1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <linux/err.h> 27 #include <linux/debugfs.h> 28 #include <linux/crash_dump.h> 29 #include <asm/uaccess.h> 30 #include <asm/io.h> 31 #include <asm/page.h> 32 #include <asm/elf.h> 33 #include <asm/sections.h> 34 #include <asm/irq.h> 35 #include <asm/setup.h> 36 #include <asm/clock.h> 37 #include <asm/mmu_context.h> 38 39 /* 40 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 41 * This value will be used at the very early stage of serial setup. 42 * The bigger value means no problem. 43 */ 44 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 45 [0] = { 46 .type = CPU_SH_NONE, 47 .loops_per_jiffy = 10000000, 48 }, 49 }; 50 EXPORT_SYMBOL(cpu_data); 51 52 /* 53 * The machine vector. First entry in .machvec.init, or clobbered by 54 * sh_mv= on the command line, prior to .machvec.init teardown. 55 */ 56 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 57 EXPORT_SYMBOL(sh_mv); 58 59 #ifdef CONFIG_VT 60 struct screen_info screen_info; 61 #endif 62 63 extern int root_mountflags; 64 65 #define RAMDISK_IMAGE_START_MASK 0x07FF 66 #define RAMDISK_PROMPT_FLAG 0x8000 67 #define RAMDISK_LOAD_FLAG 0x4000 68 69 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 70 71 static struct resource code_resource = { 72 .name = "Kernel code", 73 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 74 }; 75 76 static struct resource data_resource = { 77 .name = "Kernel data", 78 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 79 }; 80 81 static struct resource bss_resource = { 82 .name = "Kernel bss", 83 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 84 }; 85 86 unsigned long memory_start; 87 EXPORT_SYMBOL(memory_start); 88 unsigned long memory_end = 0; 89 EXPORT_SYMBOL(memory_end); 90 91 static struct resource mem_resources[MAX_NUMNODES]; 92 93 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape; 94 95 static int __init early_parse_mem(char *p) 96 { 97 unsigned long size; 98 99 memory_start = (unsigned long)__va(__MEMORY_START); 100 size = memparse(p, &p); 101 102 if (size > __MEMORY_SIZE) { 103 static char msg[] __initdata = KERN_ERR 104 "Using mem= to increase the size of kernel memory " 105 "is not allowed.\n" 106 " Recompile the kernel with the correct value for " 107 "CONFIG_MEMORY_SIZE.\n"; 108 printk(msg); 109 return 0; 110 } 111 112 memory_end = memory_start + size; 113 114 return 0; 115 } 116 early_param("mem", early_parse_mem); 117 118 /* 119 * Register fully available low RAM pages with the bootmem allocator. 120 */ 121 static void __init register_bootmem_low_pages(void) 122 { 123 unsigned long curr_pfn, last_pfn, pages; 124 125 /* 126 * We are rounding up the start address of usable memory: 127 */ 128 curr_pfn = PFN_UP(__MEMORY_START); 129 130 /* 131 * ... and at the end of the usable range downwards: 132 */ 133 last_pfn = PFN_DOWN(__pa(memory_end)); 134 135 if (last_pfn > max_low_pfn) 136 last_pfn = max_low_pfn; 137 138 pages = last_pfn - curr_pfn; 139 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 140 } 141 142 #ifdef CONFIG_KEXEC 143 static void __init reserve_crashkernel(void) 144 { 145 unsigned long long free_mem; 146 unsigned long long crash_size, crash_base; 147 int ret; 148 149 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; 150 151 ret = parse_crashkernel(boot_command_line, free_mem, 152 &crash_size, &crash_base); 153 if (ret == 0 && crash_size) { 154 if (crash_base <= 0) { 155 printk(KERN_INFO "crashkernel reservation failed - " 156 "you have to specify a base address\n"); 157 return; 158 } 159 160 if (reserve_bootmem(crash_base, crash_size, 161 BOOTMEM_EXCLUSIVE) < 0) { 162 printk(KERN_INFO "crashkernel reservation failed - " 163 "memory is in use\n"); 164 return; 165 } 166 167 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 168 "for crashkernel (System RAM: %ldMB)\n", 169 (unsigned long)(crash_size >> 20), 170 (unsigned long)(crash_base >> 20), 171 (unsigned long)(free_mem >> 20)); 172 crashk_res.start = crash_base; 173 crashk_res.end = crash_base + crash_size - 1; 174 insert_resource(&iomem_resource, &crashk_res); 175 } 176 } 177 #else 178 static inline void __init reserve_crashkernel(void) 179 {} 180 #endif 181 182 void __init __add_active_range(unsigned int nid, unsigned long start_pfn, 183 unsigned long end_pfn) 184 { 185 struct resource *res = &mem_resources[nid]; 186 187 WARN_ON(res->name); /* max one active range per node for now */ 188 189 res->name = "System RAM"; 190 res->start = start_pfn << PAGE_SHIFT; 191 res->end = (end_pfn << PAGE_SHIFT) - 1; 192 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 193 if (request_resource(&iomem_resource, res)) { 194 pr_err("unable to request memory_resource 0x%lx 0x%lx\n", 195 start_pfn, end_pfn); 196 return; 197 } 198 199 /* 200 * We don't know which RAM region contains kernel data, 201 * so we try it repeatedly and let the resource manager 202 * test it. 203 */ 204 request_resource(res, &code_resource); 205 request_resource(res, &data_resource); 206 request_resource(res, &bss_resource); 207 208 add_active_range(nid, start_pfn, end_pfn); 209 } 210 211 void __init setup_bootmem_allocator(unsigned long free_pfn) 212 { 213 unsigned long bootmap_size; 214 215 /* 216 * Find a proper area for the bootmem bitmap. After this 217 * bootstrap step all allocations (until the page allocator 218 * is intact) must be done via bootmem_alloc(). 219 */ 220 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, 221 min_low_pfn, max_low_pfn); 222 223 __add_active_range(0, min_low_pfn, max_low_pfn); 224 register_bootmem_low_pages(); 225 226 node_set_online(0); 227 228 /* 229 * Reserve the kernel text and 230 * Reserve the bootmem bitmap. We do this in two steps (first step 231 * was init_bootmem()), because this catches the (definitely buggy) 232 * case of us accidentally initializing the bootmem allocator with 233 * an invalid RAM area. 234 */ 235 reserve_bootmem(__MEMORY_START+PAGE_SIZE, 236 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START, 237 BOOTMEM_DEFAULT); 238 239 /* 240 * reserve physical page 0 - it's a special BIOS page on many boxes, 241 * enabling clean reboots, SMP operation, laptop functions. 242 */ 243 reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT); 244 245 sparse_memory_present_with_active_regions(0); 246 247 #ifdef CONFIG_BLK_DEV_INITRD 248 ROOT_DEV = Root_RAM0; 249 250 if (LOADER_TYPE && INITRD_START) { 251 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { 252 reserve_bootmem(INITRD_START + __MEMORY_START, 253 INITRD_SIZE, BOOTMEM_DEFAULT); 254 initrd_start = INITRD_START + PAGE_OFFSET + 255 __MEMORY_START; 256 initrd_end = initrd_start + INITRD_SIZE; 257 } else { 258 printk("initrd extends beyond end of memory " 259 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 260 INITRD_START + INITRD_SIZE, 261 max_low_pfn << PAGE_SHIFT); 262 initrd_start = 0; 263 } 264 } 265 #endif 266 267 reserve_crashkernel(); 268 } 269 270 #ifndef CONFIG_NEED_MULTIPLE_NODES 271 static void __init setup_memory(void) 272 { 273 unsigned long start_pfn; 274 275 /* 276 * Partially used pages are not usable - thus 277 * we are rounding upwards: 278 */ 279 start_pfn = PFN_UP(__pa(_end)); 280 setup_bootmem_allocator(start_pfn); 281 } 282 #else 283 extern void __init setup_memory(void); 284 #endif 285 286 /* 287 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by 288 * is_kdump_kernel() to determine if we are booting after a panic. Hence 289 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. 290 */ 291 #ifdef CONFIG_CRASH_DUMP 292 /* elfcorehdr= specifies the location of elf core header 293 * stored by the crashed kernel. 294 */ 295 static int __init parse_elfcorehdr(char *arg) 296 { 297 if (!arg) 298 return -EINVAL; 299 elfcorehdr_addr = memparse(arg, &arg); 300 return 0; 301 } 302 early_param("elfcorehdr", parse_elfcorehdr); 303 #endif 304 305 void __init setup_arch(char **cmdline_p) 306 { 307 enable_mmu(); 308 309 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 310 311 printk(KERN_NOTICE "Boot params:\n" 312 "... MOUNT_ROOT_RDONLY - %08lx\n" 313 "... RAMDISK_FLAGS - %08lx\n" 314 "... ORIG_ROOT_DEV - %08lx\n" 315 "... LOADER_TYPE - %08lx\n" 316 "... INITRD_START - %08lx\n" 317 "... INITRD_SIZE - %08lx\n", 318 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS, 319 ORIG_ROOT_DEV, LOADER_TYPE, 320 INITRD_START, INITRD_SIZE); 321 322 #ifdef CONFIG_BLK_DEV_RAM 323 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 324 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 325 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 326 #endif 327 328 if (!MOUNT_ROOT_RDONLY) 329 root_mountflags &= ~MS_RDONLY; 330 init_mm.start_code = (unsigned long) _text; 331 init_mm.end_code = (unsigned long) _etext; 332 init_mm.end_data = (unsigned long) _edata; 333 init_mm.brk = (unsigned long) _end; 334 335 code_resource.start = virt_to_phys(_text); 336 code_resource.end = virt_to_phys(_etext)-1; 337 data_resource.start = virt_to_phys(_etext); 338 data_resource.end = virt_to_phys(_edata)-1; 339 bss_resource.start = virt_to_phys(__bss_start); 340 bss_resource.end = virt_to_phys(_ebss)-1; 341 342 memory_start = (unsigned long)__va(__MEMORY_START); 343 if (!memory_end) 344 memory_end = memory_start + __MEMORY_SIZE; 345 346 #ifdef CONFIG_CMDLINE_BOOL 347 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 348 #else 349 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 350 #endif 351 352 /* Save unparsed command line copy for /proc/cmdline */ 353 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 354 *cmdline_p = command_line; 355 356 parse_early_param(); 357 358 sh_mv_setup(); 359 360 /* 361 * Find the highest page frame number we have available 362 */ 363 max_pfn = PFN_DOWN(__pa(memory_end)); 364 365 /* 366 * Determine low and high memory ranges: 367 */ 368 max_low_pfn = max_pfn; 369 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 370 371 nodes_clear(node_online_map); 372 373 /* Setup bootmem with available RAM */ 374 setup_memory(); 375 sparse_init(); 376 377 #ifdef CONFIG_DUMMY_CONSOLE 378 conswitchp = &dummy_con; 379 #endif 380 381 /* Perform the machine specific initialisation */ 382 if (likely(sh_mv.mv_setup)) 383 sh_mv.mv_setup(cmdline_p); 384 385 paging_init(); 386 387 #ifdef CONFIG_SMP 388 plat_smp_setup(); 389 #endif 390 } 391 392 static const char *cpu_name[] = { 393 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263", 394 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 395 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 396 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 397 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 398 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 399 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729", 400 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S", 401 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751", 402 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760", 403 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 404 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770", 405 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781", 406 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785", 407 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3", 408 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103", 409 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723", 410 [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown" 411 }; 412 413 const char *get_cpu_subtype(struct sh_cpuinfo *c) 414 { 415 return cpu_name[c->type]; 416 } 417 EXPORT_SYMBOL(get_cpu_subtype); 418 419 #ifdef CONFIG_PROC_FS 420 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 421 static const char *cpu_flags[] = { 422 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 423 "ptea", "llsc", "l2", "op32", NULL 424 }; 425 426 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 427 { 428 unsigned long i; 429 430 seq_printf(m, "cpu flags\t:"); 431 432 if (!c->flags) { 433 seq_printf(m, " %s\n", cpu_flags[0]); 434 return; 435 } 436 437 for (i = 0; cpu_flags[i]; i++) 438 if ((c->flags & (1 << i))) 439 seq_printf(m, " %s", cpu_flags[i+1]); 440 441 seq_printf(m, "\n"); 442 } 443 444 static void show_cacheinfo(struct seq_file *m, const char *type, 445 struct cache_info info) 446 { 447 unsigned int cache_size; 448 449 cache_size = info.ways * info.sets * info.linesz; 450 451 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 452 type, cache_size >> 10, info.ways); 453 } 454 455 /* 456 * Get CPU information for use by the procfs. 457 */ 458 static int show_cpuinfo(struct seq_file *m, void *v) 459 { 460 struct sh_cpuinfo *c = v; 461 unsigned int cpu = c - cpu_data; 462 463 if (!cpu_online(cpu)) 464 return 0; 465 466 if (cpu == 0) 467 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 468 469 seq_printf(m, "processor\t: %d\n", cpu); 470 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 471 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 472 if (c->cut_major == -1) 473 seq_printf(m, "cut\t\t: unknown\n"); 474 else if (c->cut_minor == -1) 475 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major); 476 else 477 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor); 478 479 show_cpuflags(m, c); 480 481 seq_printf(m, "cache type\t: "); 482 483 /* 484 * Check for what type of cache we have, we support both the 485 * unified cache on the SH-2 and SH-3, as well as the harvard 486 * style cache on the SH-4. 487 */ 488 if (c->icache.flags & SH_CACHE_COMBINED) { 489 seq_printf(m, "unified\n"); 490 show_cacheinfo(m, "cache", c->icache); 491 } else { 492 seq_printf(m, "split (harvard)\n"); 493 show_cacheinfo(m, "icache", c->icache); 494 show_cacheinfo(m, "dcache", c->dcache); 495 } 496 497 /* Optional secondary cache */ 498 if (c->flags & CPU_HAS_L2_CACHE) 499 show_cacheinfo(m, "scache", c->scache); 500 501 seq_printf(m, "bogomips\t: %lu.%02lu\n", 502 c->loops_per_jiffy/(500000/HZ), 503 (c->loops_per_jiffy/(5000/HZ)) % 100); 504 505 return 0; 506 } 507 508 static void *c_start(struct seq_file *m, loff_t *pos) 509 { 510 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 511 } 512 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 513 { 514 ++*pos; 515 return c_start(m, pos); 516 } 517 static void c_stop(struct seq_file *m, void *v) 518 { 519 } 520 const struct seq_operations cpuinfo_op = { 521 .start = c_start, 522 .next = c_next, 523 .stop = c_stop, 524 .show = show_cpuinfo, 525 }; 526 #endif /* CONFIG_PROC_FS */ 527 528 struct dentry *sh_debugfs_root; 529 530 static int __init sh_debugfs_init(void) 531 { 532 sh_debugfs_root = debugfs_create_dir("sh", NULL); 533 if (IS_ERR(sh_debugfs_root)) 534 return PTR_ERR(sh_debugfs_root); 535 536 return 0; 537 } 538 arch_initcall(sh_debugfs_init); 539