xref: /linux/arch/sh/kernel/setup.c (revision c0c9209ddd96bc4f1d70a8b9958710671e076080)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/elf.h>
33 #include <asm/sections.h>
34 #include <asm/irq.h>
35 #include <asm/setup.h>
36 #include <asm/clock.h>
37 #include <asm/mmu_context.h>
38 
39 /*
40  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
41  * This value will be used at the very early stage of serial setup.
42  * The bigger value means no problem.
43  */
44 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
45 	[0] = {
46 		.type			= CPU_SH_NONE,
47 		.loops_per_jiffy	= 10000000,
48 	},
49 };
50 EXPORT_SYMBOL(cpu_data);
51 
52 /*
53  * The machine vector. First entry in .machvec.init, or clobbered by
54  * sh_mv= on the command line, prior to .machvec.init teardown.
55  */
56 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
57 EXPORT_SYMBOL(sh_mv);
58 
59 #ifdef CONFIG_VT
60 struct screen_info screen_info;
61 #endif
62 
63 extern int root_mountflags;
64 
65 #define RAMDISK_IMAGE_START_MASK	0x07FF
66 #define RAMDISK_PROMPT_FLAG		0x8000
67 #define RAMDISK_LOAD_FLAG		0x4000
68 
69 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
70 
71 static struct resource code_resource = {
72 	.name = "Kernel code",
73 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
74 };
75 
76 static struct resource data_resource = {
77 	.name = "Kernel data",
78 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
79 };
80 
81 static struct resource bss_resource = {
82 	.name	= "Kernel bss",
83 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
84 };
85 
86 unsigned long memory_start;
87 EXPORT_SYMBOL(memory_start);
88 unsigned long memory_end = 0;
89 EXPORT_SYMBOL(memory_end);
90 
91 static struct resource mem_resources[MAX_NUMNODES];
92 
93 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
94 
95 static int __init early_parse_mem(char *p)
96 {
97 	unsigned long size;
98 
99 	memory_start = (unsigned long)__va(__MEMORY_START);
100 	size = memparse(p, &p);
101 
102 	if (size > __MEMORY_SIZE) {
103 		static char msg[] __initdata = KERN_ERR
104 			"Using mem= to increase the size of kernel memory "
105 			"is not allowed.\n"
106 			"  Recompile the kernel with the correct value for "
107 			"CONFIG_MEMORY_SIZE.\n";
108 		printk(msg);
109 		return 0;
110 	}
111 
112 	memory_end = memory_start + size;
113 
114 	return 0;
115 }
116 early_param("mem", early_parse_mem);
117 
118 /*
119  * Register fully available low RAM pages with the bootmem allocator.
120  */
121 static void __init register_bootmem_low_pages(void)
122 {
123 	unsigned long curr_pfn, last_pfn, pages;
124 
125 	/*
126 	 * We are rounding up the start address of usable memory:
127 	 */
128 	curr_pfn = PFN_UP(__MEMORY_START);
129 
130 	/*
131 	 * ... and at the end of the usable range downwards:
132 	 */
133 	last_pfn = PFN_DOWN(__pa(memory_end));
134 
135 	if (last_pfn > max_low_pfn)
136 		last_pfn = max_low_pfn;
137 
138 	pages = last_pfn - curr_pfn;
139 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
140 }
141 
142 #ifdef CONFIG_KEXEC
143 static void __init reserve_crashkernel(void)
144 {
145 	unsigned long long free_mem;
146 	unsigned long long crash_size, crash_base;
147 	int ret;
148 
149 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
150 
151 	ret = parse_crashkernel(boot_command_line, free_mem,
152 			&crash_size, &crash_base);
153 	if (ret == 0 && crash_size) {
154 		if (crash_base <= 0) {
155 			printk(KERN_INFO "crashkernel reservation failed - "
156 					"you have to specify a base address\n");
157 			return;
158 		}
159 
160 		if (reserve_bootmem(crash_base, crash_size,
161 					BOOTMEM_EXCLUSIVE) < 0) {
162 			printk(KERN_INFO "crashkernel reservation failed - "
163 					"memory is in use\n");
164 			return;
165 		}
166 
167 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
168 				"for crashkernel (System RAM: %ldMB)\n",
169 				(unsigned long)(crash_size >> 20),
170 				(unsigned long)(crash_base >> 20),
171 				(unsigned long)(free_mem >> 20));
172 		crashk_res.start = crash_base;
173 		crashk_res.end   = crash_base + crash_size - 1;
174 		insert_resource(&iomem_resource, &crashk_res);
175 	}
176 }
177 #else
178 static inline void __init reserve_crashkernel(void)
179 {}
180 #endif
181 
182 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
183 						unsigned long end_pfn)
184 {
185 	struct resource *res = &mem_resources[nid];
186 
187 	WARN_ON(res->name); /* max one active range per node for now */
188 
189 	res->name = "System RAM";
190 	res->start = start_pfn << PAGE_SHIFT;
191 	res->end = (end_pfn << PAGE_SHIFT) - 1;
192 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
193 	if (request_resource(&iomem_resource, res)) {
194 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
195 		       start_pfn, end_pfn);
196 		return;
197 	}
198 
199 	/*
200 	 *  We don't know which RAM region contains kernel data,
201 	 *  so we try it repeatedly and let the resource manager
202 	 *  test it.
203 	 */
204 	request_resource(res, &code_resource);
205 	request_resource(res, &data_resource);
206 	request_resource(res, &bss_resource);
207 
208 	add_active_range(nid, start_pfn, end_pfn);
209 }
210 
211 void __init setup_bootmem_allocator(unsigned long free_pfn)
212 {
213 	unsigned long bootmap_size;
214 
215 	/*
216 	 * Find a proper area for the bootmem bitmap. After this
217 	 * bootstrap step all allocations (until the page allocator
218 	 * is intact) must be done via bootmem_alloc().
219 	 */
220 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
221 					 min_low_pfn, max_low_pfn);
222 
223 	__add_active_range(0, min_low_pfn, max_low_pfn);
224 	register_bootmem_low_pages();
225 
226 	node_set_online(0);
227 
228 	/*
229 	 * Reserve the kernel text and
230 	 * Reserve the bootmem bitmap. We do this in two steps (first step
231 	 * was init_bootmem()), because this catches the (definitely buggy)
232 	 * case of us accidentally initializing the bootmem allocator with
233 	 * an invalid RAM area.
234 	 */
235 	reserve_bootmem(__MEMORY_START+PAGE_SIZE,
236 		(PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
237 		BOOTMEM_DEFAULT);
238 
239 	/*
240 	 * reserve physical page 0 - it's a special BIOS page on many boxes,
241 	 * enabling clean reboots, SMP operation, laptop functions.
242 	 */
243 	reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
244 
245 	sparse_memory_present_with_active_regions(0);
246 
247 #ifdef CONFIG_BLK_DEV_INITRD
248 	ROOT_DEV = Root_RAM0;
249 
250 	if (LOADER_TYPE && INITRD_START) {
251 		if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
252 			reserve_bootmem(INITRD_START + __MEMORY_START,
253 					INITRD_SIZE, BOOTMEM_DEFAULT);
254 			initrd_start = INITRD_START + PAGE_OFFSET +
255 					__MEMORY_START;
256 			initrd_end = initrd_start + INITRD_SIZE;
257 		} else {
258 			printk("initrd extends beyond end of memory "
259 			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
260 				    INITRD_START + INITRD_SIZE,
261 				    max_low_pfn << PAGE_SHIFT);
262 			initrd_start = 0;
263 		}
264 	}
265 #endif
266 
267 	reserve_crashkernel();
268 }
269 
270 #ifndef CONFIG_NEED_MULTIPLE_NODES
271 static void __init setup_memory(void)
272 {
273 	unsigned long start_pfn;
274 
275 	/*
276 	 * Partially used pages are not usable - thus
277 	 * we are rounding upwards:
278 	 */
279 	start_pfn = PFN_UP(__pa(_end));
280 	setup_bootmem_allocator(start_pfn);
281 }
282 #else
283 extern void __init setup_memory(void);
284 #endif
285 
286 /*
287  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
288  * is_kdump_kernel() to determine if we are booting after a panic. Hence
289  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
290  */
291 #ifdef CONFIG_CRASH_DUMP
292 /* elfcorehdr= specifies the location of elf core header
293  * stored by the crashed kernel.
294  */
295 static int __init parse_elfcorehdr(char *arg)
296 {
297 	if (!arg)
298 		return -EINVAL;
299 	elfcorehdr_addr = memparse(arg, &arg);
300 	return 0;
301 }
302 early_param("elfcorehdr", parse_elfcorehdr);
303 #endif
304 
305 void __init setup_arch(char **cmdline_p)
306 {
307 	enable_mmu();
308 
309 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
310 
311 	printk(KERN_NOTICE "Boot params:\n"
312 			   "... MOUNT_ROOT_RDONLY - %08lx\n"
313 			   "... RAMDISK_FLAGS     - %08lx\n"
314 			   "... ORIG_ROOT_DEV     - %08lx\n"
315 			   "... LOADER_TYPE       - %08lx\n"
316 			   "... INITRD_START      - %08lx\n"
317 			   "... INITRD_SIZE       - %08lx\n",
318 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
319 			   ORIG_ROOT_DEV, LOADER_TYPE,
320 			   INITRD_START, INITRD_SIZE);
321 
322 #ifdef CONFIG_BLK_DEV_RAM
323 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
324 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
325 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
326 #endif
327 
328 	if (!MOUNT_ROOT_RDONLY)
329 		root_mountflags &= ~MS_RDONLY;
330 	init_mm.start_code = (unsigned long) _text;
331 	init_mm.end_code = (unsigned long) _etext;
332 	init_mm.end_data = (unsigned long) _edata;
333 	init_mm.brk = (unsigned long) _end;
334 
335 	code_resource.start = virt_to_phys(_text);
336 	code_resource.end = virt_to_phys(_etext)-1;
337 	data_resource.start = virt_to_phys(_etext);
338 	data_resource.end = virt_to_phys(_edata)-1;
339 	bss_resource.start = virt_to_phys(__bss_start);
340 	bss_resource.end = virt_to_phys(_ebss)-1;
341 
342 	memory_start = (unsigned long)__va(__MEMORY_START);
343 	if (!memory_end)
344 		memory_end = memory_start + __MEMORY_SIZE;
345 
346 #ifdef CONFIG_CMDLINE_BOOL
347 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
348 #else
349 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
350 #endif
351 
352 	/* Save unparsed command line copy for /proc/cmdline */
353 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
354 	*cmdline_p = command_line;
355 
356 	parse_early_param();
357 
358 	sh_mv_setup();
359 
360 	/*
361 	 * Find the highest page frame number we have available
362 	 */
363 	max_pfn = PFN_DOWN(__pa(memory_end));
364 
365 	/*
366 	 * Determine low and high memory ranges:
367 	 */
368 	max_low_pfn = max_pfn;
369 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
370 
371 	nodes_clear(node_online_map);
372 
373 	/* Setup bootmem with available RAM */
374 	setup_memory();
375 	sparse_init();
376 
377 #ifdef CONFIG_DUMMY_CONSOLE
378 	conswitchp = &dummy_con;
379 #endif
380 
381 	/* Perform the machine specific initialisation */
382 	if (likely(sh_mv.mv_setup))
383 		sh_mv.mv_setup(cmdline_p);
384 
385 	paging_init();
386 
387 #ifdef CONFIG_SMP
388 	plat_smp_setup();
389 #endif
390 }
391 
392 static const char *cpu_name[] = {
393 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
394 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
395 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
396 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
397 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
398 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
399 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
400 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
401 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
402 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
403 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
404 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
405 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
406 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
407 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
408 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
409 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
410 	[CPU_SH7366]	= "SH7366",	[CPU_SH_NONE]	= "Unknown"
411 };
412 
413 const char *get_cpu_subtype(struct sh_cpuinfo *c)
414 {
415 	return cpu_name[c->type];
416 }
417 EXPORT_SYMBOL(get_cpu_subtype);
418 
419 #ifdef CONFIG_PROC_FS
420 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
421 static const char *cpu_flags[] = {
422 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
423 	"ptea", "llsc", "l2", "op32", NULL
424 };
425 
426 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
427 {
428 	unsigned long i;
429 
430 	seq_printf(m, "cpu flags\t:");
431 
432 	if (!c->flags) {
433 		seq_printf(m, " %s\n", cpu_flags[0]);
434 		return;
435 	}
436 
437 	for (i = 0; cpu_flags[i]; i++)
438 		if ((c->flags & (1 << i)))
439 			seq_printf(m, " %s", cpu_flags[i+1]);
440 
441 	seq_printf(m, "\n");
442 }
443 
444 static void show_cacheinfo(struct seq_file *m, const char *type,
445 			   struct cache_info info)
446 {
447 	unsigned int cache_size;
448 
449 	cache_size = info.ways * info.sets * info.linesz;
450 
451 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
452 		   type, cache_size >> 10, info.ways);
453 }
454 
455 /*
456  *	Get CPU information for use by the procfs.
457  */
458 static int show_cpuinfo(struct seq_file *m, void *v)
459 {
460 	struct sh_cpuinfo *c = v;
461 	unsigned int cpu = c - cpu_data;
462 
463 	if (!cpu_online(cpu))
464 		return 0;
465 
466 	if (cpu == 0)
467 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
468 
469 	seq_printf(m, "processor\t: %d\n", cpu);
470 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
471 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
472 	if (c->cut_major == -1)
473 		seq_printf(m, "cut\t\t: unknown\n");
474 	else if (c->cut_minor == -1)
475 		seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
476 	else
477 		seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
478 
479 	show_cpuflags(m, c);
480 
481 	seq_printf(m, "cache type\t: ");
482 
483 	/*
484 	 * Check for what type of cache we have, we support both the
485 	 * unified cache on the SH-2 and SH-3, as well as the harvard
486 	 * style cache on the SH-4.
487 	 */
488 	if (c->icache.flags & SH_CACHE_COMBINED) {
489 		seq_printf(m, "unified\n");
490 		show_cacheinfo(m, "cache", c->icache);
491 	} else {
492 		seq_printf(m, "split (harvard)\n");
493 		show_cacheinfo(m, "icache", c->icache);
494 		show_cacheinfo(m, "dcache", c->dcache);
495 	}
496 
497 	/* Optional secondary cache */
498 	if (c->flags & CPU_HAS_L2_CACHE)
499 		show_cacheinfo(m, "scache", c->scache);
500 
501 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
502 		     c->loops_per_jiffy/(500000/HZ),
503 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
504 
505 	return 0;
506 }
507 
508 static void *c_start(struct seq_file *m, loff_t *pos)
509 {
510 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
511 }
512 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
513 {
514 	++*pos;
515 	return c_start(m, pos);
516 }
517 static void c_stop(struct seq_file *m, void *v)
518 {
519 }
520 const struct seq_operations cpuinfo_op = {
521 	.start	= c_start,
522 	.next	= c_next,
523 	.stop	= c_stop,
524 	.show	= show_cpuinfo,
525 };
526 #endif /* CONFIG_PROC_FS */
527 
528 struct dentry *sh_debugfs_root;
529 
530 static int __init sh_debugfs_init(void)
531 {
532 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
533 	if (IS_ERR(sh_debugfs_root))
534 		return PTR_ERR(sh_debugfs_root);
535 
536 	return 0;
537 }
538 arch_initcall(sh_debugfs_init);
539