xref: /linux/arch/sh/kernel/setup.c (revision 63870295de9adb365cd121dab94379b8cfdf986a)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/elf.h>
33 #include <asm/sections.h>
34 #include <asm/irq.h>
35 #include <asm/setup.h>
36 #include <asm/clock.h>
37 #include <asm/mmu_context.h>
38 
39 /*
40  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
41  * This value will be used at the very early stage of serial setup.
42  * The bigger value means no problem.
43  */
44 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
45 	[0] = {
46 		.type			= CPU_SH_NONE,
47 		.loops_per_jiffy	= 10000000,
48 	},
49 };
50 EXPORT_SYMBOL(cpu_data);
51 
52 /*
53  * The machine vector. First entry in .machvec.init, or clobbered by
54  * sh_mv= on the command line, prior to .machvec.init teardown.
55  */
56 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
57 EXPORT_SYMBOL(sh_mv);
58 
59 #ifdef CONFIG_VT
60 struct screen_info screen_info;
61 #endif
62 
63 extern int root_mountflags;
64 
65 #define RAMDISK_IMAGE_START_MASK	0x07FF
66 #define RAMDISK_PROMPT_FLAG		0x8000
67 #define RAMDISK_LOAD_FLAG		0x4000
68 
69 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
70 
71 static struct resource code_resource = {
72 	.name = "Kernel code",
73 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
74 };
75 
76 static struct resource data_resource = {
77 	.name = "Kernel data",
78 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
79 };
80 
81 static struct resource bss_resource = {
82 	.name	= "Kernel bss",
83 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
84 };
85 
86 unsigned long memory_start;
87 EXPORT_SYMBOL(memory_start);
88 unsigned long memory_end = 0;
89 EXPORT_SYMBOL(memory_end);
90 
91 static struct resource mem_resources[MAX_NUMNODES];
92 
93 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
94 
95 static int __init early_parse_mem(char *p)
96 {
97 	unsigned long size;
98 
99 	memory_start = (unsigned long)__va(__MEMORY_START);
100 	size = memparse(p, &p);
101 
102 	if (size > __MEMORY_SIZE) {
103 		static char msg[] __initdata = KERN_ERR
104 			"Using mem= to increase the size of kernel memory "
105 			"is not allowed.\n"
106 			"  Recompile the kernel with the correct value for "
107 			"CONFIG_MEMORY_SIZE.\n";
108 		printk(msg);
109 		return 0;
110 	}
111 
112 	memory_end = memory_start + size;
113 
114 	return 0;
115 }
116 early_param("mem", early_parse_mem);
117 
118 /*
119  * Register fully available low RAM pages with the bootmem allocator.
120  */
121 static void __init register_bootmem_low_pages(void)
122 {
123 	unsigned long curr_pfn, last_pfn, pages;
124 
125 	/*
126 	 * We are rounding up the start address of usable memory:
127 	 */
128 	curr_pfn = PFN_UP(__MEMORY_START);
129 
130 	/*
131 	 * ... and at the end of the usable range downwards:
132 	 */
133 	last_pfn = PFN_DOWN(__pa(memory_end));
134 
135 	if (last_pfn > max_low_pfn)
136 		last_pfn = max_low_pfn;
137 
138 	pages = last_pfn - curr_pfn;
139 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
140 }
141 
142 #ifdef CONFIG_KEXEC
143 static void __init reserve_crashkernel(void)
144 {
145 	unsigned long long free_mem;
146 	unsigned long long crash_size, crash_base;
147 	int ret;
148 
149 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
150 
151 	ret = parse_crashkernel(boot_command_line, free_mem,
152 			&crash_size, &crash_base);
153 	if (ret == 0 && crash_size) {
154 		if (crash_base <= 0) {
155 			printk(KERN_INFO "crashkernel reservation failed - "
156 					"you have to specify a base address\n");
157 			return;
158 		}
159 
160 		if (reserve_bootmem(crash_base, crash_size,
161 					BOOTMEM_EXCLUSIVE) < 0) {
162 			printk(KERN_INFO "crashkernel reservation failed - "
163 					"memory is in use\n");
164 			return;
165 		}
166 
167 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
168 				"for crashkernel (System RAM: %ldMB)\n",
169 				(unsigned long)(crash_size >> 20),
170 				(unsigned long)(crash_base >> 20),
171 				(unsigned long)(free_mem >> 20));
172 		crashk_res.start = crash_base;
173 		crashk_res.end   = crash_base + crash_size - 1;
174 	}
175 }
176 #else
177 static inline void __init reserve_crashkernel(void)
178 {}
179 #endif
180 
181 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
182 						unsigned long end_pfn)
183 {
184 	struct resource *res = &mem_resources[nid];
185 
186 	WARN_ON(res->name); /* max one active range per node for now */
187 
188 	res->name = "System RAM";
189 	res->start = start_pfn << PAGE_SHIFT;
190 	res->end = (end_pfn << PAGE_SHIFT) - 1;
191 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192 	if (request_resource(&iomem_resource, res)) {
193 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
194 		       start_pfn, end_pfn);
195 		return;
196 	}
197 
198 	/*
199 	 *  We don't know which RAM region contains kernel data,
200 	 *  so we try it repeatedly and let the resource manager
201 	 *  test it.
202 	 */
203 	request_resource(res, &code_resource);
204 	request_resource(res, &data_resource);
205 	request_resource(res, &bss_resource);
206 
207 #ifdef CONFIG_KEXEC
208 	if (crashk_res.start != crashk_res.end)
209 		request_resource(res, &crashk_res);
210 #endif
211 
212 	add_active_range(nid, start_pfn, end_pfn);
213 }
214 
215 void __init setup_bootmem_allocator(unsigned long free_pfn)
216 {
217 	unsigned long bootmap_size;
218 
219 	/*
220 	 * Find a proper area for the bootmem bitmap. After this
221 	 * bootstrap step all allocations (until the page allocator
222 	 * is intact) must be done via bootmem_alloc().
223 	 */
224 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
225 					 min_low_pfn, max_low_pfn);
226 
227 	__add_active_range(0, min_low_pfn, max_low_pfn);
228 	register_bootmem_low_pages();
229 
230 	node_set_online(0);
231 
232 	/*
233 	 * Reserve the kernel text and
234 	 * Reserve the bootmem bitmap. We do this in two steps (first step
235 	 * was init_bootmem()), because this catches the (definitely buggy)
236 	 * case of us accidentally initializing the bootmem allocator with
237 	 * an invalid RAM area.
238 	 */
239 	reserve_bootmem(__MEMORY_START+PAGE_SIZE,
240 		(PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
241 		BOOTMEM_DEFAULT);
242 
243 	/*
244 	 * reserve physical page 0 - it's a special BIOS page on many boxes,
245 	 * enabling clean reboots, SMP operation, laptop functions.
246 	 */
247 	reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
248 
249 	sparse_memory_present_with_active_regions(0);
250 
251 #ifdef CONFIG_BLK_DEV_INITRD
252 	ROOT_DEV = Root_RAM0;
253 
254 	if (LOADER_TYPE && INITRD_START) {
255 		if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
256 			reserve_bootmem(INITRD_START + __MEMORY_START,
257 					INITRD_SIZE, BOOTMEM_DEFAULT);
258 			initrd_start = INITRD_START + PAGE_OFFSET +
259 					__MEMORY_START;
260 			initrd_end = initrd_start + INITRD_SIZE;
261 		} else {
262 			printk("initrd extends beyond end of memory "
263 			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
264 				    INITRD_START + INITRD_SIZE,
265 				    max_low_pfn << PAGE_SHIFT);
266 			initrd_start = 0;
267 		}
268 	}
269 #endif
270 
271 	reserve_crashkernel();
272 }
273 
274 #ifndef CONFIG_NEED_MULTIPLE_NODES
275 static void __init setup_memory(void)
276 {
277 	unsigned long start_pfn;
278 
279 	/*
280 	 * Partially used pages are not usable - thus
281 	 * we are rounding upwards:
282 	 */
283 	start_pfn = PFN_UP(__pa(_end));
284 	setup_bootmem_allocator(start_pfn);
285 }
286 #else
287 extern void __init setup_memory(void);
288 #endif
289 
290 /*
291  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
292  * is_kdump_kernel() to determine if we are booting after a panic. Hence
293  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
294  */
295 #ifdef CONFIG_CRASH_DUMP
296 /* elfcorehdr= specifies the location of elf core header
297  * stored by the crashed kernel.
298  */
299 static int __init parse_elfcorehdr(char *arg)
300 {
301 	if (!arg)
302 		return -EINVAL;
303 	elfcorehdr_addr = memparse(arg, &arg);
304 	return 0;
305 }
306 early_param("elfcorehdr", parse_elfcorehdr);
307 #endif
308 
309 void __init setup_arch(char **cmdline_p)
310 {
311 	enable_mmu();
312 
313 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
314 
315 	printk(KERN_NOTICE "Boot params:\n"
316 			   "... MOUNT_ROOT_RDONLY - %08lx\n"
317 			   "... RAMDISK_FLAGS     - %08lx\n"
318 			   "... ORIG_ROOT_DEV     - %08lx\n"
319 			   "... LOADER_TYPE       - %08lx\n"
320 			   "... INITRD_START      - %08lx\n"
321 			   "... INITRD_SIZE       - %08lx\n",
322 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
323 			   ORIG_ROOT_DEV, LOADER_TYPE,
324 			   INITRD_START, INITRD_SIZE);
325 
326 #ifdef CONFIG_BLK_DEV_RAM
327 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
328 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
329 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
330 #endif
331 
332 	if (!MOUNT_ROOT_RDONLY)
333 		root_mountflags &= ~MS_RDONLY;
334 	init_mm.start_code = (unsigned long) _text;
335 	init_mm.end_code = (unsigned long) _etext;
336 	init_mm.end_data = (unsigned long) _edata;
337 	init_mm.brk = (unsigned long) _end;
338 
339 	code_resource.start = virt_to_phys(_text);
340 	code_resource.end = virt_to_phys(_etext)-1;
341 	data_resource.start = virt_to_phys(_etext);
342 	data_resource.end = virt_to_phys(_edata)-1;
343 	bss_resource.start = virt_to_phys(__bss_start);
344 	bss_resource.end = virt_to_phys(_ebss)-1;
345 
346 	memory_start = (unsigned long)__va(__MEMORY_START);
347 	if (!memory_end)
348 		memory_end = memory_start + __MEMORY_SIZE;
349 
350 #ifdef CONFIG_CMDLINE_BOOL
351 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
352 #else
353 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
354 #endif
355 
356 	/* Save unparsed command line copy for /proc/cmdline */
357 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
358 	*cmdline_p = command_line;
359 
360 	parse_early_param();
361 
362 	sh_mv_setup();
363 
364 	/*
365 	 * Find the highest page frame number we have available
366 	 */
367 	max_pfn = PFN_DOWN(__pa(memory_end));
368 
369 	/*
370 	 * Determine low and high memory ranges:
371 	 */
372 	max_low_pfn = max_pfn;
373 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
374 
375 	nodes_clear(node_online_map);
376 
377 	/* Setup bootmem with available RAM */
378 	setup_memory();
379 	sparse_init();
380 
381 #ifdef CONFIG_DUMMY_CONSOLE
382 	conswitchp = &dummy_con;
383 #endif
384 
385 	/* Perform the machine specific initialisation */
386 	if (likely(sh_mv.mv_setup))
387 		sh_mv.mv_setup(cmdline_p);
388 
389 	paging_init();
390 
391 #ifdef CONFIG_SMP
392 	plat_smp_setup();
393 #endif
394 }
395 
396 static const char *cpu_name[] = {
397 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
398 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
399 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
400 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
401 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
402 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
403 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
404 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
405 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
406 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
407 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
408 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
409 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
410 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
411 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
412 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
413 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
414 	[CPU_SH7366]	= "SH7366",	[CPU_SH_NONE]	= "Unknown"
415 };
416 
417 const char *get_cpu_subtype(struct sh_cpuinfo *c)
418 {
419 	return cpu_name[c->type];
420 }
421 EXPORT_SYMBOL(get_cpu_subtype);
422 
423 #ifdef CONFIG_PROC_FS
424 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
425 static const char *cpu_flags[] = {
426 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
427 	"ptea", "llsc", "l2", "op32", NULL
428 };
429 
430 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
431 {
432 	unsigned long i;
433 
434 	seq_printf(m, "cpu flags\t:");
435 
436 	if (!c->flags) {
437 		seq_printf(m, " %s\n", cpu_flags[0]);
438 		return;
439 	}
440 
441 	for (i = 0; cpu_flags[i]; i++)
442 		if ((c->flags & (1 << i)))
443 			seq_printf(m, " %s", cpu_flags[i+1]);
444 
445 	seq_printf(m, "\n");
446 }
447 
448 static void show_cacheinfo(struct seq_file *m, const char *type,
449 			   struct cache_info info)
450 {
451 	unsigned int cache_size;
452 
453 	cache_size = info.ways * info.sets * info.linesz;
454 
455 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
456 		   type, cache_size >> 10, info.ways);
457 }
458 
459 /*
460  *	Get CPU information for use by the procfs.
461  */
462 static int show_cpuinfo(struct seq_file *m, void *v)
463 {
464 	struct sh_cpuinfo *c = v;
465 	unsigned int cpu = c - cpu_data;
466 
467 	if (!cpu_online(cpu))
468 		return 0;
469 
470 	if (cpu == 0)
471 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
472 
473 	seq_printf(m, "processor\t: %d\n", cpu);
474 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
475 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
476 	if (c->cut_major == -1)
477 		seq_printf(m, "cut\t\t: unknown\n");
478 	else if (c->cut_minor == -1)
479 		seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
480 	else
481 		seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
482 
483 	show_cpuflags(m, c);
484 
485 	seq_printf(m, "cache type\t: ");
486 
487 	/*
488 	 * Check for what type of cache we have, we support both the
489 	 * unified cache on the SH-2 and SH-3, as well as the harvard
490 	 * style cache on the SH-4.
491 	 */
492 	if (c->icache.flags & SH_CACHE_COMBINED) {
493 		seq_printf(m, "unified\n");
494 		show_cacheinfo(m, "cache", c->icache);
495 	} else {
496 		seq_printf(m, "split (harvard)\n");
497 		show_cacheinfo(m, "icache", c->icache);
498 		show_cacheinfo(m, "dcache", c->dcache);
499 	}
500 
501 	/* Optional secondary cache */
502 	if (c->flags & CPU_HAS_L2_CACHE)
503 		show_cacheinfo(m, "scache", c->scache);
504 
505 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
506 		     c->loops_per_jiffy/(500000/HZ),
507 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
508 
509 	return 0;
510 }
511 
512 static void *c_start(struct seq_file *m, loff_t *pos)
513 {
514 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
515 }
516 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
517 {
518 	++*pos;
519 	return c_start(m, pos);
520 }
521 static void c_stop(struct seq_file *m, void *v)
522 {
523 }
524 const struct seq_operations cpuinfo_op = {
525 	.start	= c_start,
526 	.next	= c_next,
527 	.stop	= c_stop,
528 	.show	= show_cpuinfo,
529 };
530 #endif /* CONFIG_PROC_FS */
531 
532 struct dentry *sh_debugfs_root;
533 
534 static int __init sh_debugfs_init(void)
535 {
536 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
537 	if (IS_ERR(sh_debugfs_root))
538 		return PTR_ERR(sh_debugfs_root);
539 
540 	return 0;
541 }
542 arch_initcall(sh_debugfs_init);
543