1 /* 2 * arch/sh/kernel/smp.c 3 * 4 * SMP support for the SuperH processors. 5 * 6 * Copyright (C) 2002 - 2010 Paul Mundt 7 * Copyright (C) 2006 - 2007 Akio Idehara 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 #include <linux/err.h> 14 #include <linux/cache.h> 15 #include <linux/cpumask.h> 16 #include <linux/delay.h> 17 #include <linux/init.h> 18 #include <linux/spinlock.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/cpu.h> 22 #include <linux/interrupt.h> 23 #include <asm/atomic.h> 24 #include <asm/processor.h> 25 #include <asm/system.h> 26 #include <asm/mmu_context.h> 27 #include <asm/smp.h> 28 #include <asm/cacheflush.h> 29 #include <asm/sections.h> 30 31 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 32 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 33 34 struct plat_smp_ops *mp_ops = NULL; 35 36 /* State of each CPU */ 37 DEFINE_PER_CPU(int, cpu_state) = { 0 }; 38 39 void __cpuinit register_smp_ops(struct plat_smp_ops *ops) 40 { 41 if (mp_ops) 42 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 43 44 mp_ops = ops; 45 } 46 47 static inline void __cpuinit smp_store_cpu_info(unsigned int cpu) 48 { 49 struct sh_cpuinfo *c = cpu_data + cpu; 50 51 memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo)); 52 53 c->loops_per_jiffy = loops_per_jiffy; 54 } 55 56 void __init smp_prepare_cpus(unsigned int max_cpus) 57 { 58 unsigned int cpu = smp_processor_id(); 59 60 init_new_context(current, &init_mm); 61 current_thread_info()->cpu = cpu; 62 mp_ops->prepare_cpus(max_cpus); 63 64 #ifndef CONFIG_HOTPLUG_CPU 65 init_cpu_present(&cpu_possible_map); 66 #endif 67 } 68 69 void __init smp_prepare_boot_cpu(void) 70 { 71 unsigned int cpu = smp_processor_id(); 72 73 __cpu_number_map[0] = cpu; 74 __cpu_logical_map[0] = cpu; 75 76 set_cpu_online(cpu, true); 77 set_cpu_possible(cpu, true); 78 79 per_cpu(cpu_state, cpu) = CPU_ONLINE; 80 } 81 82 #ifdef CONFIG_HOTPLUG_CPU 83 void native_cpu_die(unsigned int cpu) 84 { 85 unsigned int i; 86 87 for (i = 0; i < 10; i++) { 88 smp_rmb(); 89 if (per_cpu(cpu_state, cpu) == CPU_DEAD) { 90 if (system_state == SYSTEM_RUNNING) 91 pr_info("CPU %u is now offline\n", cpu); 92 93 return; 94 } 95 96 msleep(100); 97 } 98 99 pr_err("CPU %u didn't die...\n", cpu); 100 } 101 102 int native_cpu_disable(unsigned int cpu) 103 { 104 return cpu == 0 ? -EPERM : 0; 105 } 106 107 void play_dead_common(void) 108 { 109 idle_task_exit(); 110 irq_ctx_exit(raw_smp_processor_id()); 111 mb(); 112 113 __get_cpu_var(cpu_state) = CPU_DEAD; 114 local_irq_disable(); 115 } 116 117 void native_play_dead(void) 118 { 119 play_dead_common(); 120 } 121 122 int __cpu_disable(void) 123 { 124 unsigned int cpu = smp_processor_id(); 125 struct task_struct *p; 126 int ret; 127 128 ret = mp_ops->cpu_disable(cpu); 129 if (ret) 130 return ret; 131 132 /* 133 * Take this CPU offline. Once we clear this, we can't return, 134 * and we must not schedule until we're ready to give up the cpu. 135 */ 136 set_cpu_online(cpu, false); 137 138 /* 139 * OK - migrate IRQs away from this CPU 140 */ 141 migrate_irqs(); 142 143 /* 144 * Stop the local timer for this CPU. 145 */ 146 local_timer_stop(cpu); 147 148 /* 149 * Flush user cache and TLB mappings, and then remove this CPU 150 * from the vm mask set of all processes. 151 */ 152 flush_cache_all(); 153 local_flush_tlb_all(); 154 155 read_lock(&tasklist_lock); 156 for_each_process(p) 157 if (p->mm) 158 cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); 159 read_unlock(&tasklist_lock); 160 161 return 0; 162 } 163 #else /* ... !CONFIG_HOTPLUG_CPU */ 164 int native_cpu_disable(unsigned int cpu) 165 { 166 return -ENOSYS; 167 } 168 169 void native_cpu_die(unsigned int cpu) 170 { 171 /* We said "no" in __cpu_disable */ 172 BUG(); 173 } 174 175 void native_play_dead(void) 176 { 177 BUG(); 178 } 179 #endif 180 181 asmlinkage void __cpuinit start_secondary(void) 182 { 183 unsigned int cpu = smp_processor_id(); 184 struct mm_struct *mm = &init_mm; 185 186 enable_mmu(); 187 atomic_inc(&mm->mm_count); 188 atomic_inc(&mm->mm_users); 189 current->active_mm = mm; 190 enter_lazy_tlb(mm, current); 191 local_flush_tlb_all(); 192 193 per_cpu_trap_init(); 194 195 preempt_disable(); 196 197 notify_cpu_starting(cpu); 198 199 local_irq_enable(); 200 201 /* Enable local timers */ 202 local_timer_setup(cpu); 203 calibrate_delay(); 204 205 smp_store_cpu_info(cpu); 206 207 set_cpu_online(cpu, true); 208 per_cpu(cpu_state, cpu) = CPU_ONLINE; 209 210 cpu_idle(); 211 } 212 213 extern struct { 214 unsigned long sp; 215 unsigned long bss_start; 216 unsigned long bss_end; 217 void *start_kernel_fn; 218 void *cpu_init_fn; 219 void *thread_info; 220 } stack_start; 221 222 int __cpuinit __cpu_up(unsigned int cpu) 223 { 224 struct task_struct *tsk; 225 unsigned long timeout; 226 227 tsk = cpu_data[cpu].idle; 228 if (!tsk) { 229 tsk = fork_idle(cpu); 230 if (IS_ERR(tsk)) { 231 pr_err("Failed forking idle task for cpu %d\n", cpu); 232 return PTR_ERR(tsk); 233 } 234 235 cpu_data[cpu].idle = tsk; 236 } 237 238 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 239 240 /* Fill in data in head.S for secondary cpus */ 241 stack_start.sp = tsk->thread.sp; 242 stack_start.thread_info = tsk->stack; 243 stack_start.bss_start = 0; /* don't clear bss for secondary cpus */ 244 stack_start.start_kernel_fn = start_secondary; 245 246 flush_icache_range((unsigned long)&stack_start, 247 (unsigned long)&stack_start + sizeof(stack_start)); 248 wmb(); 249 250 mp_ops->start_cpu(cpu, (unsigned long)_stext); 251 252 timeout = jiffies + HZ; 253 while (time_before(jiffies, timeout)) { 254 if (cpu_online(cpu)) 255 break; 256 257 udelay(10); 258 barrier(); 259 } 260 261 if (cpu_online(cpu)) 262 return 0; 263 264 return -ENOENT; 265 } 266 267 void __init smp_cpus_done(unsigned int max_cpus) 268 { 269 unsigned long bogosum = 0; 270 int cpu; 271 272 for_each_online_cpu(cpu) 273 bogosum += cpu_data[cpu].loops_per_jiffy; 274 275 printk(KERN_INFO "SMP: Total of %d processors activated " 276 "(%lu.%02lu BogoMIPS).\n", num_online_cpus(), 277 bogosum / (500000/HZ), 278 (bogosum / (5000/HZ)) % 100); 279 } 280 281 void smp_send_reschedule(int cpu) 282 { 283 mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE); 284 } 285 286 void smp_send_stop(void) 287 { 288 smp_call_function(stop_this_cpu, 0, 0); 289 } 290 291 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 292 { 293 int cpu; 294 295 for_each_cpu(cpu, mask) 296 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION); 297 } 298 299 void arch_send_call_function_single_ipi(int cpu) 300 { 301 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE); 302 } 303 304 void smp_timer_broadcast(const struct cpumask *mask) 305 { 306 int cpu; 307 308 for_each_cpu(cpu, mask) 309 mp_ops->send_ipi(cpu, SMP_MSG_TIMER); 310 } 311 312 static void ipi_timer(void) 313 { 314 irq_enter(); 315 local_timer_interrupt(); 316 irq_exit(); 317 } 318 319 void smp_message_recv(unsigned int msg) 320 { 321 switch (msg) { 322 case SMP_MSG_FUNCTION: 323 generic_smp_call_function_interrupt(); 324 break; 325 case SMP_MSG_RESCHEDULE: 326 break; 327 case SMP_MSG_FUNCTION_SINGLE: 328 generic_smp_call_function_single_interrupt(); 329 break; 330 case SMP_MSG_TIMER: 331 ipi_timer(); 332 break; 333 default: 334 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n", 335 smp_processor_id(), __func__, msg); 336 break; 337 } 338 } 339 340 /* Not really SMP stuff ... */ 341 int setup_profiling_timer(unsigned int multiplier) 342 { 343 return 0; 344 } 345 346 static void flush_tlb_all_ipi(void *info) 347 { 348 local_flush_tlb_all(); 349 } 350 351 void flush_tlb_all(void) 352 { 353 on_each_cpu(flush_tlb_all_ipi, 0, 1); 354 } 355 356 static void flush_tlb_mm_ipi(void *mm) 357 { 358 local_flush_tlb_mm((struct mm_struct *)mm); 359 } 360 361 /* 362 * The following tlb flush calls are invoked when old translations are 363 * being torn down, or pte attributes are changing. For single threaded 364 * address spaces, a new context is obtained on the current cpu, and tlb 365 * context on other cpus are invalidated to force a new context allocation 366 * at switch_mm time, should the mm ever be used on other cpus. For 367 * multithreaded address spaces, intercpu interrupts have to be sent. 368 * Another case where intercpu interrupts are required is when the target 369 * mm might be active on another cpu (eg debuggers doing the flushes on 370 * behalf of debugees, kswapd stealing pages from another process etc). 371 * Kanoj 07/00. 372 */ 373 void flush_tlb_mm(struct mm_struct *mm) 374 { 375 preempt_disable(); 376 377 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 378 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1); 379 } else { 380 int i; 381 for (i = 0; i < num_online_cpus(); i++) 382 if (smp_processor_id() != i) 383 cpu_context(i, mm) = 0; 384 } 385 local_flush_tlb_mm(mm); 386 387 preempt_enable(); 388 } 389 390 struct flush_tlb_data { 391 struct vm_area_struct *vma; 392 unsigned long addr1; 393 unsigned long addr2; 394 }; 395 396 static void flush_tlb_range_ipi(void *info) 397 { 398 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 399 400 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 401 } 402 403 void flush_tlb_range(struct vm_area_struct *vma, 404 unsigned long start, unsigned long end) 405 { 406 struct mm_struct *mm = vma->vm_mm; 407 408 preempt_disable(); 409 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 410 struct flush_tlb_data fd; 411 412 fd.vma = vma; 413 fd.addr1 = start; 414 fd.addr2 = end; 415 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1); 416 } else { 417 int i; 418 for (i = 0; i < num_online_cpus(); i++) 419 if (smp_processor_id() != i) 420 cpu_context(i, mm) = 0; 421 } 422 local_flush_tlb_range(vma, start, end); 423 preempt_enable(); 424 } 425 426 static void flush_tlb_kernel_range_ipi(void *info) 427 { 428 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 429 430 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 431 } 432 433 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 434 { 435 struct flush_tlb_data fd; 436 437 fd.addr1 = start; 438 fd.addr2 = end; 439 on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1); 440 } 441 442 static void flush_tlb_page_ipi(void *info) 443 { 444 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 445 446 local_flush_tlb_page(fd->vma, fd->addr1); 447 } 448 449 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 450 { 451 preempt_disable(); 452 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || 453 (current->mm != vma->vm_mm)) { 454 struct flush_tlb_data fd; 455 456 fd.vma = vma; 457 fd.addr1 = page; 458 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1); 459 } else { 460 int i; 461 for (i = 0; i < num_online_cpus(); i++) 462 if (smp_processor_id() != i) 463 cpu_context(i, vma->vm_mm) = 0; 464 } 465 local_flush_tlb_page(vma, page); 466 preempt_enable(); 467 } 468 469 static void flush_tlb_one_ipi(void *info) 470 { 471 struct flush_tlb_data *fd = (struct flush_tlb_data *)info; 472 local_flush_tlb_one(fd->addr1, fd->addr2); 473 } 474 475 void flush_tlb_one(unsigned long asid, unsigned long vaddr) 476 { 477 struct flush_tlb_data fd; 478 479 fd.addr1 = asid; 480 fd.addr2 = vaddr; 481 482 smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1); 483 local_flush_tlb_one(asid, vaddr); 484 } 485