xref: /linux/arch/sh/kernel/process_32.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  * arch/sh/kernel/process.c
3  *
4  * This file handles the architecture-dependent parts of process handling..
5  *
6  *  Copyright (C) 1995  Linus Torvalds
7  *
8  *  SuperH version:  Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
9  *		     Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
10  *		     Copyright (C) 2002 - 2008  Paul Mundt
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file "COPYING" in the main directory of this archive
14  * for more details.
15  */
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/elfcore.h>
20 #include <linux/kallsyms.h>
21 #include <linux/fs.h>
22 #include <linux/ftrace.h>
23 #include <linux/hw_breakpoint.h>
24 #include <linux/prefetch.h>
25 #include <asm/uaccess.h>
26 #include <asm/mmu_context.h>
27 #include <asm/fpu.h>
28 #include <asm/syscalls.h>
29 
30 void show_regs(struct pt_regs * regs)
31 {
32 	printk("\n");
33 	printk("Pid : %d, Comm: \t\t%s\n", task_pid_nr(current), current->comm);
34 	printk("CPU : %d        \t\t%s  (%s %.*s)\n\n",
35 	       smp_processor_id(), print_tainted(), init_utsname()->release,
36 	       (int)strcspn(init_utsname()->version, " "),
37 	       init_utsname()->version);
38 
39 	print_symbol("PC is at %s\n", instruction_pointer(regs));
40 	print_symbol("PR is at %s\n", regs->pr);
41 
42 	printk("PC  : %08lx SP  : %08lx SR  : %08lx ",
43 	       regs->pc, regs->regs[15], regs->sr);
44 #ifdef CONFIG_MMU
45 	printk("TEA : %08x\n", __raw_readl(MMU_TEA));
46 #else
47 	printk("\n");
48 #endif
49 
50 	printk("R0  : %08lx R1  : %08lx R2  : %08lx R3  : %08lx\n",
51 	       regs->regs[0],regs->regs[1],
52 	       regs->regs[2],regs->regs[3]);
53 	printk("R4  : %08lx R5  : %08lx R6  : %08lx R7  : %08lx\n",
54 	       regs->regs[4],regs->regs[5],
55 	       regs->regs[6],regs->regs[7]);
56 	printk("R8  : %08lx R9  : %08lx R10 : %08lx R11 : %08lx\n",
57 	       regs->regs[8],regs->regs[9],
58 	       regs->regs[10],regs->regs[11]);
59 	printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
60 	       regs->regs[12],regs->regs[13],
61 	       regs->regs[14]);
62 	printk("MACH: %08lx MACL: %08lx GBR : %08lx PR  : %08lx\n",
63 	       regs->mach, regs->macl, regs->gbr, regs->pr);
64 
65 	show_trace(NULL, (unsigned long *)regs->regs[15], regs);
66 	show_code(regs);
67 }
68 
69 /*
70  * Create a kernel thread
71  */
72 __noreturn void kernel_thread_helper(void *arg, int (*fn)(void *))
73 {
74 	do_exit(fn(arg));
75 }
76 
77 /* Don't use this in BL=1(cli).  Or else, CPU resets! */
78 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
79 {
80 	struct pt_regs regs;
81 	int pid;
82 
83 	memset(&regs, 0, sizeof(regs));
84 	regs.regs[4] = (unsigned long)arg;
85 	regs.regs[5] = (unsigned long)fn;
86 
87 	regs.pc = (unsigned long)kernel_thread_helper;
88 	regs.sr = SR_MD;
89 #if defined(CONFIG_SH_FPU)
90 	regs.sr |= SR_FD;
91 #endif
92 
93 	/* Ok, create the new process.. */
94 	pid = do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
95 		      &regs, 0, NULL, NULL);
96 
97 	return pid;
98 }
99 EXPORT_SYMBOL(kernel_thread);
100 
101 void start_thread(struct pt_regs *regs, unsigned long new_pc,
102 		  unsigned long new_sp)
103 {
104 	regs->pr = 0;
105 	regs->sr = SR_FD;
106 	regs->pc = new_pc;
107 	regs->regs[15] = new_sp;
108 
109 	free_thread_xstate(current);
110 }
111 EXPORT_SYMBOL(start_thread);
112 
113 /*
114  * Free current thread data structures etc..
115  */
116 void exit_thread(void)
117 {
118 }
119 
120 void flush_thread(void)
121 {
122 	struct task_struct *tsk = current;
123 
124 	flush_ptrace_hw_breakpoint(tsk);
125 
126 #if defined(CONFIG_SH_FPU)
127 	/* Forget lazy FPU state */
128 	clear_fpu(tsk, task_pt_regs(tsk));
129 	clear_used_math();
130 #endif
131 }
132 
133 void release_thread(struct task_struct *dead_task)
134 {
135 	/* do nothing */
136 }
137 
138 /* Fill in the fpu structure for a core dump.. */
139 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
140 {
141 	int fpvalid = 0;
142 
143 #if defined(CONFIG_SH_FPU)
144 	struct task_struct *tsk = current;
145 
146 	fpvalid = !!tsk_used_math(tsk);
147 	if (fpvalid)
148 		fpvalid = !fpregs_get(tsk, NULL, 0,
149 				      sizeof(struct user_fpu_struct),
150 				      fpu, NULL);
151 #endif
152 
153 	return fpvalid;
154 }
155 EXPORT_SYMBOL(dump_fpu);
156 
157 /*
158  * This gets called before we allocate a new thread and copy
159  * the current task into it.
160  */
161 void prepare_to_copy(struct task_struct *tsk)
162 {
163 	unlazy_fpu(tsk, task_pt_regs(tsk));
164 }
165 
166 asmlinkage void ret_from_fork(void);
167 
168 int copy_thread(unsigned long clone_flags, unsigned long usp,
169 		unsigned long unused,
170 		struct task_struct *p, struct pt_regs *regs)
171 {
172 	struct thread_info *ti = task_thread_info(p);
173 	struct pt_regs *childregs;
174 
175 #if defined(CONFIG_SH_DSP)
176 	struct task_struct *tsk = current;
177 
178 	if (is_dsp_enabled(tsk)) {
179 		/* We can use the __save_dsp or just copy the struct:
180 		 * __save_dsp(p);
181 		 * p->thread.dsp_status.status |= SR_DSP
182 		 */
183 		p->thread.dsp_status = tsk->thread.dsp_status;
184 	}
185 #endif
186 
187 	childregs = task_pt_regs(p);
188 	*childregs = *regs;
189 
190 	if (user_mode(regs)) {
191 		childregs->regs[15] = usp;
192 		ti->addr_limit = USER_DS;
193 	} else {
194 		childregs->regs[15] = (unsigned long)childregs;
195 		ti->addr_limit = KERNEL_DS;
196 		ti->status &= ~TS_USEDFPU;
197 		p->fpu_counter = 0;
198 	}
199 
200 	if (clone_flags & CLONE_SETTLS)
201 		childregs->gbr = childregs->regs[0];
202 
203 	childregs->regs[0] = 0; /* Set return value for child */
204 
205 	p->thread.sp = (unsigned long) childregs;
206 	p->thread.pc = (unsigned long) ret_from_fork;
207 
208 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
209 
210 	return 0;
211 }
212 
213 /*
214  *	switch_to(x,y) should switch tasks from x to y.
215  *
216  */
217 __notrace_funcgraph struct task_struct *
218 __switch_to(struct task_struct *prev, struct task_struct *next)
219 {
220 	struct thread_struct *next_t = &next->thread;
221 
222 	unlazy_fpu(prev, task_pt_regs(prev));
223 
224 	/* we're going to use this soon, after a few expensive things */
225 	if (next->fpu_counter > 5)
226 		prefetch(next_t->xstate);
227 
228 #ifdef CONFIG_MMU
229 	/*
230 	 * Restore the kernel mode register
231 	 *	k7 (r7_bank1)
232 	 */
233 	asm volatile("ldc	%0, r7_bank"
234 		     : /* no output */
235 		     : "r" (task_thread_info(next)));
236 #endif
237 
238 	/*
239 	 * If the task has used fpu the last 5 timeslices, just do a full
240 	 * restore of the math state immediately to avoid the trap; the
241 	 * chances of needing FPU soon are obviously high now
242 	 */
243 	if (next->fpu_counter > 5)
244 		__fpu_state_restore();
245 
246 	return prev;
247 }
248 
249 asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
250 			unsigned long r6, unsigned long r7,
251 			struct pt_regs __regs)
252 {
253 #ifdef CONFIG_MMU
254 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
255 	return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
256 #else
257 	/* fork almost works, enough to trick you into looking elsewhere :-( */
258 	return -EINVAL;
259 #endif
260 }
261 
262 asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
263 			 unsigned long parent_tidptr,
264 			 unsigned long child_tidptr,
265 			 struct pt_regs __regs)
266 {
267 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
268 	if (!newsp)
269 		newsp = regs->regs[15];
270 	return do_fork(clone_flags, newsp, regs, 0,
271 			(int __user *)parent_tidptr,
272 			(int __user *)child_tidptr);
273 }
274 
275 /*
276  * This is trivial, and on the face of it looks like it
277  * could equally well be done in user mode.
278  *
279  * Not so, for quite unobvious reasons - register pressure.
280  * In user mode vfork() cannot have a stack frame, and if
281  * done by calling the "clone()" system call directly, you
282  * do not have enough call-clobbered registers to hold all
283  * the information you need.
284  */
285 asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
286 			 unsigned long r6, unsigned long r7,
287 			 struct pt_regs __regs)
288 {
289 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
290 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
291 		       0, NULL, NULL);
292 }
293 
294 /*
295  * sys_execve() executes a new program.
296  */
297 asmlinkage int sys_execve(const char __user *ufilename,
298 			  const char __user *const __user *uargv,
299 			  const char __user *const __user *uenvp,
300 			  unsigned long r7, struct pt_regs __regs)
301 {
302 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
303 	int error;
304 	char *filename;
305 
306 	filename = getname(ufilename);
307 	error = PTR_ERR(filename);
308 	if (IS_ERR(filename))
309 		goto out;
310 
311 	error = do_execve(filename, uargv, uenvp, regs);
312 	putname(filename);
313 out:
314 	return error;
315 }
316 
317 unsigned long get_wchan(struct task_struct *p)
318 {
319 	unsigned long pc;
320 
321 	if (!p || p == current || p->state == TASK_RUNNING)
322 		return 0;
323 
324 	/*
325 	 * The same comment as on the Alpha applies here, too ...
326 	 */
327 	pc = thread_saved_pc(p);
328 
329 #ifdef CONFIG_FRAME_POINTER
330 	if (in_sched_functions(pc)) {
331 		unsigned long schedule_frame = (unsigned long)p->thread.sp;
332 		return ((unsigned long *)schedule_frame)[21];
333 	}
334 #endif
335 
336 	return pc;
337 }
338