xref: /linux/arch/sh/kernel/setup.c (revision fea966f7564205fcf5919af9bde031e753419c96)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/lmb.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/elf.h>
38 #include <asm/sections.h>
39 #include <asm/irq.h>
40 #include <asm/setup.h>
41 #include <asm/clock.h>
42 #include <asm/mmu_context.h>
43 
44 /*
45  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
46  * This value will be used at the very early stage of serial setup.
47  * The bigger value means no problem.
48  */
49 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
50 	[0] = {
51 		.type			= CPU_SH_NONE,
52 		.loops_per_jiffy	= 10000000,
53 	},
54 };
55 EXPORT_SYMBOL(cpu_data);
56 
57 /*
58  * The machine vector. First entry in .machvec.init, or clobbered by
59  * sh_mv= on the command line, prior to .machvec.init teardown.
60  */
61 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
62 EXPORT_SYMBOL(sh_mv);
63 
64 #ifdef CONFIG_VT
65 struct screen_info screen_info;
66 #endif
67 
68 extern int root_mountflags;
69 
70 #define RAMDISK_IMAGE_START_MASK	0x07FF
71 #define RAMDISK_PROMPT_FLAG		0x8000
72 #define RAMDISK_LOAD_FLAG		0x4000
73 
74 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
75 
76 static struct resource code_resource = {
77 	.name = "Kernel code",
78 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
79 };
80 
81 static struct resource data_resource = {
82 	.name = "Kernel data",
83 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
84 };
85 
86 static struct resource bss_resource = {
87 	.name	= "Kernel bss",
88 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
89 };
90 
91 unsigned long memory_start;
92 EXPORT_SYMBOL(memory_start);
93 unsigned long memory_end = 0;
94 EXPORT_SYMBOL(memory_end);
95 
96 static struct resource mem_resources[MAX_NUMNODES];
97 
98 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
99 
100 static int __init early_parse_mem(char *p)
101 {
102 	unsigned long size;
103 
104 	memory_start = (unsigned long)__va(__MEMORY_START);
105 	size = memparse(p, &p);
106 
107 	if (size > __MEMORY_SIZE) {
108 		printk(KERN_ERR
109 			"Using mem= to increase the size of kernel memory "
110 			"is not allowed.\n"
111 			"  Recompile the kernel with the correct value for "
112 			"CONFIG_MEMORY_SIZE.\n");
113 		return 0;
114 	}
115 
116 	memory_end = memory_start + size;
117 
118 	return 0;
119 }
120 early_param("mem", early_parse_mem);
121 
122 /*
123  * Register fully available low RAM pages with the bootmem allocator.
124  */
125 static void __init register_bootmem_low_pages(void)
126 {
127 	unsigned long curr_pfn, last_pfn, pages;
128 
129 	/*
130 	 * We are rounding up the start address of usable memory:
131 	 */
132 	curr_pfn = PFN_UP(__MEMORY_START);
133 
134 	/*
135 	 * ... and at the end of the usable range downwards:
136 	 */
137 	last_pfn = PFN_DOWN(__pa(memory_end));
138 
139 	if (last_pfn > max_low_pfn)
140 		last_pfn = max_low_pfn;
141 
142 	pages = last_pfn - curr_pfn;
143 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
144 }
145 
146 #ifdef CONFIG_KEXEC
147 static void __init reserve_crashkernel(void)
148 {
149 	unsigned long long free_mem;
150 	unsigned long long crash_size, crash_base;
151 	void *vp;
152 	int ret;
153 
154 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
155 
156 	ret = parse_crashkernel(boot_command_line, free_mem,
157 			&crash_size, &crash_base);
158 	if (ret == 0 && crash_size) {
159 		if (crash_base <= 0) {
160 			vp = alloc_bootmem_nopanic(crash_size);
161 			if (!vp) {
162 				printk(KERN_INFO "crashkernel allocation "
163 				       "failed\n");
164 				return;
165 			}
166 			crash_base = __pa(vp);
167 		} else if (reserve_bootmem(crash_base, crash_size,
168 					BOOTMEM_EXCLUSIVE) < 0) {
169 			printk(KERN_INFO "crashkernel reservation failed - "
170 					"memory is in use\n");
171 			return;
172 		}
173 
174 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
175 				"for crashkernel (System RAM: %ldMB)\n",
176 				(unsigned long)(crash_size >> 20),
177 				(unsigned long)(crash_base >> 20),
178 				(unsigned long)(free_mem >> 20));
179 		crashk_res.start = crash_base;
180 		crashk_res.end   = crash_base + crash_size - 1;
181 		insert_resource(&iomem_resource, &crashk_res);
182 	}
183 }
184 #else
185 static inline void __init reserve_crashkernel(void)
186 {}
187 #endif
188 
189 void __cpuinit calibrate_delay(void)
190 {
191 	struct clk *clk = clk_get(NULL, "cpu_clk");
192 
193 	if (IS_ERR(clk))
194 		panic("Need a sane CPU clock definition!");
195 
196 	loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
197 
198 	printk(KERN_INFO "Calibrating delay loop (skipped)... "
199 			 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
200 			 loops_per_jiffy/(500000/HZ),
201 			 (loops_per_jiffy/(5000/HZ)) % 100,
202 			 loops_per_jiffy);
203 }
204 
205 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
206 						unsigned long end_pfn)
207 {
208 	struct resource *res = &mem_resources[nid];
209 
210 	WARN_ON(res->name); /* max one active range per node for now */
211 
212 	res->name = "System RAM";
213 	res->start = start_pfn << PAGE_SHIFT;
214 	res->end = (end_pfn << PAGE_SHIFT) - 1;
215 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
216 	if (request_resource(&iomem_resource, res)) {
217 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
218 		       start_pfn, end_pfn);
219 		return;
220 	}
221 
222 	/*
223 	 *  We don't know which RAM region contains kernel data,
224 	 *  so we try it repeatedly and let the resource manager
225 	 *  test it.
226 	 */
227 	request_resource(res, &code_resource);
228 	request_resource(res, &data_resource);
229 	request_resource(res, &bss_resource);
230 
231 	add_active_range(nid, start_pfn, end_pfn);
232 }
233 
234 void __init setup_bootmem_allocator(unsigned long free_pfn)
235 {
236 	unsigned long bootmap_size;
237 	unsigned long bootmap_pages, bootmem_paddr;
238 	u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
239 	int i;
240 
241 	bootmap_pages = bootmem_bootmap_pages(total_pages);
242 
243 	bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
244 
245 	/*
246 	 * Find a proper area for the bootmem bitmap. After this
247 	 * bootstrap step all allocations (until the page allocator
248 	 * is intact) must be done via bootmem_alloc().
249 	 */
250 	bootmap_size = init_bootmem_node(NODE_DATA(0),
251 					 bootmem_paddr >> PAGE_SHIFT,
252 					 min_low_pfn, max_low_pfn);
253 
254 	/* Add active regions with valid PFNs. */
255 	for (i = 0; i < lmb.memory.cnt; i++) {
256 		unsigned long start_pfn, end_pfn;
257 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
258 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
259 		__add_active_range(0, start_pfn, end_pfn);
260 	}
261 
262 	/*
263 	 * Add all physical memory to the bootmem map and mark each
264 	 * area as present.
265 	 */
266 	register_bootmem_low_pages();
267 
268 	/* Reserve the sections we're already using. */
269 	for (i = 0; i < lmb.reserved.cnt; i++)
270 		reserve_bootmem(lmb.reserved.region[i].base,
271 				lmb_size_bytes(&lmb.reserved, i),
272 				BOOTMEM_DEFAULT);
273 
274 	node_set_online(0);
275 
276 	sparse_memory_present_with_active_regions(0);
277 
278 #ifdef CONFIG_BLK_DEV_INITRD
279 	ROOT_DEV = Root_RAM0;
280 
281 	if (LOADER_TYPE && INITRD_START) {
282 		unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
283 
284 		if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
285 			reserve_bootmem(initrd_start_phys, INITRD_SIZE,
286 					BOOTMEM_DEFAULT);
287 			initrd_start = (unsigned long)__va(initrd_start_phys);
288 			initrd_end = initrd_start + INITRD_SIZE;
289 		} else {
290 			printk("initrd extends beyond end of memory "
291 			       "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
292 			       initrd_start_phys + INITRD_SIZE,
293 			       (unsigned long)PFN_PHYS(max_low_pfn));
294 			initrd_start = 0;
295 		}
296 	}
297 #endif
298 
299 	reserve_crashkernel();
300 }
301 
302 #ifndef CONFIG_NEED_MULTIPLE_NODES
303 static void __init setup_memory(void)
304 {
305 	unsigned long start_pfn;
306 	u64 base = min_low_pfn << PAGE_SHIFT;
307 	u64 size = (max_low_pfn << PAGE_SHIFT) - base;
308 
309 	/*
310 	 * Partially used pages are not usable - thus
311 	 * we are rounding upwards:
312 	 */
313 	start_pfn = PFN_UP(__pa(_end));
314 
315 	lmb_add(base, size);
316 
317 	/*
318 	 * Reserve the kernel text and
319 	 * Reserve the bootmem bitmap. We do this in two steps (first step
320 	 * was init_bootmem()), because this catches the (definitely buggy)
321 	 * case of us accidentally initializing the bootmem allocator with
322 	 * an invalid RAM area.
323 	 */
324 	lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
325 		    (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
326 		    (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
327 
328 	/*
329 	 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
330 	 */
331 	if (CONFIG_ZERO_PAGE_OFFSET != 0)
332 		lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
333 
334 	lmb_analyze();
335 	lmb_dump_all();
336 
337 	setup_bootmem_allocator(start_pfn);
338 }
339 #else
340 extern void __init setup_memory(void);
341 #endif
342 
343 /*
344  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
345  * is_kdump_kernel() to determine if we are booting after a panic. Hence
346  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
347  */
348 #ifdef CONFIG_CRASH_DUMP
349 /* elfcorehdr= specifies the location of elf core header
350  * stored by the crashed kernel.
351  */
352 static int __init parse_elfcorehdr(char *arg)
353 {
354 	if (!arg)
355 		return -EINVAL;
356 	elfcorehdr_addr = memparse(arg, &arg);
357 	return 0;
358 }
359 early_param("elfcorehdr", parse_elfcorehdr);
360 #endif
361 
362 void __init __attribute__ ((weak)) plat_early_device_setup(void)
363 {
364 }
365 
366 void __init setup_arch(char **cmdline_p)
367 {
368 	enable_mmu();
369 
370 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
371 
372 	printk(KERN_NOTICE "Boot params:\n"
373 			   "... MOUNT_ROOT_RDONLY - %08lx\n"
374 			   "... RAMDISK_FLAGS     - %08lx\n"
375 			   "... ORIG_ROOT_DEV     - %08lx\n"
376 			   "... LOADER_TYPE       - %08lx\n"
377 			   "... INITRD_START      - %08lx\n"
378 			   "... INITRD_SIZE       - %08lx\n",
379 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
380 			   ORIG_ROOT_DEV, LOADER_TYPE,
381 			   INITRD_START, INITRD_SIZE);
382 
383 #ifdef CONFIG_BLK_DEV_RAM
384 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
385 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
386 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
387 #endif
388 
389 	if (!MOUNT_ROOT_RDONLY)
390 		root_mountflags &= ~MS_RDONLY;
391 	init_mm.start_code = (unsigned long) _text;
392 	init_mm.end_code = (unsigned long) _etext;
393 	init_mm.end_data = (unsigned long) _edata;
394 	init_mm.brk = (unsigned long) _end;
395 
396 	code_resource.start = virt_to_phys(_text);
397 	code_resource.end = virt_to_phys(_etext)-1;
398 	data_resource.start = virt_to_phys(_etext);
399 	data_resource.end = virt_to_phys(_edata)-1;
400 	bss_resource.start = virt_to_phys(__bss_start);
401 	bss_resource.end = virt_to_phys(_ebss)-1;
402 
403 	memory_start = (unsigned long)__va(__MEMORY_START);
404 	if (!memory_end)
405 		memory_end = memory_start + __MEMORY_SIZE;
406 
407 #ifdef CONFIG_CMDLINE_OVERWRITE
408 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
409 #else
410 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
411 #ifdef CONFIG_CMDLINE_EXTEND
412 	strlcat(command_line, " ", sizeof(command_line));
413 	strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
414 #endif
415 #endif
416 
417 	/* Save unparsed command line copy for /proc/cmdline */
418 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
419 	*cmdline_p = command_line;
420 
421 	parse_early_param();
422 
423 	plat_early_device_setup();
424 
425 	sh_mv_setup();
426 
427 	/*
428 	 * Find the highest page frame number we have available
429 	 */
430 	max_pfn = PFN_DOWN(__pa(memory_end));
431 
432 	/*
433 	 * Determine low and high memory ranges:
434 	 */
435 	max_low_pfn = max_pfn;
436 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
437 
438 	nodes_clear(node_online_map);
439 
440 	/* Setup bootmem with available RAM */
441 	lmb_init();
442 	setup_memory();
443 	sparse_init();
444 
445 #ifdef CONFIG_DUMMY_CONSOLE
446 	conswitchp = &dummy_con;
447 #endif
448 
449 	/* Perform the machine specific initialisation */
450 	if (likely(sh_mv.mv_setup))
451 		sh_mv.mv_setup(cmdline_p);
452 
453 	paging_init();
454 
455 #ifdef CONFIG_SMP
456 	plat_smp_setup();
457 #endif
458 }
459 
460 /* processor boot mode configuration */
461 int generic_mode_pins(void)
462 {
463 	pr_warning("generic_mode_pins(): missing mode pin configuration\n");
464 	return 0;
465 }
466 
467 int test_mode_pin(int pin)
468 {
469 	return sh_mv.mv_mode_pins() & pin;
470 }
471 
472 static const char *cpu_name[] = {
473 	[CPU_SH7201]	= "SH7201",
474 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
475 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
476 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
477 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
478 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
479 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
480 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
481 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
482 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
483 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
484 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
485 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
486 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
487 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
488 	[CPU_SH7786]	= "SH7786",	[CPU_SH7757]	= "SH7757",
489 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
490 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
491 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
492 	[CPU_SH7366]	= "SH7366",	[CPU_SH7724]	= "SH7724",
493 	[CPU_SH_NONE]	= "Unknown"
494 };
495 
496 const char *get_cpu_subtype(struct sh_cpuinfo *c)
497 {
498 	return cpu_name[c->type];
499 }
500 EXPORT_SYMBOL(get_cpu_subtype);
501 
502 #ifdef CONFIG_PROC_FS
503 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
504 static const char *cpu_flags[] = {
505 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
506 	"ptea", "llsc", "l2", "op32", "pteaex", NULL
507 };
508 
509 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
510 {
511 	unsigned long i;
512 
513 	seq_printf(m, "cpu flags\t:");
514 
515 	if (!c->flags) {
516 		seq_printf(m, " %s\n", cpu_flags[0]);
517 		return;
518 	}
519 
520 	for (i = 0; cpu_flags[i]; i++)
521 		if ((c->flags & (1 << i)))
522 			seq_printf(m, " %s", cpu_flags[i+1]);
523 
524 	seq_printf(m, "\n");
525 }
526 
527 static void show_cacheinfo(struct seq_file *m, const char *type,
528 			   struct cache_info info)
529 {
530 	unsigned int cache_size;
531 
532 	cache_size = info.ways * info.sets * info.linesz;
533 
534 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
535 		   type, cache_size >> 10, info.ways);
536 }
537 
538 /*
539  *	Get CPU information for use by the procfs.
540  */
541 static int show_cpuinfo(struct seq_file *m, void *v)
542 {
543 	struct sh_cpuinfo *c = v;
544 	unsigned int cpu = c - cpu_data;
545 
546 	if (!cpu_online(cpu))
547 		return 0;
548 
549 	if (cpu == 0)
550 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
551 
552 	seq_printf(m, "processor\t: %d\n", cpu);
553 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
554 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
555 	if (c->cut_major == -1)
556 		seq_printf(m, "cut\t\t: unknown\n");
557 	else if (c->cut_minor == -1)
558 		seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
559 	else
560 		seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
561 
562 	show_cpuflags(m, c);
563 
564 	seq_printf(m, "cache type\t: ");
565 
566 	/*
567 	 * Check for what type of cache we have, we support both the
568 	 * unified cache on the SH-2 and SH-3, as well as the harvard
569 	 * style cache on the SH-4.
570 	 */
571 	if (c->icache.flags & SH_CACHE_COMBINED) {
572 		seq_printf(m, "unified\n");
573 		show_cacheinfo(m, "cache", c->icache);
574 	} else {
575 		seq_printf(m, "split (harvard)\n");
576 		show_cacheinfo(m, "icache", c->icache);
577 		show_cacheinfo(m, "dcache", c->dcache);
578 	}
579 
580 	/* Optional secondary cache */
581 	if (c->flags & CPU_HAS_L2_CACHE)
582 		show_cacheinfo(m, "scache", c->scache);
583 
584 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
585 		     c->loops_per_jiffy/(500000/HZ),
586 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
587 
588 	return 0;
589 }
590 
591 static void *c_start(struct seq_file *m, loff_t *pos)
592 {
593 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
594 }
595 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
596 {
597 	++*pos;
598 	return c_start(m, pos);
599 }
600 static void c_stop(struct seq_file *m, void *v)
601 {
602 }
603 const struct seq_operations cpuinfo_op = {
604 	.start	= c_start,
605 	.next	= c_next,
606 	.stop	= c_stop,
607 	.show	= show_cpuinfo,
608 };
609 #endif /* CONFIG_PROC_FS */
610 
611 struct dentry *sh_debugfs_root;
612 
613 static int __init sh_debugfs_init(void)
614 {
615 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
616 	if (!sh_debugfs_root)
617 		return -ENOMEM;
618 	if (IS_ERR(sh_debugfs_root))
619 		return PTR_ERR(sh_debugfs_root);
620 
621 	return 0;
622 }
623 arch_initcall(sh_debugfs_init);
624