1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <linux/err.h> 27 #include <linux/debugfs.h> 28 #include <linux/crash_dump.h> 29 #include <linux/mmzone.h> 30 #include <linux/clk.h> 31 #include <linux/delay.h> 32 #include <linux/platform_device.h> 33 #include <linux/lmb.h> 34 #include <asm/uaccess.h> 35 #include <asm/io.h> 36 #include <asm/page.h> 37 #include <asm/elf.h> 38 #include <asm/sections.h> 39 #include <asm/irq.h> 40 #include <asm/setup.h> 41 #include <asm/clock.h> 42 #include <asm/mmu_context.h> 43 44 /* 45 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 46 * This value will be used at the very early stage of serial setup. 47 * The bigger value means no problem. 48 */ 49 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 50 [0] = { 51 .type = CPU_SH_NONE, 52 .loops_per_jiffy = 10000000, 53 }, 54 }; 55 EXPORT_SYMBOL(cpu_data); 56 57 /* 58 * The machine vector. First entry in .machvec.init, or clobbered by 59 * sh_mv= on the command line, prior to .machvec.init teardown. 60 */ 61 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 62 EXPORT_SYMBOL(sh_mv); 63 64 #ifdef CONFIG_VT 65 struct screen_info screen_info; 66 #endif 67 68 extern int root_mountflags; 69 70 #define RAMDISK_IMAGE_START_MASK 0x07FF 71 #define RAMDISK_PROMPT_FLAG 0x8000 72 #define RAMDISK_LOAD_FLAG 0x4000 73 74 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 75 76 static struct resource code_resource = { 77 .name = "Kernel code", 78 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 79 }; 80 81 static struct resource data_resource = { 82 .name = "Kernel data", 83 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 84 }; 85 86 static struct resource bss_resource = { 87 .name = "Kernel bss", 88 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 89 }; 90 91 unsigned long memory_start; 92 EXPORT_SYMBOL(memory_start); 93 unsigned long memory_end = 0; 94 EXPORT_SYMBOL(memory_end); 95 96 static struct resource mem_resources[MAX_NUMNODES]; 97 98 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; 99 100 static int __init early_parse_mem(char *p) 101 { 102 unsigned long size; 103 104 memory_start = (unsigned long)__va(__MEMORY_START); 105 size = memparse(p, &p); 106 107 if (size > __MEMORY_SIZE) { 108 printk(KERN_ERR 109 "Using mem= to increase the size of kernel memory " 110 "is not allowed.\n" 111 " Recompile the kernel with the correct value for " 112 "CONFIG_MEMORY_SIZE.\n"); 113 return 0; 114 } 115 116 memory_end = memory_start + size; 117 118 return 0; 119 } 120 early_param("mem", early_parse_mem); 121 122 /* 123 * Register fully available low RAM pages with the bootmem allocator. 124 */ 125 static void __init register_bootmem_low_pages(void) 126 { 127 unsigned long curr_pfn, last_pfn, pages; 128 129 /* 130 * We are rounding up the start address of usable memory: 131 */ 132 curr_pfn = PFN_UP(__MEMORY_START); 133 134 /* 135 * ... and at the end of the usable range downwards: 136 */ 137 last_pfn = PFN_DOWN(__pa(memory_end)); 138 139 if (last_pfn > max_low_pfn) 140 last_pfn = max_low_pfn; 141 142 pages = last_pfn - curr_pfn; 143 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 144 } 145 146 #ifdef CONFIG_KEXEC 147 static void __init reserve_crashkernel(void) 148 { 149 unsigned long long free_mem; 150 unsigned long long crash_size, crash_base; 151 void *vp; 152 int ret; 153 154 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; 155 156 ret = parse_crashkernel(boot_command_line, free_mem, 157 &crash_size, &crash_base); 158 if (ret == 0 && crash_size) { 159 if (crash_base <= 0) { 160 vp = alloc_bootmem_nopanic(crash_size); 161 if (!vp) { 162 printk(KERN_INFO "crashkernel allocation " 163 "failed\n"); 164 return; 165 } 166 crash_base = __pa(vp); 167 } else if (reserve_bootmem(crash_base, crash_size, 168 BOOTMEM_EXCLUSIVE) < 0) { 169 printk(KERN_INFO "crashkernel reservation failed - " 170 "memory is in use\n"); 171 return; 172 } 173 174 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 175 "for crashkernel (System RAM: %ldMB)\n", 176 (unsigned long)(crash_size >> 20), 177 (unsigned long)(crash_base >> 20), 178 (unsigned long)(free_mem >> 20)); 179 crashk_res.start = crash_base; 180 crashk_res.end = crash_base + crash_size - 1; 181 insert_resource(&iomem_resource, &crashk_res); 182 } 183 } 184 #else 185 static inline void __init reserve_crashkernel(void) 186 {} 187 #endif 188 189 void __cpuinit calibrate_delay(void) 190 { 191 struct clk *clk = clk_get(NULL, "cpu_clk"); 192 193 if (IS_ERR(clk)) 194 panic("Need a sane CPU clock definition!"); 195 196 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ; 197 198 printk(KERN_INFO "Calibrating delay loop (skipped)... " 199 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n", 200 loops_per_jiffy/(500000/HZ), 201 (loops_per_jiffy/(5000/HZ)) % 100, 202 loops_per_jiffy); 203 } 204 205 void __init __add_active_range(unsigned int nid, unsigned long start_pfn, 206 unsigned long end_pfn) 207 { 208 struct resource *res = &mem_resources[nid]; 209 210 WARN_ON(res->name); /* max one active range per node for now */ 211 212 res->name = "System RAM"; 213 res->start = start_pfn << PAGE_SHIFT; 214 res->end = (end_pfn << PAGE_SHIFT) - 1; 215 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 216 if (request_resource(&iomem_resource, res)) { 217 pr_err("unable to request memory_resource 0x%lx 0x%lx\n", 218 start_pfn, end_pfn); 219 return; 220 } 221 222 /* 223 * We don't know which RAM region contains kernel data, 224 * so we try it repeatedly and let the resource manager 225 * test it. 226 */ 227 request_resource(res, &code_resource); 228 request_resource(res, &data_resource); 229 request_resource(res, &bss_resource); 230 231 add_active_range(nid, start_pfn, end_pfn); 232 } 233 234 void __init setup_bootmem_allocator(unsigned long free_pfn) 235 { 236 unsigned long bootmap_size; 237 unsigned long bootmap_pages, bootmem_paddr; 238 u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT; 239 int i; 240 241 bootmap_pages = bootmem_bootmap_pages(total_pages); 242 243 bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); 244 245 /* 246 * Find a proper area for the bootmem bitmap. After this 247 * bootstrap step all allocations (until the page allocator 248 * is intact) must be done via bootmem_alloc(). 249 */ 250 bootmap_size = init_bootmem_node(NODE_DATA(0), 251 bootmem_paddr >> PAGE_SHIFT, 252 min_low_pfn, max_low_pfn); 253 254 /* Add active regions with valid PFNs. */ 255 for (i = 0; i < lmb.memory.cnt; i++) { 256 unsigned long start_pfn, end_pfn; 257 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; 258 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); 259 __add_active_range(0, start_pfn, end_pfn); 260 } 261 262 /* 263 * Add all physical memory to the bootmem map and mark each 264 * area as present. 265 */ 266 register_bootmem_low_pages(); 267 268 /* Reserve the sections we're already using. */ 269 for (i = 0; i < lmb.reserved.cnt; i++) 270 reserve_bootmem(lmb.reserved.region[i].base, 271 lmb_size_bytes(&lmb.reserved, i), 272 BOOTMEM_DEFAULT); 273 274 node_set_online(0); 275 276 sparse_memory_present_with_active_regions(0); 277 278 #ifdef CONFIG_BLK_DEV_INITRD 279 ROOT_DEV = Root_RAM0; 280 281 if (LOADER_TYPE && INITRD_START) { 282 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START; 283 284 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) { 285 reserve_bootmem(initrd_start_phys, INITRD_SIZE, 286 BOOTMEM_DEFAULT); 287 initrd_start = (unsigned long)__va(initrd_start_phys); 288 initrd_end = initrd_start + INITRD_SIZE; 289 } else { 290 printk("initrd extends beyond end of memory " 291 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 292 initrd_start_phys + INITRD_SIZE, 293 (unsigned long)PFN_PHYS(max_low_pfn)); 294 initrd_start = 0; 295 } 296 } 297 #endif 298 299 reserve_crashkernel(); 300 } 301 302 #ifndef CONFIG_NEED_MULTIPLE_NODES 303 static void __init setup_memory(void) 304 { 305 unsigned long start_pfn; 306 u64 base = min_low_pfn << PAGE_SHIFT; 307 u64 size = (max_low_pfn << PAGE_SHIFT) - base; 308 309 /* 310 * Partially used pages are not usable - thus 311 * we are rounding upwards: 312 */ 313 start_pfn = PFN_UP(__pa(_end)); 314 315 lmb_add(base, size); 316 317 /* 318 * Reserve the kernel text and 319 * Reserve the bootmem bitmap. We do this in two steps (first step 320 * was init_bootmem()), because this catches the (definitely buggy) 321 * case of us accidentally initializing the bootmem allocator with 322 * an invalid RAM area. 323 */ 324 lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET, 325 (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) - 326 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET)); 327 328 /* 329 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET. 330 */ 331 if (CONFIG_ZERO_PAGE_OFFSET != 0) 332 lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET); 333 334 lmb_analyze(); 335 lmb_dump_all(); 336 337 setup_bootmem_allocator(start_pfn); 338 } 339 #else 340 extern void __init setup_memory(void); 341 #endif 342 343 /* 344 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by 345 * is_kdump_kernel() to determine if we are booting after a panic. Hence 346 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. 347 */ 348 #ifdef CONFIG_CRASH_DUMP 349 /* elfcorehdr= specifies the location of elf core header 350 * stored by the crashed kernel. 351 */ 352 static int __init parse_elfcorehdr(char *arg) 353 { 354 if (!arg) 355 return -EINVAL; 356 elfcorehdr_addr = memparse(arg, &arg); 357 return 0; 358 } 359 early_param("elfcorehdr", parse_elfcorehdr); 360 #endif 361 362 void __init __attribute__ ((weak)) plat_early_device_setup(void) 363 { 364 } 365 366 void __init setup_arch(char **cmdline_p) 367 { 368 enable_mmu(); 369 370 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 371 372 printk(KERN_NOTICE "Boot params:\n" 373 "... MOUNT_ROOT_RDONLY - %08lx\n" 374 "... RAMDISK_FLAGS - %08lx\n" 375 "... ORIG_ROOT_DEV - %08lx\n" 376 "... LOADER_TYPE - %08lx\n" 377 "... INITRD_START - %08lx\n" 378 "... INITRD_SIZE - %08lx\n", 379 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, 380 ORIG_ROOT_DEV, LOADER_TYPE, 381 INITRD_START, INITRD_SIZE); 382 383 #ifdef CONFIG_BLK_DEV_RAM 384 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 385 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 386 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 387 #endif 388 389 if (!MOUNT_ROOT_RDONLY) 390 root_mountflags &= ~MS_RDONLY; 391 init_mm.start_code = (unsigned long) _text; 392 init_mm.end_code = (unsigned long) _etext; 393 init_mm.end_data = (unsigned long) _edata; 394 init_mm.brk = (unsigned long) _end; 395 396 code_resource.start = virt_to_phys(_text); 397 code_resource.end = virt_to_phys(_etext)-1; 398 data_resource.start = virt_to_phys(_etext); 399 data_resource.end = virt_to_phys(_edata)-1; 400 bss_resource.start = virt_to_phys(__bss_start); 401 bss_resource.end = virt_to_phys(_ebss)-1; 402 403 memory_start = (unsigned long)__va(__MEMORY_START); 404 if (!memory_end) 405 memory_end = memory_start + __MEMORY_SIZE; 406 407 #ifdef CONFIG_CMDLINE_OVERWRITE 408 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 409 #else 410 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 411 #ifdef CONFIG_CMDLINE_EXTEND 412 strlcat(command_line, " ", sizeof(command_line)); 413 strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line)); 414 #endif 415 #endif 416 417 /* Save unparsed command line copy for /proc/cmdline */ 418 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 419 *cmdline_p = command_line; 420 421 parse_early_param(); 422 423 plat_early_device_setup(); 424 425 sh_mv_setup(); 426 427 /* 428 * Find the highest page frame number we have available 429 */ 430 max_pfn = PFN_DOWN(__pa(memory_end)); 431 432 /* 433 * Determine low and high memory ranges: 434 */ 435 max_low_pfn = max_pfn; 436 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 437 438 nodes_clear(node_online_map); 439 440 /* Setup bootmem with available RAM */ 441 lmb_init(); 442 setup_memory(); 443 sparse_init(); 444 445 #ifdef CONFIG_DUMMY_CONSOLE 446 conswitchp = &dummy_con; 447 #endif 448 449 /* Perform the machine specific initialisation */ 450 if (likely(sh_mv.mv_setup)) 451 sh_mv.mv_setup(cmdline_p); 452 453 paging_init(); 454 455 #ifdef CONFIG_SMP 456 plat_smp_setup(); 457 #endif 458 } 459 460 /* processor boot mode configuration */ 461 int generic_mode_pins(void) 462 { 463 pr_warning("generic_mode_pins(): missing mode pin configuration\n"); 464 return 0; 465 } 466 467 int test_mode_pin(int pin) 468 { 469 return sh_mv.mv_mode_pins() & pin; 470 } 471 472 static const char *cpu_name[] = { 473 [CPU_SH7201] = "SH7201", 474 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", 475 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 476 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 477 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 478 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 479 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 480 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", 481 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", 482 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", 483 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", 484 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 485 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", 486 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", 487 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", 488 [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757", 489 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", 490 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", 491 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", 492 [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724", 493 [CPU_SH_NONE] = "Unknown" 494 }; 495 496 const char *get_cpu_subtype(struct sh_cpuinfo *c) 497 { 498 return cpu_name[c->type]; 499 } 500 EXPORT_SYMBOL(get_cpu_subtype); 501 502 #ifdef CONFIG_PROC_FS 503 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 504 static const char *cpu_flags[] = { 505 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 506 "ptea", "llsc", "l2", "op32", "pteaex", NULL 507 }; 508 509 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 510 { 511 unsigned long i; 512 513 seq_printf(m, "cpu flags\t:"); 514 515 if (!c->flags) { 516 seq_printf(m, " %s\n", cpu_flags[0]); 517 return; 518 } 519 520 for (i = 0; cpu_flags[i]; i++) 521 if ((c->flags & (1 << i))) 522 seq_printf(m, " %s", cpu_flags[i+1]); 523 524 seq_printf(m, "\n"); 525 } 526 527 static void show_cacheinfo(struct seq_file *m, const char *type, 528 struct cache_info info) 529 { 530 unsigned int cache_size; 531 532 cache_size = info.ways * info.sets * info.linesz; 533 534 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 535 type, cache_size >> 10, info.ways); 536 } 537 538 /* 539 * Get CPU information for use by the procfs. 540 */ 541 static int show_cpuinfo(struct seq_file *m, void *v) 542 { 543 struct sh_cpuinfo *c = v; 544 unsigned int cpu = c - cpu_data; 545 546 if (!cpu_online(cpu)) 547 return 0; 548 549 if (cpu == 0) 550 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 551 552 seq_printf(m, "processor\t: %d\n", cpu); 553 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 554 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 555 if (c->cut_major == -1) 556 seq_printf(m, "cut\t\t: unknown\n"); 557 else if (c->cut_minor == -1) 558 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); 559 else 560 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); 561 562 show_cpuflags(m, c); 563 564 seq_printf(m, "cache type\t: "); 565 566 /* 567 * Check for what type of cache we have, we support both the 568 * unified cache on the SH-2 and SH-3, as well as the harvard 569 * style cache on the SH-4. 570 */ 571 if (c->icache.flags & SH_CACHE_COMBINED) { 572 seq_printf(m, "unified\n"); 573 show_cacheinfo(m, "cache", c->icache); 574 } else { 575 seq_printf(m, "split (harvard)\n"); 576 show_cacheinfo(m, "icache", c->icache); 577 show_cacheinfo(m, "dcache", c->dcache); 578 } 579 580 /* Optional secondary cache */ 581 if (c->flags & CPU_HAS_L2_CACHE) 582 show_cacheinfo(m, "scache", c->scache); 583 584 seq_printf(m, "bogomips\t: %lu.%02lu\n", 585 c->loops_per_jiffy/(500000/HZ), 586 (c->loops_per_jiffy/(5000/HZ)) % 100); 587 588 return 0; 589 } 590 591 static void *c_start(struct seq_file *m, loff_t *pos) 592 { 593 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 594 } 595 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 596 { 597 ++*pos; 598 return c_start(m, pos); 599 } 600 static void c_stop(struct seq_file *m, void *v) 601 { 602 } 603 const struct seq_operations cpuinfo_op = { 604 .start = c_start, 605 .next = c_next, 606 .stop = c_stop, 607 .show = show_cpuinfo, 608 }; 609 #endif /* CONFIG_PROC_FS */ 610 611 struct dentry *sh_debugfs_root; 612 613 static int __init sh_debugfs_init(void) 614 { 615 sh_debugfs_root = debugfs_create_dir("sh", NULL); 616 if (!sh_debugfs_root) 617 return -ENOMEM; 618 if (IS_ERR(sh_debugfs_root)) 619 return PTR_ERR(sh_debugfs_root); 620 621 return 0; 622 } 623 arch_initcall(sh_debugfs_init); 624