xref: /linux/arch/sh/kernel/setup.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <asm/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/sections.h>
30 #include <asm/irq.h>
31 #include <asm/setup.h>
32 #include <asm/clock.h>
33 #include <asm/mmu_context.h>
34 
35 /*
36  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
37  * This value will be used at the very early stage of serial setup.
38  * The bigger value means no problem.
39  */
40 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
41 	[0] = {
42 		.type			= CPU_SH_NONE,
43 		.loops_per_jiffy	= 10000000,
44 	},
45 };
46 EXPORT_SYMBOL(cpu_data);
47 
48 /*
49  * The machine vector. First entry in .machvec.init, or clobbered by
50  * sh_mv= on the command line, prior to .machvec.init teardown.
51  */
52 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
53 
54 #ifdef CONFIG_VT
55 struct screen_info screen_info;
56 #endif
57 
58 extern int root_mountflags;
59 
60 #define RAMDISK_IMAGE_START_MASK	0x07FF
61 #define RAMDISK_PROMPT_FLAG		0x8000
62 #define RAMDISK_LOAD_FLAG		0x4000
63 
64 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
65 
66 static struct resource code_resource = {
67 	.name = "Kernel code",
68 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
69 };
70 
71 static struct resource data_resource = {
72 	.name = "Kernel data",
73 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
74 };
75 
76 unsigned long memory_start;
77 EXPORT_SYMBOL(memory_start);
78 unsigned long memory_end = 0;
79 EXPORT_SYMBOL(memory_end);
80 
81 static int __init early_parse_mem(char *p)
82 {
83 	unsigned long size;
84 
85 	memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
86 	size = memparse(p, &p);
87 	memory_end = memory_start + size;
88 
89 	return 0;
90 }
91 early_param("mem", early_parse_mem);
92 
93 /*
94  * Register fully available low RAM pages with the bootmem allocator.
95  */
96 static void __init register_bootmem_low_pages(void)
97 {
98 	unsigned long curr_pfn, last_pfn, pages;
99 
100 	/*
101 	 * We are rounding up the start address of usable memory:
102 	 */
103 	curr_pfn = PFN_UP(__MEMORY_START);
104 
105 	/*
106 	 * ... and at the end of the usable range downwards:
107 	 */
108 	last_pfn = PFN_DOWN(__pa(memory_end));
109 
110 	if (last_pfn > max_low_pfn)
111 		last_pfn = max_low_pfn;
112 
113 	pages = last_pfn - curr_pfn;
114 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
115 }
116 
117 #ifdef CONFIG_KEXEC
118 static void __init reserve_crashkernel(void)
119 {
120 	unsigned long long free_mem;
121 	unsigned long long crash_size, crash_base;
122 	int ret;
123 
124 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
125 
126 	ret = parse_crashkernel(boot_command_line, free_mem,
127 			&crash_size, &crash_base);
128 	if (ret == 0 && crash_size) {
129 		if (crash_base > 0) {
130 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
131 					"for crashkernel (System RAM: %ldMB)\n",
132 					(unsigned long)(crash_size >> 20),
133 					(unsigned long)(crash_base >> 20),
134 					(unsigned long)(free_mem >> 20));
135 			crashk_res.start = crash_base;
136 			crashk_res.end   = crash_base + crash_size - 1;
137 			reserve_bootmem(crash_base, crash_size);
138 		} else
139 			printk(KERN_INFO "crashkernel reservation failed - "
140 					"you have to specify a base address\n");
141 	}
142 }
143 #else
144 static inline void __init reserve_crashkernel(void)
145 {}
146 #endif
147 
148 void __init setup_bootmem_allocator(unsigned long free_pfn)
149 {
150 	unsigned long bootmap_size;
151 
152 	/*
153 	 * Find a proper area for the bootmem bitmap. After this
154 	 * bootstrap step all allocations (until the page allocator
155 	 * is intact) must be done via bootmem_alloc().
156 	 */
157 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
158 					 min_low_pfn, max_low_pfn);
159 
160 	add_active_range(0, min_low_pfn, max_low_pfn);
161 	register_bootmem_low_pages();
162 
163 	node_set_online(0);
164 
165 	/*
166 	 * Reserve the kernel text and
167 	 * Reserve the bootmem bitmap. We do this in two steps (first step
168 	 * was init_bootmem()), because this catches the (definitely buggy)
169 	 * case of us accidentally initializing the bootmem allocator with
170 	 * an invalid RAM area.
171 	 */
172 	reserve_bootmem(__MEMORY_START+PAGE_SIZE,
173 		(PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
174 
175 	/*
176 	 * reserve physical page 0 - it's a special BIOS page on many boxes,
177 	 * enabling clean reboots, SMP operation, laptop functions.
178 	 */
179 	reserve_bootmem(__MEMORY_START, PAGE_SIZE);
180 
181 	sparse_memory_present_with_active_regions(0);
182 
183 #ifdef CONFIG_BLK_DEV_INITRD
184 	ROOT_DEV = Root_RAM0;
185 
186 	if (LOADER_TYPE && INITRD_START) {
187 		if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
188 			reserve_bootmem(INITRD_START + __MEMORY_START,
189 					INITRD_SIZE);
190 			initrd_start = INITRD_START + PAGE_OFFSET +
191 					__MEMORY_START;
192 			initrd_end = initrd_start + INITRD_SIZE;
193 		} else {
194 			printk("initrd extends beyond end of memory "
195 			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
196 				    INITRD_START + INITRD_SIZE,
197 				    max_low_pfn << PAGE_SHIFT);
198 			initrd_start = 0;
199 		}
200 	}
201 #endif
202 
203 	reserve_crashkernel();
204 }
205 
206 #ifndef CONFIG_NEED_MULTIPLE_NODES
207 static void __init setup_memory(void)
208 {
209 	unsigned long start_pfn;
210 
211 	/*
212 	 * Partially used pages are not usable - thus
213 	 * we are rounding upwards:
214 	 */
215 	start_pfn = PFN_UP(__pa(_end));
216 	setup_bootmem_allocator(start_pfn);
217 }
218 #else
219 extern void __init setup_memory(void);
220 #endif
221 
222 void __init setup_arch(char **cmdline_p)
223 {
224 	enable_mmu();
225 
226 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
227 
228 #ifdef CONFIG_BLK_DEV_RAM
229 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
230 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
231 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
232 #endif
233 
234 	if (!MOUNT_ROOT_RDONLY)
235 		root_mountflags &= ~MS_RDONLY;
236 	init_mm.start_code = (unsigned long) _text;
237 	init_mm.end_code = (unsigned long) _etext;
238 	init_mm.end_data = (unsigned long) _edata;
239 	init_mm.brk = (unsigned long) _end;
240 
241 	code_resource.start = virt_to_phys(_text);
242 	code_resource.end = virt_to_phys(_etext)-1;
243 	data_resource.start = virt_to_phys(_etext);
244 	data_resource.end = virt_to_phys(_edata)-1;
245 
246 	memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
247 	if (!memory_end)
248 		memory_end = memory_start + __MEMORY_SIZE;
249 
250 #ifdef CONFIG_CMDLINE_BOOL
251 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
252 #else
253 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
254 #endif
255 
256 	/* Save unparsed command line copy for /proc/cmdline */
257 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
258 	*cmdline_p = command_line;
259 
260 	parse_early_param();
261 
262 	sh_mv_setup();
263 
264 	/*
265 	 * Find the highest page frame number we have available
266 	 */
267 	max_pfn = PFN_DOWN(__pa(memory_end));
268 
269 	/*
270 	 * Determine low and high memory ranges:
271 	 */
272 	max_low_pfn = max_pfn;
273 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
274 
275 	nodes_clear(node_online_map);
276 
277 	/* Setup bootmem with available RAM */
278 	setup_memory();
279 	sparse_init();
280 
281 #ifdef CONFIG_DUMMY_CONSOLE
282 	conswitchp = &dummy_con;
283 #endif
284 
285 	/* Perform the machine specific initialisation */
286 	if (likely(sh_mv.mv_setup))
287 		sh_mv.mv_setup(cmdline_p);
288 
289 	paging_init();
290 
291 #ifdef CONFIG_SMP
292 	plat_smp_setup();
293 #endif
294 }
295 
296 static const char *cpu_name[] = {
297 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
298 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
299 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
300 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
301 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
302 	[CPU_SH7729]	= "SH7729",	[CPU_SH7750]	= "SH7750",
303 	[CPU_SH7750S]	= "SH7750S",	[CPU_SH7750R]	= "SH7750R",
304 	[CPU_SH7751]	= "SH7751",	[CPU_SH7751R]	= "SH7751R",
305 	[CPU_SH7760]	= "SH7760",
306 	[CPU_ST40RA]	= "ST40RA",	[CPU_ST40GX1]	= "ST40GX1",
307 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
308 	[CPU_SH7770]	= "SH7770",	[CPU_SH7780]	= "SH7780",
309 	[CPU_SH7781]	= "SH7781",	[CPU_SH7343]	= "SH7343",
310 	[CPU_SH7785]	= "SH7785",	[CPU_SH7722]	= "SH7722",
311 	[CPU_SHX3]	= "SH-X3",	[CPU_SH_NONE]	= "Unknown"
312 };
313 
314 const char *get_cpu_subtype(struct sh_cpuinfo *c)
315 {
316 	return cpu_name[c->type];
317 }
318 
319 #ifdef CONFIG_PROC_FS
320 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
321 static const char *cpu_flags[] = {
322 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
323 	"ptea", "llsc", "l2", "op32", NULL
324 };
325 
326 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
327 {
328 	unsigned long i;
329 
330 	seq_printf(m, "cpu flags\t:");
331 
332 	if (!c->flags) {
333 		seq_printf(m, " %s\n", cpu_flags[0]);
334 		return;
335 	}
336 
337 	for (i = 0; cpu_flags[i]; i++)
338 		if ((c->flags & (1 << i)))
339 			seq_printf(m, " %s", cpu_flags[i+1]);
340 
341 	seq_printf(m, "\n");
342 }
343 
344 static void show_cacheinfo(struct seq_file *m, const char *type,
345 			   struct cache_info info)
346 {
347 	unsigned int cache_size;
348 
349 	cache_size = info.ways * info.sets * info.linesz;
350 
351 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
352 		   type, cache_size >> 10, info.ways);
353 }
354 
355 /*
356  *	Get CPU information for use by the procfs.
357  */
358 static int show_cpuinfo(struct seq_file *m, void *v)
359 {
360 	struct sh_cpuinfo *c = v;
361 	unsigned int cpu = c - cpu_data;
362 
363 	if (!cpu_online(cpu))
364 		return 0;
365 
366 	if (cpu == 0)
367 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
368 
369 	seq_printf(m, "processor\t: %d\n", cpu);
370 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
371 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
372 
373 	show_cpuflags(m, c);
374 
375 	seq_printf(m, "cache type\t: ");
376 
377 	/*
378 	 * Check for what type of cache we have, we support both the
379 	 * unified cache on the SH-2 and SH-3, as well as the harvard
380 	 * style cache on the SH-4.
381 	 */
382 	if (c->icache.flags & SH_CACHE_COMBINED) {
383 		seq_printf(m, "unified\n");
384 		show_cacheinfo(m, "cache", c->icache);
385 	} else {
386 		seq_printf(m, "split (harvard)\n");
387 		show_cacheinfo(m, "icache", c->icache);
388 		show_cacheinfo(m, "dcache", c->dcache);
389 	}
390 
391 	/* Optional secondary cache */
392 	if (c->flags & CPU_HAS_L2_CACHE)
393 		show_cacheinfo(m, "scache", c->scache);
394 
395 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
396 		     c->loops_per_jiffy/(500000/HZ),
397 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
398 
399 	return 0;
400 }
401 
402 static void *c_start(struct seq_file *m, loff_t *pos)
403 {
404 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
405 }
406 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
407 {
408 	++*pos;
409 	return c_start(m, pos);
410 }
411 static void c_stop(struct seq_file *m, void *v)
412 {
413 }
414 struct seq_operations cpuinfo_op = {
415 	.start	= c_start,
416 	.next	= c_next,
417 	.stop	= c_stop,
418 	.show	= show_cpuinfo,
419 };
420 #endif /* CONFIG_PROC_FS */
421