163 
164 void smp_send_stop(void)
165 {
166 	smp_call_function(stop_this_cpu, 0, 0);
167 }
168 
169 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
170 {
171 	int cpu;
172 
173 	for_each_cpu(cpu, mask)
174 		plat_send_ipi(cpu, SMP_MSG_FUNCTION);
175 }
176 
177 void arch_send_call_function_single_ipi(int cpu)
178 {
179 	plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
180 }
181 
182 void smp_timer_broadcast(const struct cpumask *mask)
183 {
184 	int cpu;
185 
186 	for_each_cpu(cpu, mask)
187 		plat_send_ipi(cpu, SMP_MSG_TIMER);
188 }
189 
190 static void ipi_timer(void)
191 {
192 	irq_enter();
193 	local_timer_interrupt();
194 	irq_exit();
195 }
196 
197 void smp_message_recv(unsigned int msg)
198 {
199 	switch (msg) {
200 	case SMP_MSG_FUNCTION:
201 		generic_smp_call_function_interrupt();
202 		break;
203 	case SMP_MSG_RESCHEDULE:
204 		break;
205 	case SMP_MSG_FUNCTION_SINGLE:
206 		generic_smp_call_function_single_interrupt();
207 		break;
208 	case SMP_MSG_TIMER:
209 		ipi_timer();
210 		break;
211 	default:
212 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
213 		       smp_processor_id(), __func__, msg);
214 		break;
215 	}
216 }
217 
218 /* Not really SMP stuff ... */
219 int setup_profiling_timer(unsigned int multiplier)
220 {
221 	return 0;
222 }
223 
224 static void flush_tlb_all_ipi(void *info)
225 {
226 	local_flush_tlb_all();
227 }
228 
229 void flush_tlb_all(void)
230 {
231 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
232 }
233 
234 static void flush_tlb_mm_ipi(void *mm)
235 {
236 	local_flush_tlb_mm((struct mm_struct *)mm);
237 }
238 
239 /*
240  * The following tlb flush calls are invoked when old translations are
241  * being torn down, or pte attributes are changing. For single threaded
242  * address spaces, a new context is obtained on the current cpu, and tlb
243  * context on other cpus are invalidated to force a new context allocation
244  * at switch_mm time, should the mm ever be used on other cpus. For
245  * multithreaded address spaces, intercpu interrupts have to be sent.
246  * Another case where intercpu interrupts are required is when the target
247  * mm might be active on another cpu (eg debuggers doing the flushes on
248  * behalf of debugees, kswapd stealing pages from another process etc).
249  * Kanoj 07/00.
250  */
251 
252 void flush_tlb_mm(struct mm_struct *mm)
253 {
254 	preempt_disable();
255 
256 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
257 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
258 	} else {
259 		int i;
260 		for (i = 0; i < num_online_cpus(); i++)
261 			if (smp_processor_id() != i)
262 				cpu_context(i, mm) = 0;
263 	}
264 	local_flush_tlb_mm(mm);
265 
266 	preempt_enable();
267 }
268 
269 struct flush_tlb_data {
270 	struct vm_area_struct *vma;
271 	unsigned long addr1;
272 	unsigned long addr2;
273 };
274 
275 static void flush_tlb_range_ipi(void *info)
276 {
277 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
278 
279 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
280 }
281 
282 void flush_tlb_range(struct vm_area_struct *vma,
283 		     unsigned long start, unsigned long end)
284 {
285 	struct mm_struct *mm = vma->vm_mm;
286 
287 	preempt_disable();
288 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
289 		struct flush_tlb_data fd;
290 
291 		fd.vma = vma;
292 		fd.addr1 = start;
293 		fd.addr2 = end;
294 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
295 	} else {
296 		int i;
297 		for (i = 0; i < num_online_cpus(); i++)
298 			if (smp_processor_id() != i)
299 				cpu_context(i, mm) = 0;
300 	}
301 	local_flush_tlb_range(vma, start, end);
302 	preempt_enable();
303 }
304 
305 static void flush_tlb_kernel_range_ipi(void *info)
306 {
307 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
308 
309 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
310 }
311 
312 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
313 {
314 	struct flush_tlb_data fd;
315 
316 	fd.addr1 = start;
317 	fd.addr2 = end;
318 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
319 }
320 
321 static void flush_tlb_page_ipi(void *info)
322 {
323 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
324 
325 	local_flush_tlb_page(fd->vma, fd->addr1);
326 }
327 
328 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
329 {
330 	preempt_disable();
331 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
332 	    (current->mm != vma->vm_mm)) {
333 		struct flush_tlb_data fd;
334 
335 		fd.vma = vma;
336 		fd.addr1 = page;
337 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
338 	} else {
339 		int i;
340 		for (i = 0; i < num_online_cpus(); i++)
341 			if (smp_processor_id() != i)
342 				cpu_context(i, vma->vm_mm) = 0;
343 	}
344 	local_flush_tlb_page(vma, page);
345 	preempt_enable();
346 }
347 
348 static void flush_tlb_one_ipi(void *info)
349 {
350 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
351 	local_flush_tlb_one(fd->addr1, fd->addr2);
352 }
353 
354 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
355 {
356 	struct flush_tlb_data fd;
357 
358 	fd.addr1 = asid;
359 	fd.addr2 = vaddr;
360 
361 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
362 	local_flush_tlb_one(asid, vaddr);
363 }
364