xref: /linux/arch/sh/kernel/setup.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <asm/uaccess.h>
25 #include <asm/io.h>
26 #include <asm/page.h>
27 #include <asm/sections.h>
28 #include <asm/irq.h>
29 #include <asm/setup.h>
30 #include <asm/clock.h>
31 #include <asm/mmu_context.h>
32 
33 extern void * __rd_start, * __rd_end;
34 
35 /*
36  * Machine setup..
37  */
38 
39 /*
40  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
41  * This value will be used at the very early stage of serial setup.
42  * The bigger value means no problem.
43  */
44 struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, };
45 
46 /*
47  * The machine vector. First entry in .machvec.init, or clobbered by
48  * sh_mv= on the command line, prior to .machvec.init teardown.
49  */
50 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
51 
52 #ifdef CONFIG_VT
53 struct screen_info screen_info;
54 #endif
55 
56 extern int root_mountflags;
57 
58 /*
59  * This is set up by the setup-routine at boot-time
60  */
61 #define PARAM	((unsigned char *)empty_zero_page)
62 
63 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
64 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
65 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
66 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
67 #define INITRD_START (*(unsigned long *) (PARAM+0x010))
68 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
69 /* ... */
70 #define COMMAND_LINE ((char *) (PARAM+0x100))
71 
72 #define RAMDISK_IMAGE_START_MASK	0x07FF
73 #define RAMDISK_PROMPT_FLAG		0x8000
74 #define RAMDISK_LOAD_FLAG		0x4000
75 
76 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
77 
78 static struct resource code_resource = { .name = "Kernel code", };
79 static struct resource data_resource = { .name = "Kernel data", };
80 
81 unsigned long memory_start, memory_end;
82 
83 static int __init early_parse_mem(char *p)
84 {
85 	unsigned long size;
86 
87 	memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
88 	size = memparse(p, &p);
89 	memory_end = memory_start + size;
90 
91 	return 0;
92 }
93 early_param("mem", early_parse_mem);
94 
95 /*
96  * Register fully available low RAM pages with the bootmem allocator.
97  */
98 static void __init register_bootmem_low_pages(void)
99 {
100 	unsigned long curr_pfn, last_pfn, pages;
101 
102 	/*
103 	 * We are rounding up the start address of usable memory:
104 	 */
105 	curr_pfn = PFN_UP(__MEMORY_START);
106 
107 	/*
108 	 * ... and at the end of the usable range downwards:
109 	 */
110 	last_pfn = PFN_DOWN(__pa(memory_end));
111 
112 	if (last_pfn > max_low_pfn)
113 		last_pfn = max_low_pfn;
114 
115 	pages = last_pfn - curr_pfn;
116 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
117 }
118 
119 void __init setup_bootmem_allocator(unsigned long free_pfn)
120 {
121 	unsigned long bootmap_size;
122 
123 	/*
124 	 * Find a proper area for the bootmem bitmap. After this
125 	 * bootstrap step all allocations (until the page allocator
126 	 * is intact) must be done via bootmem_alloc().
127 	 */
128 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
129 					 min_low_pfn, max_low_pfn);
130 
131 	add_active_range(0, min_low_pfn, max_low_pfn);
132 	register_bootmem_low_pages();
133 
134 	node_set_online(0);
135 
136 	/*
137 	 * Reserve the kernel text and
138 	 * Reserve the bootmem bitmap. We do this in two steps (first step
139 	 * was init_bootmem()), because this catches the (definitely buggy)
140 	 * case of us accidentally initializing the bootmem allocator with
141 	 * an invalid RAM area.
142 	 */
143 	reserve_bootmem(__MEMORY_START+PAGE_SIZE,
144 		(PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
145 
146 	/*
147 	 * reserve physical page 0 - it's a special BIOS page on many boxes,
148 	 * enabling clean reboots, SMP operation, laptop functions.
149 	 */
150 	reserve_bootmem(__MEMORY_START, PAGE_SIZE);
151 
152 	sparse_memory_present_with_active_regions(0);
153 
154 #ifdef CONFIG_BLK_DEV_INITRD
155 	ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
156 	if (&__rd_start != &__rd_end) {
157 		LOADER_TYPE = 1;
158 		INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
159 					__MEMORY_START;
160 		INITRD_SIZE = (unsigned long)&__rd_end -
161 			      (unsigned long)&__rd_start;
162 	}
163 
164 	if (LOADER_TYPE && INITRD_START) {
165 		if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
166 			reserve_bootmem(INITRD_START + __MEMORY_START,
167 					INITRD_SIZE);
168 			initrd_start = INITRD_START + PAGE_OFFSET +
169 					__MEMORY_START;
170 			initrd_end = initrd_start + INITRD_SIZE;
171 		} else {
172 			printk("initrd extends beyond end of memory "
173 			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
174 				    INITRD_START + INITRD_SIZE,
175 				    max_low_pfn << PAGE_SHIFT);
176 			initrd_start = 0;
177 		}
178 	}
179 #endif
180 #ifdef CONFIG_KEXEC
181 	if (crashk_res.start != crashk_res.end)
182 		reserve_bootmem(crashk_res.start,
183 			crashk_res.end - crashk_res.start + 1);
184 #endif
185 }
186 
187 #ifndef CONFIG_NEED_MULTIPLE_NODES
188 static void __init setup_memory(void)
189 {
190 	unsigned long start_pfn;
191 
192 	/*
193 	 * Partially used pages are not usable - thus
194 	 * we are rounding upwards:
195 	 */
196 	start_pfn = PFN_UP(__pa(_end));
197 	setup_bootmem_allocator(start_pfn);
198 }
199 #else
200 extern void __init setup_memory(void);
201 #endif
202 
203 void __init setup_arch(char **cmdline_p)
204 {
205 	enable_mmu();
206 
207 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
208 
209 #ifdef CONFIG_BLK_DEV_RAM
210 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
211 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
212 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
213 #endif
214 
215 	if (!MOUNT_ROOT_RDONLY)
216 		root_mountflags &= ~MS_RDONLY;
217 	init_mm.start_code = (unsigned long) _text;
218 	init_mm.end_code = (unsigned long) _etext;
219 	init_mm.end_data = (unsigned long) _edata;
220 	init_mm.brk = (unsigned long) _end;
221 
222 	code_resource.start = virt_to_phys(_text);
223 	code_resource.end = virt_to_phys(_etext)-1;
224 	data_resource.start = virt_to_phys(_etext);
225 	data_resource.end = virt_to_phys(_edata)-1;
226 
227 	memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
228 	memory_end = memory_start + __MEMORY_SIZE;
229 
230 #ifdef CONFIG_CMDLINE_BOOL
231 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
232 #else
233 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
234 #endif
235 
236 	/* Save unparsed command line copy for /proc/cmdline */
237 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
238 	*cmdline_p = command_line;
239 
240 	parse_early_param();
241 
242 	sh_mv_setup();
243 
244 	/*
245 	 * Find the highest page frame number we have available
246 	 */
247 	max_pfn = PFN_DOWN(__pa(memory_end));
248 
249 	/*
250 	 * Determine low and high memory ranges:
251 	 */
252 	max_low_pfn = max_pfn;
253 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
254 
255 	nodes_clear(node_online_map);
256 
257 	/* Setup bootmem with available RAM */
258 	setup_memory();
259 	sparse_init();
260 
261 #ifdef CONFIG_DUMMY_CONSOLE
262 	conswitchp = &dummy_con;
263 #endif
264 
265 	/* Perform the machine specific initialisation */
266 	if (likely(sh_mv.mv_setup))
267 		sh_mv.mv_setup(cmdline_p);
268 
269 	paging_init();
270 }
271 
272 static const char *cpu_name[] = {
273 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
274 	[CPU_SH7300]	= "SH7300",
275 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
276 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
277 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
278 	[CPU_SH7712]	= "SH7712",
279 	[CPU_SH7729]	= "SH7729",	[CPU_SH7750]	= "SH7750",
280 	[CPU_SH7750S]	= "SH7750S",	[CPU_SH7750R]	= "SH7750R",
281 	[CPU_SH7751]	= "SH7751",	[CPU_SH7751R]	= "SH7751R",
282 	[CPU_SH7760]	= "SH7760",	[CPU_SH73180]	= "SH73180",
283 	[CPU_ST40RA]	= "ST40RA",	[CPU_ST40GX1]	= "ST40GX1",
284 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
285 	[CPU_SH7770]	= "SH7770",	[CPU_SH7780]	= "SH7780",
286 	[CPU_SH7781]	= "SH7781",	[CPU_SH7343]	= "SH7343",
287 	[CPU_SH7785]	= "SH7785",	[CPU_SH7722]	= "SH7722",
288 	[CPU_SHX3]	= "SH-X3",	[CPU_SH_NONE]	= "Unknown"
289 };
290 
291 const char *get_cpu_subtype(struct sh_cpuinfo *c)
292 {
293 	return cpu_name[c->type];
294 }
295 
296 #ifdef CONFIG_PROC_FS
297 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
298 static const char *cpu_flags[] = {
299 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
300 	"ptea", "llsc", "l2", "op32", NULL
301 };
302 
303 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
304 {
305 	unsigned long i;
306 
307 	seq_printf(m, "cpu flags\t:");
308 
309 	if (!c->flags) {
310 		seq_printf(m, " %s\n", cpu_flags[0]);
311 		return;
312 	}
313 
314 	for (i = 0; cpu_flags[i]; i++)
315 		if ((c->flags & (1 << i)))
316 			seq_printf(m, " %s", cpu_flags[i+1]);
317 
318 	seq_printf(m, "\n");
319 }
320 
321 static void show_cacheinfo(struct seq_file *m, const char *type,
322 			   struct cache_info info)
323 {
324 	unsigned int cache_size;
325 
326 	cache_size = info.ways * info.sets * info.linesz;
327 
328 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
329 		   type, cache_size >> 10, info.ways);
330 }
331 
332 /*
333  *	Get CPU information for use by the procfs.
334  */
335 static int show_cpuinfo(struct seq_file *m, void *v)
336 {
337 	struct sh_cpuinfo *c = v;
338 	unsigned int cpu = c - cpu_data;
339 
340 	if (!cpu_online(cpu))
341 		return 0;
342 
343 	if (cpu == 0)
344 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
345 
346 	seq_printf(m, "processor\t: %d\n", cpu);
347 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
348 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
349 
350 	show_cpuflags(m, c);
351 
352 	seq_printf(m, "cache type\t: ");
353 
354 	/*
355 	 * Check for what type of cache we have, we support both the
356 	 * unified cache on the SH-2 and SH-3, as well as the harvard
357 	 * style cache on the SH-4.
358 	 */
359 	if (c->icache.flags & SH_CACHE_COMBINED) {
360 		seq_printf(m, "unified\n");
361 		show_cacheinfo(m, "cache", c->icache);
362 	} else {
363 		seq_printf(m, "split (harvard)\n");
364 		show_cacheinfo(m, "icache", c->icache);
365 		show_cacheinfo(m, "dcache", c->dcache);
366 	}
367 
368 	/* Optional secondary cache */
369 	if (c->flags & CPU_HAS_L2_CACHE)
370 		show_cacheinfo(m, "scache", c->scache);
371 
372 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
373 		     c->loops_per_jiffy/(500000/HZ),
374 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
375 
376 	return 0;
377 }
378 
379 static void *c_start(struct seq_file *m, loff_t *pos)
380 {
381 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
382 }
383 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
384 {
385 	++*pos;
386 	return c_start(m, pos);
387 }
388 static void c_stop(struct seq_file *m, void *v)
389 {
390 }
391 struct seq_operations cpuinfo_op = {
392 	.start	= c_start,
393 	.next	= c_next,
394 	.stop	= c_stop,
395 	.show	= show_cpuinfo,
396 };
397 #endif /* CONFIG_PROC_FS */
398