1 /* 2 * arch/sh/kernel/setup.c 3 * 4 * This file handles the architecture-dependent parts of initialization 5 * 6 * Copyright (C) 1999 Niibe Yutaka 7 * Copyright (C) 2002 - 2007 Paul Mundt 8 */ 9 #include <linux/screen_info.h> 10 #include <linux/ioport.h> 11 #include <linux/init.h> 12 #include <linux/initrd.h> 13 #include <linux/bootmem.h> 14 #include <linux/console.h> 15 #include <linux/seq_file.h> 16 #include <linux/root_dev.h> 17 #include <linux/utsname.h> 18 #include <linux/nodemask.h> 19 #include <linux/cpu.h> 20 #include <linux/pfn.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kexec.h> 24 #include <asm/uaccess.h> 25 #include <asm/io.h> 26 #include <asm/page.h> 27 #include <asm/sections.h> 28 #include <asm/irq.h> 29 #include <asm/setup.h> 30 #include <asm/clock.h> 31 #include <asm/mmu_context.h> 32 33 extern void * __rd_start, * __rd_end; 34 35 /* 36 * Machine setup.. 37 */ 38 39 /* 40 * Initialize loops_per_jiffy as 10000000 (1000MIPS). 41 * This value will be used at the very early stage of serial setup. 42 * The bigger value means no problem. 43 */ 44 struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, }; 45 46 /* 47 * The machine vector. First entry in .machvec.init, or clobbered by 48 * sh_mv= on the command line, prior to .machvec.init teardown. 49 */ 50 struct sh_machine_vector sh_mv = { .mv_name = "generic", }; 51 52 #ifdef CONFIG_VT 53 struct screen_info screen_info; 54 #endif 55 56 extern int root_mountflags; 57 58 /* 59 * This is set up by the setup-routine at boot-time 60 */ 61 #define PARAM ((unsigned char *)empty_zero_page) 62 63 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000)) 64 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004)) 65 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008)) 66 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c)) 67 #define INITRD_START (*(unsigned long *) (PARAM+0x010)) 68 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014)) 69 /* ... */ 70 #define COMMAND_LINE ((char *) (PARAM+0x100)) 71 72 #define RAMDISK_IMAGE_START_MASK 0x07FF 73 #define RAMDISK_PROMPT_FLAG 0x8000 74 #define RAMDISK_LOAD_FLAG 0x4000 75 76 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, }; 77 78 static struct resource code_resource = { .name = "Kernel code", }; 79 static struct resource data_resource = { .name = "Kernel data", }; 80 81 unsigned long memory_start, memory_end; 82 83 static int __init early_parse_mem(char *p) 84 { 85 unsigned long size; 86 87 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; 88 size = memparse(p, &p); 89 memory_end = memory_start + size; 90 91 return 0; 92 } 93 early_param("mem", early_parse_mem); 94 95 /* 96 * Register fully available low RAM pages with the bootmem allocator. 97 */ 98 static void __init register_bootmem_low_pages(void) 99 { 100 unsigned long curr_pfn, last_pfn, pages; 101 102 /* 103 * We are rounding up the start address of usable memory: 104 */ 105 curr_pfn = PFN_UP(__MEMORY_START); 106 107 /* 108 * ... and at the end of the usable range downwards: 109 */ 110 last_pfn = PFN_DOWN(__pa(memory_end)); 111 112 if (last_pfn > max_low_pfn) 113 last_pfn = max_low_pfn; 114 115 pages = last_pfn - curr_pfn; 116 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages)); 117 } 118 119 void __init setup_bootmem_allocator(unsigned long free_pfn) 120 { 121 unsigned long bootmap_size; 122 123 /* 124 * Find a proper area for the bootmem bitmap. After this 125 * bootstrap step all allocations (until the page allocator 126 * is intact) must be done via bootmem_alloc(). 127 */ 128 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn, 129 min_low_pfn, max_low_pfn); 130 131 add_active_range(0, min_low_pfn, max_low_pfn); 132 register_bootmem_low_pages(); 133 134 node_set_online(0); 135 136 /* 137 * Reserve the kernel text and 138 * Reserve the bootmem bitmap. We do this in two steps (first step 139 * was init_bootmem()), because this catches the (definitely buggy) 140 * case of us accidentally initializing the bootmem allocator with 141 * an invalid RAM area. 142 */ 143 reserve_bootmem(__MEMORY_START+PAGE_SIZE, 144 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START); 145 146 /* 147 * reserve physical page 0 - it's a special BIOS page on many boxes, 148 * enabling clean reboots, SMP operation, laptop functions. 149 */ 150 reserve_bootmem(__MEMORY_START, PAGE_SIZE); 151 152 sparse_memory_present_with_active_regions(0); 153 154 #ifdef CONFIG_BLK_DEV_INITRD 155 ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0); 156 if (&__rd_start != &__rd_end) { 157 LOADER_TYPE = 1; 158 INITRD_START = PHYSADDR((unsigned long)&__rd_start) - 159 __MEMORY_START; 160 INITRD_SIZE = (unsigned long)&__rd_end - 161 (unsigned long)&__rd_start; 162 } 163 164 if (LOADER_TYPE && INITRD_START) { 165 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { 166 reserve_bootmem(INITRD_START + __MEMORY_START, 167 INITRD_SIZE); 168 initrd_start = INITRD_START + PAGE_OFFSET + 169 __MEMORY_START; 170 initrd_end = initrd_start + INITRD_SIZE; 171 } else { 172 printk("initrd extends beyond end of memory " 173 "(0x%08lx > 0x%08lx)\ndisabling initrd\n", 174 INITRD_START + INITRD_SIZE, 175 max_low_pfn << PAGE_SHIFT); 176 initrd_start = 0; 177 } 178 } 179 #endif 180 #ifdef CONFIG_KEXEC 181 if (crashk_res.start != crashk_res.end) 182 reserve_bootmem(crashk_res.start, 183 crashk_res.end - crashk_res.start + 1); 184 #endif 185 } 186 187 #ifndef CONFIG_NEED_MULTIPLE_NODES 188 static void __init setup_memory(void) 189 { 190 unsigned long start_pfn; 191 192 /* 193 * Partially used pages are not usable - thus 194 * we are rounding upwards: 195 */ 196 start_pfn = PFN_UP(__pa(_end)); 197 setup_bootmem_allocator(start_pfn); 198 } 199 #else 200 extern void __init setup_memory(void); 201 #endif 202 203 void __init setup_arch(char **cmdline_p) 204 { 205 enable_mmu(); 206 207 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); 208 209 #ifdef CONFIG_BLK_DEV_RAM 210 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 211 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); 212 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); 213 #endif 214 215 if (!MOUNT_ROOT_RDONLY) 216 root_mountflags &= ~MS_RDONLY; 217 init_mm.start_code = (unsigned long) _text; 218 init_mm.end_code = (unsigned long) _etext; 219 init_mm.end_data = (unsigned long) _edata; 220 init_mm.brk = (unsigned long) _end; 221 222 code_resource.start = virt_to_phys(_text); 223 code_resource.end = virt_to_phys(_etext)-1; 224 data_resource.start = virt_to_phys(_etext); 225 data_resource.end = virt_to_phys(_edata)-1; 226 227 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START; 228 memory_end = memory_start + __MEMORY_SIZE; 229 230 #ifdef CONFIG_CMDLINE_BOOL 231 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line)); 232 #else 233 strlcpy(command_line, COMMAND_LINE, sizeof(command_line)); 234 #endif 235 236 /* Save unparsed command line copy for /proc/cmdline */ 237 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 238 *cmdline_p = command_line; 239 240 parse_early_param(); 241 242 sh_mv_setup(); 243 244 /* 245 * Find the highest page frame number we have available 246 */ 247 max_pfn = PFN_DOWN(__pa(memory_end)); 248 249 /* 250 * Determine low and high memory ranges: 251 */ 252 max_low_pfn = max_pfn; 253 min_low_pfn = __MEMORY_START >> PAGE_SHIFT; 254 255 nodes_clear(node_online_map); 256 257 /* Setup bootmem with available RAM */ 258 setup_memory(); 259 sparse_init(); 260 261 #ifdef CONFIG_DUMMY_CONSOLE 262 conswitchp = &dummy_con; 263 #endif 264 265 /* Perform the machine specific initialisation */ 266 if (likely(sh_mv.mv_setup)) 267 sh_mv.mv_setup(cmdline_p); 268 269 paging_init(); 270 } 271 272 static const char *cpu_name[] = { 273 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619", 274 [CPU_SH7300] = "SH7300", 275 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706", 276 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708", 277 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710", 278 [CPU_SH7712] = "SH7712", 279 [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750", 280 [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R", 281 [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R", 282 [CPU_SH7760] = "SH7760", [CPU_SH73180] = "SH73180", 283 [CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1", 284 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501", 285 [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780", 286 [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343", 287 [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722", 288 [CPU_SHX3] = "SH-X3", [CPU_SH_NONE] = "Unknown" 289 }; 290 291 const char *get_cpu_subtype(struct sh_cpuinfo *c) 292 { 293 return cpu_name[c->type]; 294 } 295 296 #ifdef CONFIG_PROC_FS 297 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */ 298 static const char *cpu_flags[] = { 299 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr", 300 "ptea", "llsc", "l2", "op32", NULL 301 }; 302 303 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c) 304 { 305 unsigned long i; 306 307 seq_printf(m, "cpu flags\t:"); 308 309 if (!c->flags) { 310 seq_printf(m, " %s\n", cpu_flags[0]); 311 return; 312 } 313 314 for (i = 0; cpu_flags[i]; i++) 315 if ((c->flags & (1 << i))) 316 seq_printf(m, " %s", cpu_flags[i+1]); 317 318 seq_printf(m, "\n"); 319 } 320 321 static void show_cacheinfo(struct seq_file *m, const char *type, 322 struct cache_info info) 323 { 324 unsigned int cache_size; 325 326 cache_size = info.ways * info.sets * info.linesz; 327 328 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n", 329 type, cache_size >> 10, info.ways); 330 } 331 332 /* 333 * Get CPU information for use by the procfs. 334 */ 335 static int show_cpuinfo(struct seq_file *m, void *v) 336 { 337 struct sh_cpuinfo *c = v; 338 unsigned int cpu = c - cpu_data; 339 340 if (!cpu_online(cpu)) 341 return 0; 342 343 if (cpu == 0) 344 seq_printf(m, "machine\t\t: %s\n", get_system_type()); 345 346 seq_printf(m, "processor\t: %d\n", cpu); 347 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine); 348 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c)); 349 350 show_cpuflags(m, c); 351 352 seq_printf(m, "cache type\t: "); 353 354 /* 355 * Check for what type of cache we have, we support both the 356 * unified cache on the SH-2 and SH-3, as well as the harvard 357 * style cache on the SH-4. 358 */ 359 if (c->icache.flags & SH_CACHE_COMBINED) { 360 seq_printf(m, "unified\n"); 361 show_cacheinfo(m, "cache", c->icache); 362 } else { 363 seq_printf(m, "split (harvard)\n"); 364 show_cacheinfo(m, "icache", c->icache); 365 show_cacheinfo(m, "dcache", c->dcache); 366 } 367 368 /* Optional secondary cache */ 369 if (c->flags & CPU_HAS_L2_CACHE) 370 show_cacheinfo(m, "scache", c->scache); 371 372 seq_printf(m, "bogomips\t: %lu.%02lu\n", 373 c->loops_per_jiffy/(500000/HZ), 374 (c->loops_per_jiffy/(5000/HZ)) % 100); 375 376 return 0; 377 } 378 379 static void *c_start(struct seq_file *m, loff_t *pos) 380 { 381 return *pos < NR_CPUS ? cpu_data + *pos : NULL; 382 } 383 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 384 { 385 ++*pos; 386 return c_start(m, pos); 387 } 388 static void c_stop(struct seq_file *m, void *v) 389 { 390 } 391 struct seq_operations cpuinfo_op = { 392 .start = c_start, 393 .next = c_next, 394 .stop = c_stop, 395 .show = show_cpuinfo, 396 }; 397 #endif /* CONFIG_PROC_FS */ 398