1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2010 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <linux/err.h> 27 #include <linux/crash_dump.h> 28 #include <linux/mmzone.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/platform_device.h> 32 #include <linux/memblock.h> 33 #include <asm/uaccess.h> 34 #include <asm/io.h> 35 #include <asm/page.h> 36 #include <asm/elf.h> 37 #include <asm/sections.h> 38 #include <asm/irq.h> 39 #include <asm/setup.h> 40 #include <asm/clock.h> 41 #include <asm/smp.h> 42 #include <asm/mmu_context.h> 43 #include <asm/mmzone.h> 44 45 /* 46 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 47 * This value will be used at the very early stage of serial setup. 48 * The bigger value means no problem. 49 */ 50 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 51 [0] = { 52 .type = CPU_SH_NONE, 53 .family = CPU_FAMILY_UNKNOWN, 54 .loops_per_jiffy = 10000000, 55 }, 56 }; 57 EXPORT_SYMBOL(cpu_data); 58 59 /* 60 * The machine vector. First entry in .machvec.init, or clobbered by 61 * sh_mv= on the command line, prior to .machvec.init teardown. 62 */ 63 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 64 EXPORT_SYMBOL(sh_mv); 65 66 #ifdef CONFIG_VT 67 struct screen_info screen_info; 68 #endif 69 70 extern int root_mountflags; 71 72 #define RAMDISK_IMAGE_START_MASK 0x07FF 73 #define RAMDISK_PROMPT_FLAG 0x8000 74 #define RAMDISK_LOAD_FLAG 0x4000 75 76 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 77 78 static struct resource code_resource = { 79 .name = "Kernel code", 80 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 81 }; 82 83 static struct resource data_resource = { 84 .name = "Kernel data", 85 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 86 }; 87 88 static struct resource bss_resource = { 89 .name = "Kernel bss", 90 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 91 }; 92 93 unsigned long memory_start; 94 EXPORT_SYMBOL(memory_start); 95 unsigned long memory_end = 0; 96 EXPORT_SYMBOL(memory_end); 97 unsigned long memory_limit = 0; 98 99 static struct resource mem_resources[MAX_NUMNODES]; 100 101 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; 102 103 static int __init early_parse_mem(char *p) 104 { 105 if (!p) 106 return 1; 107 108 memory_limit = PAGE_ALIGN(memparse(p, &p)); 109 110 pr_notice("Memory limited to %ldMB\n", memory_limit >> 20); 111 112 return 0; 113 } 114 early_param("mem", early_parse_mem); 115 116 void __init check_for_initrd(void) 117 { 118 #ifdef CONFIG_BLK_DEV_INITRD 119 unsigned long start, end; 120 121 /* 122 * Check for the rare cases where boot loaders adhere to the boot 123 * ABI. 124 */ 125 if (!LOADER_TYPE || !INITRD_START || !INITRD_SIZE) 126 goto disable; 127 128 start = INITRD_START + __MEMORY_START; 129 end = start + INITRD_SIZE; 130 131 if (unlikely(end <= start)) 132 goto disable; 133 if (unlikely(start & ~PAGE_MASK)) { 134 pr_err("initrd must be page aligned\n"); 135 goto disable; 136 } 137 138 if (unlikely(start < PAGE_OFFSET)) { 139 pr_err("initrd start < PAGE_OFFSET\n"); 140 goto disable; 141 } 142 143 if (unlikely(end > memblock_end_of_DRAM())) { 144 pr_err("initrd extends beyond end of memory " 145 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 146 end, (unsigned long)memblock_end_of_DRAM()); 147 goto disable; 148 } 149 150 /* 151 * If we got this far inspite of the boot loader's best efforts 152 * to the contrary, assume we actually have a valid initrd and 153 * fix up the root dev. 154 */ 155 ROOT_DEV = Root_RAM0; 156 157 /* 158 * Address sanitization 159 */ 160 initrd_start = (unsigned long)__va(__pa(start)); 161 initrd_end = initrd_start + INITRD_SIZE; 162 163 memblock_reserve(__pa(initrd_start), INITRD_SIZE); 164 165 return; 166 167 disable: 168 pr_info("initrd disabled\n"); 169 initrd_start = initrd_end = 0; 170 #endif 171 } 172 173 void __cpuinit calibrate_delay(void) 174 { 175 struct clk *clk = clk_get(NULL, "cpu_clk"); 176 177 if (IS_ERR(clk)) 178 panic("Need a sane CPU clock definition!"); 179 180 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ; 181 182 printk(KERN_INFO "Calibrating delay loop (skipped)... " 183 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n", 184 loops_per_jiffy/(500000/HZ), 185 (loops_per_jiffy/(5000/HZ)) % 100, 186 loops_per_jiffy); 187 } 188 189 void __init __add_active_range(unsigned int nid, unsigned long start_pfn, 190 unsigned long end_pfn) 191 { 192 struct resource *res = &mem_resources[nid]; 193 unsigned long start, end; 194 195 WARN_ON(res->name); /* max one active range per node for now */ 196 197 start = start_pfn << PAGE_SHIFT; 198 end = end_pfn << PAGE_SHIFT; 199 200 res->name = "System RAM"; 201 res->start = start; 202 res->end = end - 1; 203 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 204 205 if (request_resource(&iomem_resource, res)) { 206 pr_err("unable to request memory_resource 0x%lx 0x%lx\n", 207 start_pfn, end_pfn); 208 return; 209 } 210 211 /* 212 * We don't know which RAM region contains kernel data, 213 * so we try it repeatedly and let the resource manager 214 * test it. 215 */ 216 request_resource(res, &code_resource); 217 request_resource(res, &data_resource); 218 request_resource(res, &bss_resource); 219 220 /* 221 * Also make sure that there is a PMB mapping that covers this 222 * range before we attempt to activate it, to avoid reset by MMU. 223 * We can hit this path with NUMA or memory hot-add. 224 */ 225 pmb_bolt_mapping((unsigned long)__va(start), start, end - start, 226 PAGE_KERNEL); 227 228 add_active_range(nid, start_pfn, end_pfn); 229 } 230 231 void __init __weak plat_early_device_setup(void) 232 { 233 } 234 235 void __init setup_arch(char **cmdline_p) 236 { 237 enable_mmu(); 238 239 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 240 241 printk(KERN_NOTICE "Boot params:\n" 242 "... MOUNT_ROOT_RDONLY - %08lx\n" 243 "... RAMDISK_FLAGS - %08lx\n" 244 "... ORIG_ROOT_DEV - %08lx\n" 245 "... LOADER_TYPE - %08lx\n" 246 "... INITRD_START - %08lx\n" 247 "... INITRD_SIZE - %08lx\n", 248 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, 249 ORIG_ROOT_DEV, LOADER_TYPE, 250 INITRD_START, INITRD_SIZE); 251 252 #ifdef CONFIG_BLK_DEV_RAM 253 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 254 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 255 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 256 #endif 257 258 if (!MOUNT_ROOT_RDONLY) 259 root_mountflags &= ~MS_RDONLY; 260 init_mm.start_code = (unsigned long) _text; 261 init_mm.end_code = (unsigned long) _etext; 262 init_mm.end_data = (unsigned long) _edata; 263 init_mm.brk = (unsigned long) _end; 264 265 code_resource.start = virt_to_phys(_text); 266 code_resource.end = virt_to_phys(_etext)-1; 267 data_resource.start = virt_to_phys(_etext); 268 data_resource.end = virt_to_phys(_edata)-1; 269 bss_resource.start = virt_to_phys(__bss_start); 270 bss_resource.end = virt_to_phys(_ebss)-1; 271 272 #ifdef CONFIG_CMDLINE_OVERWRITE 273 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 274 #else 275 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 276 #ifdef CONFIG_CMDLINE_EXTEND 277 strlcat(command_line, " ", sizeof(command_line)); 278 strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line)); 279 #endif 280 #endif 281 282 /* Save unparsed command line copy for /proc/cmdline */ 283 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 284 *cmdline_p = command_line; 285 286 parse_early_param(); 287 288 plat_early_device_setup(); 289 290 sh_mv_setup(); 291 292 /* Let earlyprintk output early console messages */ 293 early_platform_driver_probe("earlyprintk", 1, 1); 294 295 paging_init(); 296 297 #ifdef CONFIG_DUMMY_CONSOLE 298 conswitchp = &dummy_con; 299 #endif 300 301 /* Perform the machine specific initialisation */ 302 if (likely(sh_mv.mv_setup)) 303 sh_mv.mv_setup(cmdline_p); 304 305 plat_smp_setup(); 306 } 307 308 /* processor boot mode configuration */ 309 int generic_mode_pins(void) 310 { 311 pr_warning("generic_mode_pins(): missing mode pin configuration\n"); 312 return 0; 313 } 314 315 int test_mode_pin(int pin) 316 { 317 return sh_mv.mv_mode_pins() & pin; 318 } 319 320 static const char *cpu_name[] = { 321 [CPU_SH7201] = "SH7201", 322 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", 323 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 324 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 325 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 326 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 327 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 328 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", 329 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", 330 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", 331 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", 332 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 333 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", 334 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", 335 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", 336 [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757", 337 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", 338 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", 339 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", 340 [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724", 341 [CPU_SH_NONE] = "Unknown" 342 }; 343 344 const char *get_cpu_subtype(struct sh_cpuinfo *c) 345 { 346 return cpu_name[c->type]; 347 } 348 EXPORT_SYMBOL(get_cpu_subtype); 349 350 #ifdef CONFIG_PROC_FS 351 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 352 static const char *cpu_flags[] = { 353 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 354 "ptea", "llsc", "l2", "op32", "pteaex", NULL 355 }; 356 357 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 358 { 359 unsigned long i; 360 361 seq_printf(m, "cpu flags\t:"); 362 363 if (!c->flags) { 364 seq_printf(m, " %s\n", cpu_flags[0]); 365 return; 366 } 367 368 for (i = 0; cpu_flags[i]; i++) 369 if ((c->flags & (1 << i))) 370 seq_printf(m, " %s", cpu_flags[i+1]); 371 372 seq_printf(m, "\n"); 373 } 374 375 static void show_cacheinfo(struct seq_file *m, const char *type, 376 struct cache_info info) 377 { 378 unsigned int cache_size; 379 380 cache_size = info.ways * info.sets * info.linesz; 381 382 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 383 type, cache_size >> 10, info.ways); 384 } 385 386 /* 387 * Get CPU information for use by the procfs. 388 */ 389 static int show_cpuinfo(struct seq_file *m, void *v) 390 { 391 struct sh_cpuinfo *c = v; 392 unsigned int cpu = c - cpu_data; 393 394 if (!cpu_online(cpu)) 395 return 0; 396 397 if (cpu == 0) 398 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 399 else 400 seq_printf(m, "\n"); 401 402 seq_printf(m, "processor\t: %d\n", cpu); 403 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 404 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 405 if (c->cut_major == -1) 406 seq_printf(m, "cut\t\t: unknown\n"); 407 else if (c->cut_minor == -1) 408 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); 409 else 410 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); 411 412 show_cpuflags(m, c); 413 414 seq_printf(m, "cache type\t: "); 415 416 /* 417 * Check for what type of cache we have, we support both the 418 * unified cache on the SH-2 and SH-3, as well as the harvard 419 * style cache on the SH-4. 420 */ 421 if (c->icache.flags & SH_CACHE_COMBINED) { 422 seq_printf(m, "unified\n"); 423 show_cacheinfo(m, "cache", c->icache); 424 } else { 425 seq_printf(m, "split (harvard)\n"); 426 show_cacheinfo(m, "icache", c->icache); 427 show_cacheinfo(m, "dcache", c->dcache); 428 } 429 430 /* Optional secondary cache */ 431 if (c->flags & CPU_HAS_L2_CACHE) 432 show_cacheinfo(m, "scache", c->scache); 433 434 seq_printf(m, "bogomips\t: %lu.%02lu\n", 435 c->loops_per_jiffy/(500000/HZ), 436 (c->loops_per_jiffy/(5000/HZ)) % 100); 437 438 return 0; 439 } 440 441 static void *c_start(struct seq_file *m, loff_t *pos) 442 { 443 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 444 } 445 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 446 { 447 ++*pos; 448 return c_start(m, pos); 449 } 450 static void c_stop(struct seq_file *m, void *v) 451 { 452 } 453 const struct seq_operations cpuinfo_op = { 454 .start = c_start, 455 .next = c_next, 456 .stop = c_stop, 457 .show = show_cpuinfo, 458 }; 459 #endif /* CONFIG_PROC_FS */ 460