xref: /linux/arch/sh/kernel/smp.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2010 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <asm/atomic.h>
24 #include <asm/processor.h>
25 #include <asm/system.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 
31 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
32 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
33 
34 struct plat_smp_ops *mp_ops = NULL;
35 
36 /* State of each CPU */
37 DEFINE_PER_CPU(int, cpu_state) = { 0 };
38 
39 void __cpuinit register_smp_ops(struct plat_smp_ops *ops)
40 {
41 	if (mp_ops)
42 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
43 
44 	mp_ops = ops;
45 }
46 
47 static inline void __cpuinit smp_store_cpu_info(unsigned int cpu)
48 {
49 	struct sh_cpuinfo *c = cpu_data + cpu;
50 
51 	memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
52 
53 	c->loops_per_jiffy = loops_per_jiffy;
54 }
55 
56 void __init smp_prepare_cpus(unsigned int max_cpus)
57 {
58 	unsigned int cpu = smp_processor_id();
59 
60 	init_new_context(current, &init_mm);
61 	current_thread_info()->cpu = cpu;
62 	mp_ops->prepare_cpus(max_cpus);
63 
64 #ifndef CONFIG_HOTPLUG_CPU
65 	init_cpu_present(&cpu_possible_map);
66 #endif
67 }
68 
69 void __init smp_prepare_boot_cpu(void)
70 {
71 	unsigned int cpu = smp_processor_id();
72 
73 	__cpu_number_map[0] = cpu;
74 	__cpu_logical_map[0] = cpu;
75 
76 	set_cpu_online(cpu, true);
77 	set_cpu_possible(cpu, true);
78 
79 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
80 }
81 
82 #ifdef CONFIG_HOTPLUG_CPU
83 void native_cpu_die(unsigned int cpu)
84 {
85 	unsigned int i;
86 
87 	for (i = 0; i < 10; i++) {
88 		smp_rmb();
89 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
90 			if (system_state == SYSTEM_RUNNING)
91 				pr_info("CPU %u is now offline\n", cpu);
92 
93 			return;
94 		}
95 
96 		msleep(100);
97 	}
98 
99 	pr_err("CPU %u didn't die...\n", cpu);
100 }
101 
102 int native_cpu_disable(unsigned int cpu)
103 {
104 	return cpu == 0 ? -EPERM : 0;
105 }
106 
107 void play_dead_common(void)
108 {
109 	idle_task_exit();
110 	irq_ctx_exit(raw_smp_processor_id());
111 	mb();
112 
113 	__get_cpu_var(cpu_state) = CPU_DEAD;
114 	local_irq_disable();
115 }
116 
117 void native_play_dead(void)
118 {
119 	play_dead_common();
120 }
121 
122 int __cpu_disable(void)
123 {
124 	unsigned int cpu = smp_processor_id();
125 	struct task_struct *p;
126 	int ret;
127 
128 	ret = mp_ops->cpu_disable(cpu);
129 	if (ret)
130 		return ret;
131 
132 	/*
133 	 * Take this CPU offline.  Once we clear this, we can't return,
134 	 * and we must not schedule until we're ready to give up the cpu.
135 	 */
136 	set_cpu_online(cpu, false);
137 
138 	/*
139 	 * OK - migrate IRQs away from this CPU
140 	 */
141 	migrate_irqs();
142 
143 	/*
144 	 * Stop the local timer for this CPU.
145 	 */
146 	local_timer_stop(cpu);
147 
148 	/*
149 	 * Flush user cache and TLB mappings, and then remove this CPU
150 	 * from the vm mask set of all processes.
151 	 */
152 	flush_cache_all();
153 	local_flush_tlb_all();
154 
155 	read_lock(&tasklist_lock);
156 	for_each_process(p)
157 		if (p->mm)
158 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
159 	read_unlock(&tasklist_lock);
160 
161 	return 0;
162 }
163 #else /* ... !CONFIG_HOTPLUG_CPU */
164 int native_cpu_disable(unsigned int cpu)
165 {
166 	return -ENOSYS;
167 }
168 
169 void native_cpu_die(unsigned int cpu)
170 {
171 	/* We said "no" in __cpu_disable */
172 	BUG();
173 }
174 
175 void native_play_dead(void)
176 {
177 	BUG();
178 }
179 #endif
180 
181 asmlinkage void __cpuinit start_secondary(void)
182 {
183 	unsigned int cpu = smp_processor_id();
184 	struct mm_struct *mm = &init_mm;
185 
186 	enable_mmu();
187 	atomic_inc(&mm->mm_count);
188 	atomic_inc(&mm->mm_users);
189 	current->active_mm = mm;
190 	enter_lazy_tlb(mm, current);
191 	local_flush_tlb_all();
192 
193 	per_cpu_trap_init();
194 
195 	preempt_disable();
196 
197 	notify_cpu_starting(cpu);
198 
199 	local_irq_enable();
200 
201 	/* Enable local timers */
202 	local_timer_setup(cpu);
203 	calibrate_delay();
204 
205 	smp_store_cpu_info(cpu);
206 
207 	set_cpu_online(cpu, true);
208 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
209 
210 	cpu_idle();
211 }
212 
213 extern struct {
214 	unsigned long sp;
215 	unsigned long bss_start;
216 	unsigned long bss_end;
217 	void *start_kernel_fn;
218 	void *cpu_init_fn;
219 	void *thread_info;
220 } stack_start;
221 
222 int __cpuinit __cpu_up(unsigned int cpu)
223 {
224 	struct task_struct *tsk;
225 	unsigned long timeout;
226 
227 	tsk = cpu_data[cpu].idle;
228 	if (!tsk) {
229 		tsk = fork_idle(cpu);
230 		if (IS_ERR(tsk)) {
231 			pr_err("Failed forking idle task for cpu %d\n", cpu);
232 			return PTR_ERR(tsk);
233 		}
234 
235 		cpu_data[cpu].idle = tsk;
236 	}
237 
238 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
239 
240 	/* Fill in data in head.S for secondary cpus */
241 	stack_start.sp = tsk->thread.sp;
242 	stack_start.thread_info = tsk->stack;
243 	stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
244 	stack_start.start_kernel_fn = start_secondary;
245 
246 	flush_icache_range((unsigned long)&stack_start,
247 			   (unsigned long)&stack_start + sizeof(stack_start));
248 	wmb();
249 
250 	mp_ops->start_cpu(cpu, (unsigned long)_stext);
251 
252 	timeout = jiffies + HZ;
253 	while (time_before(jiffies, timeout)) {
254 		if (cpu_online(cpu))
255 			break;
256 
257 		udelay(10);
258 		barrier();
259 	}
260 
261 	if (cpu_online(cpu))
262 		return 0;
263 
264 	return -ENOENT;
265 }
266 
267 void __init smp_cpus_done(unsigned int max_cpus)
268 {
269 	unsigned long bogosum = 0;
270 	int cpu;
271 
272 	for_each_online_cpu(cpu)
273 		bogosum += cpu_data[cpu].loops_per_jiffy;
274 
275 	printk(KERN_INFO "SMP: Total of %d processors activated "
276 	       "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
277 	       bogosum / (500000/HZ),
278 	       (bogosum / (5000/HZ)) % 100);
279 }
280 
281 void smp_send_reschedule(int cpu)
282 {
283 	mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
284 }
285 
286 void smp_send_stop(void)
287 {
288 	smp_call_function(stop_this_cpu, 0, 0);
289 }
290 
291 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
292 {
293 	int cpu;
294 
295 	for_each_cpu(cpu, mask)
296 		mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
297 }
298 
299 void arch_send_call_function_single_ipi(int cpu)
300 {
301 	mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
302 }
303 
304 void smp_timer_broadcast(const struct cpumask *mask)
305 {
306 	int cpu;
307 
308 	for_each_cpu(cpu, mask)
309 		mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
310 }
311 
312 static void ipi_timer(void)
313 {
314 	irq_enter();
315 	local_timer_interrupt();
316 	irq_exit();
317 }
318 
319 void smp_message_recv(unsigned int msg)
320 {
321 	switch (msg) {
322 	case SMP_MSG_FUNCTION:
323 		generic_smp_call_function_interrupt();
324 		break;
325 	case SMP_MSG_RESCHEDULE:
326 		break;
327 	case SMP_MSG_FUNCTION_SINGLE:
328 		generic_smp_call_function_single_interrupt();
329 		break;
330 	case SMP_MSG_TIMER:
331 		ipi_timer();
332 		break;
333 	default:
334 		printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
335 		       smp_processor_id(), __func__, msg);
336 		break;
337 	}
338 }
339 
340 /* Not really SMP stuff ... */
341 int setup_profiling_timer(unsigned int multiplier)
342 {
343 	return 0;
344 }
345 
346 static void flush_tlb_all_ipi(void *info)
347 {
348 	local_flush_tlb_all();
349 }
350 
351 void flush_tlb_all(void)
352 {
353 	on_each_cpu(flush_tlb_all_ipi, 0, 1);
354 }
355 
356 static void flush_tlb_mm_ipi(void *mm)
357 {
358 	local_flush_tlb_mm((struct mm_struct *)mm);
359 }
360 
361 /*
362  * The following tlb flush calls are invoked when old translations are
363  * being torn down, or pte attributes are changing. For single threaded
364  * address spaces, a new context is obtained on the current cpu, and tlb
365  * context on other cpus are invalidated to force a new context allocation
366  * at switch_mm time, should the mm ever be used on other cpus. For
367  * multithreaded address spaces, intercpu interrupts have to be sent.
368  * Another case where intercpu interrupts are required is when the target
369  * mm might be active on another cpu (eg debuggers doing the flushes on
370  * behalf of debugees, kswapd stealing pages from another process etc).
371  * Kanoj 07/00.
372  */
373 void flush_tlb_mm(struct mm_struct *mm)
374 {
375 	preempt_disable();
376 
377 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
378 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
379 	} else {
380 		int i;
381 		for (i = 0; i < num_online_cpus(); i++)
382 			if (smp_processor_id() != i)
383 				cpu_context(i, mm) = 0;
384 	}
385 	local_flush_tlb_mm(mm);
386 
387 	preempt_enable();
388 }
389 
390 struct flush_tlb_data {
391 	struct vm_area_struct *vma;
392 	unsigned long addr1;
393 	unsigned long addr2;
394 };
395 
396 static void flush_tlb_range_ipi(void *info)
397 {
398 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
399 
400 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
401 }
402 
403 void flush_tlb_range(struct vm_area_struct *vma,
404 		     unsigned long start, unsigned long end)
405 {
406 	struct mm_struct *mm = vma->vm_mm;
407 
408 	preempt_disable();
409 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
410 		struct flush_tlb_data fd;
411 
412 		fd.vma = vma;
413 		fd.addr1 = start;
414 		fd.addr2 = end;
415 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
416 	} else {
417 		int i;
418 		for (i = 0; i < num_online_cpus(); i++)
419 			if (smp_processor_id() != i)
420 				cpu_context(i, mm) = 0;
421 	}
422 	local_flush_tlb_range(vma, start, end);
423 	preempt_enable();
424 }
425 
426 static void flush_tlb_kernel_range_ipi(void *info)
427 {
428 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
429 
430 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
431 }
432 
433 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
434 {
435 	struct flush_tlb_data fd;
436 
437 	fd.addr1 = start;
438 	fd.addr2 = end;
439 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
440 }
441 
442 static void flush_tlb_page_ipi(void *info)
443 {
444 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
445 
446 	local_flush_tlb_page(fd->vma, fd->addr1);
447 }
448 
449 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
450 {
451 	preempt_disable();
452 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
453 	    (current->mm != vma->vm_mm)) {
454 		struct flush_tlb_data fd;
455 
456 		fd.vma = vma;
457 		fd.addr1 = page;
458 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
459 	} else {
460 		int i;
461 		for (i = 0; i < num_online_cpus(); i++)
462 			if (smp_processor_id() != i)
463 				cpu_context(i, vma->vm_mm) = 0;
464 	}
465 	local_flush_tlb_page(vma, page);
466 	preempt_enable();
467 }
468 
469 static void flush_tlb_one_ipi(void *info)
470 {
471 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
472 	local_flush_tlb_one(fd->addr1, fd->addr2);
473 }
474 
475 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
476 {
477 	struct flush_tlb_data fd;
478 
479 	fd.addr1 = asid;
480 	fd.addr2 = vaddr;
481 
482 	smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
483 	local_flush_tlb_one(asid, vaddr);
484 }
485