xref: /linux/arch/sh/kernel/setup.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/elf.h>
32 #include <asm/sections.h>
33 #include <asm/irq.h>
34 #include <asm/setup.h>
35 #include <asm/clock.h>
36 #include <asm/mmu_context.h>
37 
38 /*
39  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
40  * This value will be used at the very early stage of serial setup.
41  * The bigger value means no problem.
42  */
43 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
44 	[0] = {
45 		.type			= CPU_SH_NONE,
46 		.loops_per_jiffy	= 10000000,
47 	},
48 };
49 EXPORT_SYMBOL(cpu_data);
50 
51 /*
52  * The machine vector. First entry in .machvec.init, or clobbered by
53  * sh_mv= on the command line, prior to .machvec.init teardown.
54  */
55 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
56 
57 #ifdef CONFIG_VT
58 struct screen_info screen_info;
59 #endif
60 
61 extern int root_mountflags;
62 
63 #define RAMDISK_IMAGE_START_MASK	0x07FF
64 #define RAMDISK_PROMPT_FLAG		0x8000
65 #define RAMDISK_LOAD_FLAG		0x4000
66 
67 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
68 
69 static struct resource code_resource = {
70 	.name = "Kernel code",
71 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
72 };
73 
74 static struct resource data_resource = {
75 	.name = "Kernel data",
76 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
77 };
78 
79 unsigned long memory_start;
80 EXPORT_SYMBOL(memory_start);
81 unsigned long memory_end = 0;
82 EXPORT_SYMBOL(memory_end);
83 
84 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
85 
86 static int __init early_parse_mem(char *p)
87 {
88 	unsigned long size;
89 
90 	memory_start = (unsigned long)__va(__MEMORY_START);
91 	size = memparse(p, &p);
92 
93 	if (size > __MEMORY_SIZE) {
94 		static char msg[] __initdata = KERN_ERR
95 			"Using mem= to increase the size of kernel memory "
96 			"is not allowed.\n"
97 			"  Recompile the kernel with the correct value for "
98 			"CONFIG_MEMORY_SIZE.\n";
99 		printk(msg);
100 		return 0;
101 	}
102 
103 	memory_end = memory_start + size;
104 
105 	return 0;
106 }
107 early_param("mem", early_parse_mem);
108 
109 /*
110  * Register fully available low RAM pages with the bootmem allocator.
111  */
112 static void __init register_bootmem_low_pages(void)
113 {
114 	unsigned long curr_pfn, last_pfn, pages;
115 
116 	/*
117 	 * We are rounding up the start address of usable memory:
118 	 */
119 	curr_pfn = PFN_UP(__MEMORY_START);
120 
121 	/*
122 	 * ... and at the end of the usable range downwards:
123 	 */
124 	last_pfn = PFN_DOWN(__pa(memory_end));
125 
126 	if (last_pfn > max_low_pfn)
127 		last_pfn = max_low_pfn;
128 
129 	pages = last_pfn - curr_pfn;
130 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
131 }
132 
133 #ifdef CONFIG_KEXEC
134 static void __init reserve_crashkernel(void)
135 {
136 	unsigned long long free_mem;
137 	unsigned long long crash_size, crash_base;
138 	int ret;
139 
140 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
141 
142 	ret = parse_crashkernel(boot_command_line, free_mem,
143 			&crash_size, &crash_base);
144 	if (ret == 0 && crash_size) {
145 		if (crash_base <= 0) {
146 			printk(KERN_INFO "crashkernel reservation failed - "
147 					"you have to specify a base address\n");
148 			return;
149 		}
150 
151 		if (reserve_bootmem(crash_base, crash_size,
152 					BOOTMEM_EXCLUSIVE) < 0) {
153 			printk(KERN_INFO "crashkernel reservation failed - "
154 					"memory is in use\n");
155 			return;
156 		}
157 
158 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
159 				"for crashkernel (System RAM: %ldMB)\n",
160 				(unsigned long)(crash_size >> 20),
161 				(unsigned long)(crash_base >> 20),
162 				(unsigned long)(free_mem >> 20));
163 		crashk_res.start = crash_base;
164 		crashk_res.end   = crash_base + crash_size - 1;
165 	}
166 }
167 #else
168 static inline void __init reserve_crashkernel(void)
169 {}
170 #endif
171 
172 void __init setup_bootmem_allocator(unsigned long free_pfn)
173 {
174 	unsigned long bootmap_size;
175 
176 	/*
177 	 * Find a proper area for the bootmem bitmap. After this
178 	 * bootstrap step all allocations (until the page allocator
179 	 * is intact) must be done via bootmem_alloc().
180 	 */
181 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
182 					 min_low_pfn, max_low_pfn);
183 
184 	add_active_range(0, min_low_pfn, max_low_pfn);
185 	register_bootmem_low_pages();
186 
187 	node_set_online(0);
188 
189 	/*
190 	 * Reserve the kernel text and
191 	 * Reserve the bootmem bitmap. We do this in two steps (first step
192 	 * was init_bootmem()), because this catches the (definitely buggy)
193 	 * case of us accidentally initializing the bootmem allocator with
194 	 * an invalid RAM area.
195 	 */
196 	reserve_bootmem(__MEMORY_START+PAGE_SIZE,
197 		(PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
198 		BOOTMEM_DEFAULT);
199 
200 	/*
201 	 * reserve physical page 0 - it's a special BIOS page on many boxes,
202 	 * enabling clean reboots, SMP operation, laptop functions.
203 	 */
204 	reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
205 
206 	sparse_memory_present_with_active_regions(0);
207 
208 #ifdef CONFIG_BLK_DEV_INITRD
209 	ROOT_DEV = Root_RAM0;
210 
211 	if (LOADER_TYPE && INITRD_START) {
212 		if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
213 			reserve_bootmem(INITRD_START + __MEMORY_START,
214 					INITRD_SIZE, BOOTMEM_DEFAULT);
215 			initrd_start = INITRD_START + PAGE_OFFSET +
216 					__MEMORY_START;
217 			initrd_end = initrd_start + INITRD_SIZE;
218 		} else {
219 			printk("initrd extends beyond end of memory "
220 			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
221 				    INITRD_START + INITRD_SIZE,
222 				    max_low_pfn << PAGE_SHIFT);
223 			initrd_start = 0;
224 		}
225 	}
226 #endif
227 
228 	reserve_crashkernel();
229 }
230 
231 #ifndef CONFIG_NEED_MULTIPLE_NODES
232 static void __init setup_memory(void)
233 {
234 	unsigned long start_pfn;
235 
236 	/*
237 	 * Partially used pages are not usable - thus
238 	 * we are rounding upwards:
239 	 */
240 	start_pfn = PFN_UP(__pa(_end));
241 	setup_bootmem_allocator(start_pfn);
242 }
243 #else
244 extern void __init setup_memory(void);
245 #endif
246 
247 void __init setup_arch(char **cmdline_p)
248 {
249 	enable_mmu();
250 
251 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
252 
253 #ifdef CONFIG_BLK_DEV_RAM
254 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
255 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
256 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
257 #endif
258 
259 	if (!MOUNT_ROOT_RDONLY)
260 		root_mountflags &= ~MS_RDONLY;
261 	init_mm.start_code = (unsigned long) _text;
262 	init_mm.end_code = (unsigned long) _etext;
263 	init_mm.end_data = (unsigned long) _edata;
264 	init_mm.brk = (unsigned long) _end;
265 
266 	code_resource.start = virt_to_phys(_text);
267 	code_resource.end = virt_to_phys(_etext)-1;
268 	data_resource.start = virt_to_phys(_etext);
269 	data_resource.end = virt_to_phys(_edata)-1;
270 
271 	memory_start = (unsigned long)__va(__MEMORY_START);
272 	if (!memory_end)
273 		memory_end = memory_start + __MEMORY_SIZE;
274 
275 #ifdef CONFIG_CMDLINE_BOOL
276 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
277 #else
278 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
279 #endif
280 
281 	/* Save unparsed command line copy for /proc/cmdline */
282 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
283 	*cmdline_p = command_line;
284 
285 	parse_early_param();
286 
287 	sh_mv_setup();
288 
289 	/*
290 	 * Find the highest page frame number we have available
291 	 */
292 	max_pfn = PFN_DOWN(__pa(memory_end));
293 
294 	/*
295 	 * Determine low and high memory ranges:
296 	 */
297 	max_low_pfn = max_pfn;
298 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
299 
300 	nodes_clear(node_online_map);
301 
302 	/* Setup bootmem with available RAM */
303 	setup_memory();
304 	sparse_init();
305 
306 #ifdef CONFIG_DUMMY_CONSOLE
307 	conswitchp = &dummy_con;
308 #endif
309 
310 	/* Perform the machine specific initialisation */
311 	if (likely(sh_mv.mv_setup))
312 		sh_mv.mv_setup(cmdline_p);
313 
314 	paging_init();
315 
316 #ifdef CONFIG_SMP
317 	plat_smp_setup();
318 #endif
319 }
320 
321 static const char *cpu_name[] = {
322 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
323 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
324 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
325 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
326 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
327 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
328 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
329 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
330 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
331 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
332 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
333 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
334 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
335 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
336 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
337 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
338 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
339 	[CPU_SH7366]	= "SH7366",	[CPU_SH_NONE]	= "Unknown"
340 };
341 
342 const char *get_cpu_subtype(struct sh_cpuinfo *c)
343 {
344 	return cpu_name[c->type];
345 }
346 
347 #ifdef CONFIG_PROC_FS
348 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
349 static const char *cpu_flags[] = {
350 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
351 	"ptea", "llsc", "l2", "op32", NULL
352 };
353 
354 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
355 {
356 	unsigned long i;
357 
358 	seq_printf(m, "cpu flags\t:");
359 
360 	if (!c->flags) {
361 		seq_printf(m, " %s\n", cpu_flags[0]);
362 		return;
363 	}
364 
365 	for (i = 0; cpu_flags[i]; i++)
366 		if ((c->flags & (1 << i)))
367 			seq_printf(m, " %s", cpu_flags[i+1]);
368 
369 	seq_printf(m, "\n");
370 }
371 
372 static void show_cacheinfo(struct seq_file *m, const char *type,
373 			   struct cache_info info)
374 {
375 	unsigned int cache_size;
376 
377 	cache_size = info.ways * info.sets * info.linesz;
378 
379 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
380 		   type, cache_size >> 10, info.ways);
381 }
382 
383 /*
384  *	Get CPU information for use by the procfs.
385  */
386 static int show_cpuinfo(struct seq_file *m, void *v)
387 {
388 	struct sh_cpuinfo *c = v;
389 	unsigned int cpu = c - cpu_data;
390 
391 	if (!cpu_online(cpu))
392 		return 0;
393 
394 	if (cpu == 0)
395 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
396 
397 	seq_printf(m, "processor\t: %d\n", cpu);
398 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
399 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
400 
401 	show_cpuflags(m, c);
402 
403 	seq_printf(m, "cache type\t: ");
404 
405 	/*
406 	 * Check for what type of cache we have, we support both the
407 	 * unified cache on the SH-2 and SH-3, as well as the harvard
408 	 * style cache on the SH-4.
409 	 */
410 	if (c->icache.flags & SH_CACHE_COMBINED) {
411 		seq_printf(m, "unified\n");
412 		show_cacheinfo(m, "cache", c->icache);
413 	} else {
414 		seq_printf(m, "split (harvard)\n");
415 		show_cacheinfo(m, "icache", c->icache);
416 		show_cacheinfo(m, "dcache", c->dcache);
417 	}
418 
419 	/* Optional secondary cache */
420 	if (c->flags & CPU_HAS_L2_CACHE)
421 		show_cacheinfo(m, "scache", c->scache);
422 
423 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
424 		     c->loops_per_jiffy/(500000/HZ),
425 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
426 
427 	return 0;
428 }
429 
430 static void *c_start(struct seq_file *m, loff_t *pos)
431 {
432 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
433 }
434 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
435 {
436 	++*pos;
437 	return c_start(m, pos);
438 }
439 static void c_stop(struct seq_file *m, void *v)
440 {
441 }
442 const struct seq_operations cpuinfo_op = {
443 	.start	= c_start,
444 	.next	= c_next,
445 	.stop	= c_stop,
446 	.show	= show_cpuinfo,
447 };
448 #endif /* CONFIG_PROC_FS */
449 
450 struct dentry *sh_debugfs_root;
451 
452 static int __init sh_debugfs_init(void)
453 {
454 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
455 	if (IS_ERR(sh_debugfs_root))
456 		return PTR_ERR(sh_debugfs_root);
457 
458 	return 0;
459 }
460 arch_initcall(sh_debugfs_init);
461