1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <linux/module.h> 25 #include <linux/smp.h> 26 #include <asm/uaccess.h> 27 #include <asm/io.h> 28 #include <asm/page.h> 29 #include <asm/sections.h> 30 #include <asm/irq.h> 31 #include <asm/setup.h> 32 #include <asm/clock.h> 33 #include <asm/mmu_context.h> 34 35 /* 36 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 37 * This value will be used at the very early stage of serial setup. 38 * The bigger value means no problem. 39 */ 40 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = { 41 [0] = { 42 .type = CPU_SH_NONE, 43 .loops_per_jiffy = 10000000, 44 }, 45 }; 46 EXPORT_SYMBOL(cpu_data); 47 48 /* 49 * The machine vector. First entry in .machvec.init, or clobbered by 50 * sh_mv= on the command line, prior to .machvec.init teardown. 51 */ 52 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 53 54 #ifdef CONFIG_VT 55 struct screen_info screen_info; 56 #endif 57 58 extern int root_mountflags; 59 60 #define RAMDISK_IMAGE_START_MASK 0x07FF 61 #define RAMDISK_PROMPT_FLAG 0x8000 62 #define RAMDISK_LOAD_FLAG 0x4000 63 64 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 65 66 static struct resource code_resource = { 67 .name = "Kernel code", 68 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 69 }; 70 71 static struct resource data_resource = { 72 .name = "Kernel data", 73 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 74 }; 75 76 unsigned long memory_start; 77 EXPORT_SYMBOL(memory_start); 78 unsigned long memory_end = 0; 79 EXPORT_SYMBOL(memory_end); 80 81 static int __init early_parse_mem(char *p) 82 { 83 unsigned long size; 84 85 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; 86 size = memparse(p, &p); 87 memory_end = memory_start + size; 88 89 return 0; 90 } 91 early_param("mem", early_parse_mem); 92 93 /* 94 * Register fully available low RAM pages with the bootmem allocator. 95 */ 96 static void __init register_bootmem_low_pages(void) 97 { 98 unsigned long curr_pfn, last_pfn, pages; 99 100 /* 101 * We are rounding up the start address of usable memory: 102 */ 103 curr_pfn = PFN_UP(__MEMORY_START); 104 105 /* 106 * ... and at the end of the usable range downwards: 107 */ 108 last_pfn = PFN_DOWN(__pa(memory_end)); 109 110 if (last_pfn > max_low_pfn) 111 last_pfn = max_low_pfn; 112 113 pages = last_pfn - curr_pfn; 114 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 115 } 116 117 #ifdef CONFIG_KEXEC 118 static void __init reserve_crashkernel(void) 119 { 120 unsigned long long free_mem; 121 unsigned long long crash_size, crash_base; 122 int ret; 123 124 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT; 125 126 ret = parse_crashkernel(boot_command_line, free_mem, 127 &crash_size, &crash_base); 128 if (ret == 0 && crash_size) { 129 if (crash_base > 0) { 130 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 131 "for crashkernel (System RAM: %ldMB)\n", 132 (unsigned long)(crash_size >> 20), 133 (unsigned long)(crash_base >> 20), 134 (unsigned long)(free_mem >> 20)); 135 crashk_res.start = crash_base; 136 crashk_res.end = crash_base + crash_size - 1; 137 reserve_bootmem(crash_base, crash_size); 138 } else 139 printk(KERN_INFO "crashkernel reservation failed - " 140 "you have to specify a base address\n"); 141 } 142 } 143 #else 144 static inline void __init reserve_crashkernel(void) 145 {} 146 #endif 147 148 void __init setup_bootmem_allocator(unsigned long free_pfn) 149 { 150 unsigned long bootmap_size; 151 152 /* 153 * Find a proper area for the bootmem bitmap. After this 154 * bootstrap step all allocations (until the page allocator 155 * is intact) must be done via bootmem_alloc(). 156 */ 157 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, 158 min_low_pfn, max_low_pfn); 159 160 add_active_range(0, min_low_pfn, max_low_pfn); 161 register_bootmem_low_pages(); 162 163 node_set_online(0); 164 165 /* 166 * Reserve the kernel text and 167 * Reserve the bootmem bitmap. We do this in two steps (first step 168 * was init_bootmem()), because this catches the (definitely buggy) 169 * case of us accidentally initializing the bootmem allocator with 170 * an invalid RAM area. 171 */ 172 reserve_bootmem(__MEMORY_START+PAGE_SIZE, 173 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START); 174 175 /* 176 * reserve physical page 0 - it's a special BIOS page on many boxes, 177 * enabling clean reboots, SMP operation, laptop functions. 178 */ 179 reserve_bootmem(__MEMORY_START, PAGE_SIZE); 180 181 sparse_memory_present_with_active_regions(0); 182 183 #ifdef CONFIG_BLK_DEV_INITRD 184 ROOT_DEV = Root_RAM0; 185 186 if (LOADER_TYPE && INITRD_START) { 187 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { 188 reserve_bootmem(INITRD_START + __MEMORY_START, 189 INITRD_SIZE); 190 initrd_start = INITRD_START + PAGE_OFFSET + 191 __MEMORY_START; 192 initrd_end = initrd_start + INITRD_SIZE; 193 } else { 194 printk("initrd extends beyond end of memory " 195 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 196 INITRD_START + INITRD_SIZE, 197 max_low_pfn << PAGE_SHIFT); 198 initrd_start = 0; 199 } 200 } 201 #endif 202 203 reserve_crashkernel(); 204 } 205 206 #ifndef CONFIG_NEED_MULTIPLE_NODES 207 static void __init setup_memory(void) 208 { 209 unsigned long start_pfn; 210 211 /* 212 * Partially used pages are not usable - thus 213 * we are rounding upwards: 214 */ 215 start_pfn = PFN_UP(__pa(_end)); 216 setup_bootmem_allocator(start_pfn); 217 } 218 #else 219 extern void __init setup_memory(void); 220 #endif 221 222 void __init setup_arch(char **cmdline_p) 223 { 224 enable_mmu(); 225 226 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 227 228 #ifdef CONFIG_BLK_DEV_RAM 229 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 230 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 231 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 232 #endif 233 234 if (!MOUNT_ROOT_RDONLY) 235 root_mountflags &= ~MS_RDONLY; 236 init_mm.start_code = (unsigned long) _text; 237 init_mm.end_code = (unsigned long) _etext; 238 init_mm.end_data = (unsigned long) _edata; 239 init_mm.brk = (unsigned long) _end; 240 241 code_resource.start = virt_to_phys(_text); 242 code_resource.end = virt_to_phys(_etext)-1; 243 data_resource.start = virt_to_phys(_etext); 244 data_resource.end = virt_to_phys(_edata)-1; 245 246 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; 247 if (!memory_end) 248 memory_end = memory_start + __MEMORY_SIZE; 249 250 #ifdef CONFIG_CMDLINE_BOOL 251 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 252 #else 253 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 254 #endif 255 256 /* Save unparsed command line copy for /proc/cmdline */ 257 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 258 *cmdline_p = command_line; 259 260 parse_early_param(); 261 262 sh_mv_setup(); 263 264 /* 265 * Find the highest page frame number we have available 266 */ 267 max_pfn = PFN_DOWN(__pa(memory_end)); 268 269 /* 270 * Determine low and high memory ranges: 271 */ 272 max_low_pfn = max_pfn; 273 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 274 275 nodes_clear(node_online_map); 276 277 /* Setup bootmem with available RAM */ 278 setup_memory(); 279 sparse_init(); 280 281 #ifdef CONFIG_DUMMY_CONSOLE 282 conswitchp = &dummy_con; 283 #endif 284 285 /* Perform the machine specific initialisation */ 286 if (likely(sh_mv.mv_setup)) 287 sh_mv.mv_setup(cmdline_p); 288 289 paging_init(); 290 291 #ifdef CONFIG_SMP 292 plat_smp_setup(); 293 #endif 294 } 295 296 static const char *cpu_name[] = { 297 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 298 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 299 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 300 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 301 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720", 302 [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750", 303 [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R", 304 [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R", 305 [CPU_SH7760] = "SH7760", 306 [CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1", 307 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 308 [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780", 309 [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343", 310 [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722", 311 [CPU_SHX3] = "SH-X3", [CPU_SH_NONE] = "Unknown" 312 }; 313 314 const char *get_cpu_subtype(struct sh_cpuinfo *c) 315 { 316 return cpu_name[c->type]; 317 } 318 319 #ifdef CONFIG_PROC_FS 320 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 321 static const char *cpu_flags[] = { 322 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 323 "ptea", "llsc", "l2", "op32", NULL 324 }; 325 326 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 327 { 328 unsigned long i; 329 330 seq_printf(m, "cpu flags\t:"); 331 332 if (!c->flags) { 333 seq_printf(m, " %s\n", cpu_flags[0]); 334 return; 335 } 336 337 for (i = 0; cpu_flags[i]; i++) 338 if ((c->flags & (1 << i))) 339 seq_printf(m, " %s", cpu_flags[i+1]); 340 341 seq_printf(m, "\n"); 342 } 343 344 static void show_cacheinfo(struct seq_file *m, const char *type, 345 struct cache_info info) 346 { 347 unsigned int cache_size; 348 349 cache_size = info.ways * info.sets * info.linesz; 350 351 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 352 type, cache_size >> 10, info.ways); 353 } 354 355 /* 356 * Get CPU information for use by the procfs. 357 */ 358 static int show_cpuinfo(struct seq_file *m, void *v) 359 { 360 struct sh_cpuinfo *c = v; 361 unsigned int cpu = c - cpu_data; 362 363 if (!cpu_online(cpu)) 364 return 0; 365 366 if (cpu == 0) 367 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 368 369 seq_printf(m, "processor\t: %d\n", cpu); 370 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 371 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 372 373 show_cpuflags(m, c); 374 375 seq_printf(m, "cache type\t: "); 376 377 /* 378 * Check for what type of cache we have, we support both the 379 * unified cache on the SH-2 and SH-3, as well as the harvard 380 * style cache on the SH-4. 381 */ 382 if (c->icache.flags & SH_CACHE_COMBINED) { 383 seq_printf(m, "unified\n"); 384 show_cacheinfo(m, "cache", c->icache); 385 } else { 386 seq_printf(m, "split (harvard)\n"); 387 show_cacheinfo(m, "icache", c->icache); 388 show_cacheinfo(m, "dcache", c->dcache); 389 } 390 391 /* Optional secondary cache */ 392 if (c->flags & CPU_HAS_L2_CACHE) 393 show_cacheinfo(m, "scache", c->scache); 394 395 seq_printf(m, "bogomips\t: %lu.%02lu\n", 396 c->loops_per_jiffy/(500000/HZ), 397 (c->loops_per_jiffy/(5000/HZ)) % 100); 398 399 return 0; 400 } 401 402 static void *c_start(struct seq_file *m, loff_t *pos) 403 { 404 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 405 } 406 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 407 { 408 ++*pos; 409 return c_start(m, pos); 410 } 411 static void c_stop(struct seq_file *m, void *v) 412 { 413 } 414 struct seq_operations cpuinfo_op = { 415 .start = c_start, 416 .next = c_next, 417 .stop = c_stop, 418 .show = show_cpuinfo, 419 }; 420 #endif /* CONFIG_PROC_FS */ 421