xref: /linux/arch/sh/kernel/setup.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <asm/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/sections.h>
30 #include <asm/irq.h>
31 #include <asm/setup.h>
32 #include <asm/clock.h>
33 #include <asm/mmu_context.h>
34 
35 extern void * __rd_start, * __rd_end;
36 
37 /*
38  * Machine setup..
39  */
40 
41 /*
42  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
43  * This value will be used at the very early stage of serial setup.
44  * The bigger value means no problem.
45  */
46 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
47 	[0] = {
48 		.type			= CPU_SH_NONE,
49 		.loops_per_jiffy	= 10000000,
50 	},
51 };
52 EXPORT_SYMBOL(cpu_data);
53 
54 /*
55  * The machine vector. First entry in .machvec.init, or clobbered by
56  * sh_mv= on the command line, prior to .machvec.init teardown.
57  */
58 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
59 
60 #ifdef CONFIG_VT
61 struct screen_info screen_info;
62 #endif
63 
64 extern int root_mountflags;
65 
66 /*
67  * This is set up by the setup-routine at boot-time
68  */
69 #define PARAM	((unsigned char *)empty_zero_page)
70 
71 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
72 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
73 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
74 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
75 #define INITRD_START (*(unsigned long *) (PARAM+0x010))
76 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
77 /* ... */
78 #define COMMAND_LINE ((char *) (PARAM+0x100))
79 
80 #define RAMDISK_IMAGE_START_MASK	0x07FF
81 #define RAMDISK_PROMPT_FLAG		0x8000
82 #define RAMDISK_LOAD_FLAG		0x4000
83 
84 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
85 
86 static struct resource code_resource = { .name = "Kernel code", };
87 static struct resource data_resource = { .name = "Kernel data", };
88 
89 unsigned long memory_start;
90 EXPORT_SYMBOL(memory_start);
91 
92 unsigned long memory_end;
93 EXPORT_SYMBOL(memory_end);
94 
95 static int __init early_parse_mem(char *p)
96 {
97 	unsigned long size;
98 
99 	memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
100 	size = memparse(p, &p);
101 	memory_end = memory_start + size;
102 
103 	return 0;
104 }
105 early_param("mem", early_parse_mem);
106 
107 /*
108  * Register fully available low RAM pages with the bootmem allocator.
109  */
110 static void __init register_bootmem_low_pages(void)
111 {
112 	unsigned long curr_pfn, last_pfn, pages;
113 
114 	/*
115 	 * We are rounding up the start address of usable memory:
116 	 */
117 	curr_pfn = PFN_UP(__MEMORY_START);
118 
119 	/*
120 	 * ... and at the end of the usable range downwards:
121 	 */
122 	last_pfn = PFN_DOWN(__pa(memory_end));
123 
124 	if (last_pfn > max_low_pfn)
125 		last_pfn = max_low_pfn;
126 
127 	pages = last_pfn - curr_pfn;
128 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
129 }
130 
131 void __init setup_bootmem_allocator(unsigned long free_pfn)
132 {
133 	unsigned long bootmap_size;
134 
135 	/*
136 	 * Find a proper area for the bootmem bitmap. After this
137 	 * bootstrap step all allocations (until the page allocator
138 	 * is intact) must be done via bootmem_alloc().
139 	 */
140 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
141 					 min_low_pfn, max_low_pfn);
142 
143 	add_active_range(0, min_low_pfn, max_low_pfn);
144 	register_bootmem_low_pages();
145 
146 	node_set_online(0);
147 
148 	/*
149 	 * Reserve the kernel text and
150 	 * Reserve the bootmem bitmap. We do this in two steps (first step
151 	 * was init_bootmem()), because this catches the (definitely buggy)
152 	 * case of us accidentally initializing the bootmem allocator with
153 	 * an invalid RAM area.
154 	 */
155 	reserve_bootmem(__MEMORY_START+PAGE_SIZE,
156 		(PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
157 
158 	/*
159 	 * reserve physical page 0 - it's a special BIOS page on many boxes,
160 	 * enabling clean reboots, SMP operation, laptop functions.
161 	 */
162 	reserve_bootmem(__MEMORY_START, PAGE_SIZE);
163 
164 	sparse_memory_present_with_active_regions(0);
165 
166 #ifdef CONFIG_BLK_DEV_INITRD
167 	ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
168 	if (&__rd_start != &__rd_end) {
169 		LOADER_TYPE = 1;
170 		INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
171 					__MEMORY_START;
172 		INITRD_SIZE = (unsigned long)&__rd_end -
173 			      (unsigned long)&__rd_start;
174 	}
175 
176 	if (LOADER_TYPE && INITRD_START) {
177 		if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
178 			reserve_bootmem(INITRD_START + __MEMORY_START,
179 					INITRD_SIZE);
180 			initrd_start = INITRD_START + PAGE_OFFSET +
181 					__MEMORY_START;
182 			initrd_end = initrd_start + INITRD_SIZE;
183 		} else {
184 			printk("initrd extends beyond end of memory "
185 			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
186 				    INITRD_START + INITRD_SIZE,
187 				    max_low_pfn << PAGE_SHIFT);
188 			initrd_start = 0;
189 		}
190 	}
191 #endif
192 #ifdef CONFIG_KEXEC
193 	if (crashk_res.start != crashk_res.end)
194 		reserve_bootmem(crashk_res.start,
195 			crashk_res.end - crashk_res.start + 1);
196 #endif
197 }
198 
199 #ifndef CONFIG_NEED_MULTIPLE_NODES
200 static void __init setup_memory(void)
201 {
202 	unsigned long start_pfn;
203 
204 	/*
205 	 * Partially used pages are not usable - thus
206 	 * we are rounding upwards:
207 	 */
208 	start_pfn = PFN_UP(__pa(_end));
209 	setup_bootmem_allocator(start_pfn);
210 }
211 #else
212 extern void __init setup_memory(void);
213 #endif
214 
215 void __init setup_arch(char **cmdline_p)
216 {
217 	enable_mmu();
218 
219 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
220 
221 #ifdef CONFIG_BLK_DEV_RAM
222 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
223 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
224 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
225 #endif
226 
227 	if (!MOUNT_ROOT_RDONLY)
228 		root_mountflags &= ~MS_RDONLY;
229 	init_mm.start_code = (unsigned long) _text;
230 	init_mm.end_code = (unsigned long) _etext;
231 	init_mm.end_data = (unsigned long) _edata;
232 	init_mm.brk = (unsigned long) _end;
233 
234 	code_resource.start = virt_to_phys(_text);
235 	code_resource.end = virt_to_phys(_etext)-1;
236 	data_resource.start = virt_to_phys(_etext);
237 	data_resource.end = virt_to_phys(_edata)-1;
238 
239 	memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
240 	memory_end = memory_start + __MEMORY_SIZE;
241 
242 #ifdef CONFIG_CMDLINE_BOOL
243 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
244 #else
245 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
246 #endif
247 
248 	/* Save unparsed command line copy for /proc/cmdline */
249 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
250 	*cmdline_p = command_line;
251 
252 	parse_early_param();
253 
254 	sh_mv_setup();
255 
256 	/*
257 	 * Find the highest page frame number we have available
258 	 */
259 	max_pfn = PFN_DOWN(__pa(memory_end));
260 
261 	/*
262 	 * Determine low and high memory ranges:
263 	 */
264 	max_low_pfn = max_pfn;
265 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
266 
267 	nodes_clear(node_online_map);
268 
269 	/* Setup bootmem with available RAM */
270 	setup_memory();
271 	sparse_init();
272 
273 #ifdef CONFIG_DUMMY_CONSOLE
274 	conswitchp = &dummy_con;
275 #endif
276 
277 	/* Perform the machine specific initialisation */
278 	if (likely(sh_mv.mv_setup))
279 		sh_mv.mv_setup(cmdline_p);
280 
281 	paging_init();
282 
283 #ifdef CONFIG_SMP
284 	plat_smp_setup();
285 #endif
286 }
287 
288 static const char *cpu_name[] = {
289 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
290 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
291 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
292 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
293 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
294 	[CPU_SH7729]	= "SH7729",	[CPU_SH7750]	= "SH7750",
295 	[CPU_SH7750S]	= "SH7750S",	[CPU_SH7750R]	= "SH7750R",
296 	[CPU_SH7751]	= "SH7751",	[CPU_SH7751R]	= "SH7751R",
297 	[CPU_SH7760]	= "SH7760",
298 	[CPU_ST40RA]	= "ST40RA",	[CPU_ST40GX1]	= "ST40GX1",
299 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
300 	[CPU_SH7770]	= "SH7770",	[CPU_SH7780]	= "SH7780",
301 	[CPU_SH7781]	= "SH7781",	[CPU_SH7343]	= "SH7343",
302 	[CPU_SH7785]	= "SH7785",	[CPU_SH7722]	= "SH7722",
303 	[CPU_SHX3]	= "SH-X3",	[CPU_SH_NONE]	= "Unknown"
304 };
305 
306 const char *get_cpu_subtype(struct sh_cpuinfo *c)
307 {
308 	return cpu_name[c->type];
309 }
310 
311 #ifdef CONFIG_PROC_FS
312 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
313 static const char *cpu_flags[] = {
314 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
315 	"ptea", "llsc", "l2", "op32", NULL
316 };
317 
318 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
319 {
320 	unsigned long i;
321 
322 	seq_printf(m, "cpu flags\t:");
323 
324 	if (!c->flags) {
325 		seq_printf(m, " %s\n", cpu_flags[0]);
326 		return;
327 	}
328 
329 	for (i = 0; cpu_flags[i]; i++)
330 		if ((c->flags & (1 << i)))
331 			seq_printf(m, " %s", cpu_flags[i+1]);
332 
333 	seq_printf(m, "\n");
334 }
335 
336 static void show_cacheinfo(struct seq_file *m, const char *type,
337 			   struct cache_info info)
338 {
339 	unsigned int cache_size;
340 
341 	cache_size = info.ways * info.sets * info.linesz;
342 
343 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
344 		   type, cache_size >> 10, info.ways);
345 }
346 
347 /*
348  *	Get CPU information for use by the procfs.
349  */
350 static int show_cpuinfo(struct seq_file *m, void *v)
351 {
352 	struct sh_cpuinfo *c = v;
353 	unsigned int cpu = c - cpu_data;
354 
355 	if (!cpu_online(cpu))
356 		return 0;
357 
358 	if (cpu == 0)
359 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
360 
361 	seq_printf(m, "processor\t: %d\n", cpu);
362 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
363 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
364 
365 	show_cpuflags(m, c);
366 
367 	seq_printf(m, "cache type\t: ");
368 
369 	/*
370 	 * Check for what type of cache we have, we support both the
371 	 * unified cache on the SH-2 and SH-3, as well as the harvard
372 	 * style cache on the SH-4.
373 	 */
374 	if (c->icache.flags & SH_CACHE_COMBINED) {
375 		seq_printf(m, "unified\n");
376 		show_cacheinfo(m, "cache", c->icache);
377 	} else {
378 		seq_printf(m, "split (harvard)\n");
379 		show_cacheinfo(m, "icache", c->icache);
380 		show_cacheinfo(m, "dcache", c->dcache);
381 	}
382 
383 	/* Optional secondary cache */
384 	if (c->flags & CPU_HAS_L2_CACHE)
385 		show_cacheinfo(m, "scache", c->scache);
386 
387 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
388 		     c->loops_per_jiffy/(500000/HZ),
389 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
390 
391 	return 0;
392 }
393 
394 static void *c_start(struct seq_file *m, loff_t *pos)
395 {
396 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
397 }
398 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
399 {
400 	++*pos;
401 	return c_start(m, pos);
402 }
403 static void c_stop(struct seq_file *m, void *v)
404 {
405 }
406 struct seq_operations cpuinfo_op = {
407 	.start	= c_start,
408 	.next	= c_next,
409 	.stop	= c_stop,
410 	.show	= show_cpuinfo,
411 };
412 #endif /* CONFIG_PROC_FS */
413