xref: /linux/arch/sh/kernel/process.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /* $Id: process.c,v 1.28 2004/05/05 16:54:23 lethal Exp $
2  *
3  *  linux/arch/sh/kernel/process.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *
7  *  SuperH version:  Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
8  *		     Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
9  */
10 
11 /*
12  * This file handles the architecture-dependent parts of process handling..
13  */
14 
15 #include <linux/module.h>
16 #include <linux/unistd.h>
17 #include <linux/mm.h>
18 #include <linux/elfcore.h>
19 #include <linux/a.out.h>
20 #include <linux/slab.h>
21 #include <linux/pm.h>
22 #include <linux/ptrace.h>
23 #include <linux/kallsyms.h>
24 #include <linux/kexec.h>
25 
26 #include <asm/io.h>
27 #include <asm/uaccess.h>
28 #include <asm/mmu_context.h>
29 #include <asm/elf.h>
30 #include <asm/ubc.h>
31 
32 static int hlt_counter=0;
33 
34 int ubc_usercnt = 0;
35 
36 #define HARD_IDLE_TIMEOUT (HZ / 3)
37 
38 void (*pm_idle)(void);
39 
40 void (*pm_power_off)(void);
41 EXPORT_SYMBOL(pm_power_off);
42 
43 void disable_hlt(void)
44 {
45 	hlt_counter++;
46 }
47 
48 EXPORT_SYMBOL(disable_hlt);
49 
50 void enable_hlt(void)
51 {
52 	hlt_counter--;
53 }
54 
55 EXPORT_SYMBOL(enable_hlt);
56 
57 void default_idle(void)
58 {
59 	if (!hlt_counter)
60 		cpu_sleep();
61 	else
62 		cpu_relax();
63 }
64 
65 void cpu_idle(void)
66 {
67 	/* endless idle loop with no priority at all */
68 	while (1) {
69 		void (*idle)(void) = pm_idle;
70 
71 		if (!idle)
72 			idle = default_idle;
73 
74 		while (!need_resched())
75 			idle();
76 
77 		preempt_enable_no_resched();
78 		schedule();
79 		preempt_disable();
80 	}
81 }
82 
83 void machine_restart(char * __unused)
84 {
85 	/* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
86 	asm volatile("ldc %0, sr\n\t"
87 		     "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
88 }
89 
90 void machine_halt(void)
91 {
92 	local_irq_disable();
93 
94 	while (1)
95 		cpu_sleep();
96 }
97 
98 void machine_power_off(void)
99 {
100 	if (pm_power_off)
101 		pm_power_off();
102 }
103 
104 void show_regs(struct pt_regs * regs)
105 {
106 	printk("\n");
107 	printk("Pid : %d, Comm: %20s\n", current->pid, current->comm);
108 	print_symbol("PC is at %s\n", instruction_pointer(regs));
109 	printk("PC  : %08lx SP  : %08lx SR  : %08lx ",
110 	       regs->pc, regs->regs[15], regs->sr);
111 #ifdef CONFIG_MMU
112 	printk("TEA : %08x    ", ctrl_inl(MMU_TEA));
113 #else
114 	printk("                  ");
115 #endif
116 	printk("%s\n", print_tainted());
117 
118 	printk("R0  : %08lx R1  : %08lx R2  : %08lx R3  : %08lx\n",
119 	       regs->regs[0],regs->regs[1],
120 	       regs->regs[2],regs->regs[3]);
121 	printk("R4  : %08lx R5  : %08lx R6  : %08lx R7  : %08lx\n",
122 	       regs->regs[4],regs->regs[5],
123 	       regs->regs[6],regs->regs[7]);
124 	printk("R8  : %08lx R9  : %08lx R10 : %08lx R11 : %08lx\n",
125 	       regs->regs[8],regs->regs[9],
126 	       regs->regs[10],regs->regs[11]);
127 	printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
128 	       regs->regs[12],regs->regs[13],
129 	       regs->regs[14]);
130 	printk("MACH: %08lx MACL: %08lx GBR : %08lx PR  : %08lx\n",
131 	       regs->mach, regs->macl, regs->gbr, regs->pr);
132 
133 	show_trace(NULL, (unsigned long *)regs->regs[15], regs);
134 }
135 
136 /*
137  * Create a kernel thread
138  */
139 
140 /*
141  * This is the mechanism for creating a new kernel thread.
142  *
143  */
144 extern void kernel_thread_helper(void);
145 __asm__(".align 5\n"
146 	"kernel_thread_helper:\n\t"
147 	"jsr	@r5\n\t"
148 	" nop\n\t"
149 	"mov.l	1f, r1\n\t"
150 	"jsr	@r1\n\t"
151 	" mov	r0, r4\n\t"
152 	".align 2\n\t"
153 	"1:.long do_exit");
154 
155 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
156 {	/* Don't use this in BL=1(cli).  Or else, CPU resets! */
157 	struct pt_regs regs;
158 
159 	memset(&regs, 0, sizeof(regs));
160 	regs.regs[4] = (unsigned long) arg;
161 	regs.regs[5] = (unsigned long) fn;
162 
163 	regs.pc = (unsigned long) kernel_thread_helper;
164 	regs.sr = (1 << 30);
165 
166 	/* Ok, create the new process.. */
167 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
168 }
169 
170 /*
171  * Free current thread data structures etc..
172  */
173 void exit_thread(void)
174 {
175 	if (current->thread.ubc_pc) {
176 		current->thread.ubc_pc = 0;
177 		ubc_usercnt -= 1;
178 	}
179 }
180 
181 void flush_thread(void)
182 {
183 #if defined(CONFIG_SH_FPU)
184 	struct task_struct *tsk = current;
185 	/* Forget lazy FPU state */
186 	clear_fpu(tsk, task_pt_regs(tsk));
187 	clear_used_math();
188 #endif
189 }
190 
191 void release_thread(struct task_struct *dead_task)
192 {
193 	/* do nothing */
194 }
195 
196 /* Fill in the fpu structure for a core dump.. */
197 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
198 {
199 	int fpvalid = 0;
200 
201 #if defined(CONFIG_SH_FPU)
202 	struct task_struct *tsk = current;
203 
204 	fpvalid = !!tsk_used_math(tsk);
205 	if (fpvalid) {
206 		unlazy_fpu(tsk, regs);
207 		memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
208 	}
209 #endif
210 
211 	return fpvalid;
212 }
213 
214 /*
215  * Capture the user space registers if the task is not running (in user space)
216  */
217 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
218 {
219 	struct pt_regs ptregs;
220 
221 	ptregs = *task_pt_regs(tsk);
222 	elf_core_copy_regs(regs, &ptregs);
223 
224 	return 1;
225 }
226 
227 int
228 dump_task_fpu (struct task_struct *tsk, elf_fpregset_t *fpu)
229 {
230 	int fpvalid = 0;
231 
232 #if defined(CONFIG_SH_FPU)
233 	fpvalid = !!tsk_used_math(tsk);
234 	if (fpvalid) {
235 		unlazy_fpu(tsk, task_pt_regs(tsk));
236 		memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
237 	}
238 #endif
239 
240 	return fpvalid;
241 }
242 
243 asmlinkage void ret_from_fork(void);
244 
245 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
246 		unsigned long unused,
247 		struct task_struct *p, struct pt_regs *regs)
248 {
249 	struct thread_info *ti = task_thread_info(p);
250 	struct pt_regs *childregs;
251 #if defined(CONFIG_SH_FPU)
252 	struct task_struct *tsk = current;
253 
254 	unlazy_fpu(tsk, regs);
255 	p->thread.fpu = tsk->thread.fpu;
256 	copy_to_stopped_child_used_math(p);
257 #endif
258 
259 	childregs = task_pt_regs(p);
260 	*childregs = *regs;
261 
262 	if (user_mode(regs)) {
263 		childregs->regs[15] = usp;
264 		ti->addr_limit = USER_DS;
265 	} else {
266 		childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
267 		ti->addr_limit = KERNEL_DS;
268 	}
269         if (clone_flags & CLONE_SETTLS) {
270 		childregs->gbr = childregs->regs[0];
271 	}
272 	childregs->regs[0] = 0; /* Set return value for child */
273 
274 	p->thread.sp = (unsigned long) childregs;
275 	p->thread.pc = (unsigned long) ret_from_fork;
276 
277 	p->thread.ubc_pc = 0;
278 
279 	return 0;
280 }
281 
282 /* Tracing by user break controller.  */
283 static void
284 ubc_set_tracing(int asid, unsigned long pc)
285 {
286 #if defined(CONFIG_CPU_SH4A)
287 	unsigned long val;
288 
289 	val = (UBC_CBR_ID_INST | UBC_CBR_RW_READ | UBC_CBR_CE);
290 	val |= (UBC_CBR_AIE | UBC_CBR_AIV_SET(asid));
291 
292 	ctrl_outl(val, UBC_CBR0);
293 	ctrl_outl(pc,  UBC_CAR0);
294 	ctrl_outl(0x0, UBC_CAMR0);
295 	ctrl_outl(0x0, UBC_CBCR);
296 
297 	val = (UBC_CRR_RES | UBC_CRR_PCB | UBC_CRR_BIE);
298 	ctrl_outl(val, UBC_CRR0);
299 
300 	/* Read UBC register that we writed last. For chekking UBC Register changed */
301 	val = ctrl_inl(UBC_CRR0);
302 
303 #else	/* CONFIG_CPU_SH4A */
304 	ctrl_outl(pc, UBC_BARA);
305 
306 #ifdef CONFIG_MMU
307 	/* We don't have any ASID settings for the SH-2! */
308 	if (cpu_data->type != CPU_SH7604)
309 		ctrl_outb(asid, UBC_BASRA);
310 #endif
311 
312 	ctrl_outl(0, UBC_BAMRA);
313 
314 	if (cpu_data->type == CPU_SH7729 || cpu_data->type == CPU_SH7710) {
315 		ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
316 		ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
317 	} else {
318 		ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
319 		ctrl_outw(BRCR_PCBA, UBC_BRCR);
320 	}
321 #endif	/* CONFIG_CPU_SH4A */
322 }
323 
324 /*
325  *	switch_to(x,y) should switch tasks from x to y.
326  *
327  */
328 struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next)
329 {
330 #if defined(CONFIG_SH_FPU)
331 	unlazy_fpu(prev, task_pt_regs(prev));
332 #endif
333 
334 #ifdef CONFIG_PREEMPT
335 	{
336 		unsigned long flags;
337 		struct pt_regs *regs;
338 
339 		local_irq_save(flags);
340 		regs = task_pt_regs(prev);
341 		if (user_mode(regs) && regs->regs[15] >= 0xc0000000) {
342 			int offset = (int)regs->regs[15];
343 
344 			/* Reset stack pointer: clear critical region mark */
345 			regs->regs[15] = regs->regs[1];
346 			if (regs->pc < regs->regs[0])
347 				/* Go to rewind point */
348 				regs->pc = regs->regs[0] + offset;
349 		}
350 		local_irq_restore(flags);
351 	}
352 #endif
353 
354 #ifdef CONFIG_MMU
355 	/*
356 	 * Restore the kernel mode register
357 	 *   	k7 (r7_bank1)
358 	 */
359 	asm volatile("ldc	%0, r7_bank"
360 		     : /* no output */
361 		     : "r" (task_thread_info(next)));
362 #endif
363 
364 	/* If no tasks are using the UBC, we're done */
365 	if (ubc_usercnt == 0)
366 		/* If no tasks are using the UBC, we're done */;
367 	else if (next->thread.ubc_pc && next->mm) {
368 		int asid = 0;
369 #ifdef CONFIG_MMU
370 		asid |= next->mm->context.id & MMU_CONTEXT_ASID_MASK;
371 #endif
372 		ubc_set_tracing(asid, next->thread.ubc_pc);
373 	} else {
374 #if defined(CONFIG_CPU_SH4A)
375 		ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
376 		ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
377 #else
378 		ctrl_outw(0, UBC_BBRA);
379 		ctrl_outw(0, UBC_BBRB);
380 #endif
381 	}
382 
383 	return prev;
384 }
385 
386 asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
387 			unsigned long r6, unsigned long r7,
388 			struct pt_regs __regs)
389 {
390 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
391 #ifdef CONFIG_MMU
392 	return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
393 #else
394 	/* fork almost works, enough to trick you into looking elsewhere :-( */
395 	return -EINVAL;
396 #endif
397 }
398 
399 asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
400 			 unsigned long parent_tidptr,
401 			 unsigned long child_tidptr,
402 			 struct pt_regs __regs)
403 {
404 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
405 	if (!newsp)
406 		newsp = regs->regs[15];
407 	return do_fork(clone_flags, newsp, regs, 0,
408 			(int __user *)parent_tidptr, (int __user *)child_tidptr);
409 }
410 
411 /*
412  * This is trivial, and on the face of it looks like it
413  * could equally well be done in user mode.
414  *
415  * Not so, for quite unobvious reasons - register pressure.
416  * In user mode vfork() cannot have a stack frame, and if
417  * done by calling the "clone()" system call directly, you
418  * do not have enough call-clobbered registers to hold all
419  * the information you need.
420  */
421 asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
422 			 unsigned long r6, unsigned long r7,
423 			 struct pt_regs __regs)
424 {
425 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
426 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
427 		       0, NULL, NULL);
428 }
429 
430 /*
431  * sys_execve() executes a new program.
432  */
433 asmlinkage int sys_execve(char *ufilename, char **uargv,
434 			  char **uenvp, unsigned long r7,
435 			  struct pt_regs __regs)
436 {
437 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
438 	int error;
439 	char *filename;
440 
441 	filename = getname((char __user *)ufilename);
442 	error = PTR_ERR(filename);
443 	if (IS_ERR(filename))
444 		goto out;
445 
446 	error = do_execve(filename,
447 			  (char __user * __user *)uargv,
448 			  (char __user * __user *)uenvp,
449 			  regs);
450 	if (error == 0) {
451 		task_lock(current);
452 		current->ptrace &= ~PT_DTRACE;
453 		task_unlock(current);
454 	}
455 	putname(filename);
456 out:
457 	return error;
458 }
459 
460 unsigned long get_wchan(struct task_struct *p)
461 {
462 	unsigned long schedule_frame;
463 	unsigned long pc;
464 
465 	if (!p || p == current || p->state == TASK_RUNNING)
466 		return 0;
467 
468 	/*
469 	 * The same comment as on the Alpha applies here, too ...
470 	 */
471 	pc = thread_saved_pc(p);
472 	if (in_sched_functions(pc)) {
473 		schedule_frame = (unsigned long)p->thread.sp;
474 		return ((unsigned long *)schedule_frame)[21];
475 	}
476 
477 	return pc;
478 }
479 
480 asmlinkage void break_point_trap(void)
481 {
482 	/* Clear tracing.  */
483 #if defined(CONFIG_CPU_SH4A)
484 	ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
485 	ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
486 #else
487 	ctrl_outw(0, UBC_BBRA);
488 	ctrl_outw(0, UBC_BBRB);
489 #endif
490 	current->thread.ubc_pc = 0;
491 	ubc_usercnt -= 1;
492 
493 	force_sig(SIGTRAP, current);
494 }
495 
496 asmlinkage void break_point_trap_software(unsigned long r4, unsigned long r5,
497 					  unsigned long r6, unsigned long r7,
498 					  struct pt_regs __regs)
499 {
500 	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
501 
502 	/* Rewind */
503 	regs->pc -= 2;
504 
505 #ifdef CONFIG_BUG
506 	if (__kernel_text_address(instruction_pointer(regs))) {
507 		u16 insn = *(u16 *)instruction_pointer(regs);
508 		if (insn == TRAPA_BUG_OPCODE)
509 			handle_BUG(regs);
510 	}
511 #endif
512 
513 	force_sig(SIGTRAP, current);
514 }
515