xref: /linux/arch/sh/kernel/perf_event.c (revision e26207a3819684e9b4450a2d30bdd065fa92d9c7)
1 /*
2  * Performance event support framework for SuperH hardware counters.
3  *
4  *  Copyright (C) 2009  Paul Mundt
5  *
6  * Heavily based on the x86 and PowerPC implementations.
7  *
8  * x86:
9  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11  *  Copyright (C) 2009 Jaswinder Singh Rajput
12  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
14  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
15  *
16  * ppc:
17  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
18  *
19  * This file is subject to the terms and conditions of the GNU General Public
20  * License.  See the file "COPYING" in the main directory of this archive
21  * for more details.
22  */
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/perf_event.h>
28 #include <asm/processor.h>
29 
30 struct cpu_hw_events {
31 	struct perf_event	*events[MAX_HWEVENTS];
32 	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
33 	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
34 };
35 
36 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
37 
38 static struct sh_pmu *sh_pmu __read_mostly;
39 
40 /* Number of perf_events counting hardware events */
41 static atomic_t num_events;
42 /* Used to avoid races in calling reserve/release_pmc_hardware */
43 static DEFINE_MUTEX(pmc_reserve_mutex);
44 
45 /*
46  * Stub these out for now, do something more profound later.
47  */
48 int reserve_pmc_hardware(void)
49 {
50 	return 0;
51 }
52 
53 void release_pmc_hardware(void)
54 {
55 }
56 
57 static inline int sh_pmu_initialized(void)
58 {
59 	return !!sh_pmu;
60 }
61 
62 /*
63  * Release the PMU if this is the last perf_event.
64  */
65 static void hw_perf_event_destroy(struct perf_event *event)
66 {
67 	if (!atomic_add_unless(&num_events, -1, 1)) {
68 		mutex_lock(&pmc_reserve_mutex);
69 		if (atomic_dec_return(&num_events) == 0)
70 			release_pmc_hardware();
71 		mutex_unlock(&pmc_reserve_mutex);
72 	}
73 }
74 
75 static int hw_perf_cache_event(int config, int *evp)
76 {
77 	unsigned long type, op, result;
78 	int ev;
79 
80 	if (!sh_pmu->cache_events)
81 		return -EINVAL;
82 
83 	/* unpack config */
84 	type = config & 0xff;
85 	op = (config >> 8) & 0xff;
86 	result = (config >> 16) & 0xff;
87 
88 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
89 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
90 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
91 		return -EINVAL;
92 
93 	ev = (*sh_pmu->cache_events)[type][op][result];
94 	if (ev == 0)
95 		return -EOPNOTSUPP;
96 	if (ev == -1)
97 		return -EINVAL;
98 	*evp = ev;
99 	return 0;
100 }
101 
102 static int __hw_perf_event_init(struct perf_event *event)
103 {
104 	struct perf_event_attr *attr = &event->attr;
105 	struct hw_perf_event *hwc = &event->hw;
106 	int config = -1;
107 	int err;
108 
109 	if (!sh_pmu_initialized())
110 		return -ENODEV;
111 
112 	/*
113 	 * All of the on-chip counters are "limited", in that they have
114 	 * no interrupts, and are therefore unable to do sampling without
115 	 * further work and timer assistance.
116 	 */
117 	if (hwc->sample_period)
118 		return -EINVAL;
119 
120 	/*
121 	 * See if we need to reserve the counter.
122 	 *
123 	 * If no events are currently in use, then we have to take a
124 	 * mutex to ensure that we don't race with another task doing
125 	 * reserve_pmc_hardware or release_pmc_hardware.
126 	 */
127 	err = 0;
128 	if (!atomic_inc_not_zero(&num_events)) {
129 		mutex_lock(&pmc_reserve_mutex);
130 		if (atomic_read(&num_events) == 0 &&
131 		    reserve_pmc_hardware())
132 			err = -EBUSY;
133 		else
134 			atomic_inc(&num_events);
135 		mutex_unlock(&pmc_reserve_mutex);
136 	}
137 
138 	if (err)
139 		return err;
140 
141 	event->destroy = hw_perf_event_destroy;
142 
143 	switch (attr->type) {
144 	case PERF_TYPE_RAW:
145 		config = attr->config & sh_pmu->raw_event_mask;
146 		break;
147 	case PERF_TYPE_HW_CACHE:
148 		err = hw_perf_cache_event(attr->config, &config);
149 		if (err)
150 			return err;
151 		break;
152 	case PERF_TYPE_HARDWARE:
153 		if (attr->config >= sh_pmu->max_events)
154 			return -EINVAL;
155 
156 		config = sh_pmu->event_map(attr->config);
157 		break;
158 	}
159 
160 	if (config == -1)
161 		return -EINVAL;
162 
163 	hwc->config |= config;
164 
165 	return 0;
166 }
167 
168 static void sh_perf_event_update(struct perf_event *event,
169 				   struct hw_perf_event *hwc, int idx)
170 {
171 	u64 prev_raw_count, new_raw_count;
172 	s64 delta;
173 	int shift = 0;
174 
175 	/*
176 	 * Depending on the counter configuration, they may or may not
177 	 * be chained, in which case the previous counter value can be
178 	 * updated underneath us if the lower-half overflows.
179 	 *
180 	 * Our tactic to handle this is to first atomically read and
181 	 * exchange a new raw count - then add that new-prev delta
182 	 * count to the generic counter atomically.
183 	 *
184 	 * As there is no interrupt associated with the overflow events,
185 	 * this is the simplest approach for maintaining consistency.
186 	 */
187 again:
188 	prev_raw_count = atomic64_read(&hwc->prev_count);
189 	new_raw_count = sh_pmu->read(idx);
190 
191 	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
192 			     new_raw_count) != prev_raw_count)
193 		goto again;
194 
195 	/*
196 	 * Now we have the new raw value and have updated the prev
197 	 * timestamp already. We can now calculate the elapsed delta
198 	 * (counter-)time and add that to the generic counter.
199 	 *
200 	 * Careful, not all hw sign-extends above the physical width
201 	 * of the count.
202 	 */
203 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
204 	delta >>= shift;
205 
206 	atomic64_add(delta, &event->count);
207 }
208 
209 static void sh_pmu_disable(struct perf_event *event)
210 {
211 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
212 	struct hw_perf_event *hwc = &event->hw;
213 	int idx = hwc->idx;
214 
215 	clear_bit(idx, cpuc->active_mask);
216 	sh_pmu->disable(hwc, idx);
217 
218 	barrier();
219 
220 	sh_perf_event_update(event, &event->hw, idx);
221 
222 	cpuc->events[idx] = NULL;
223 	clear_bit(idx, cpuc->used_mask);
224 
225 	perf_event_update_userpage(event);
226 }
227 
228 static int sh_pmu_enable(struct perf_event *event)
229 {
230 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
231 	struct hw_perf_event *hwc = &event->hw;
232 	int idx = hwc->idx;
233 
234 	if (test_and_set_bit(idx, cpuc->used_mask)) {
235 		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
236 		if (idx == sh_pmu->num_events)
237 			return -EAGAIN;
238 
239 		set_bit(idx, cpuc->used_mask);
240 		hwc->idx = idx;
241 	}
242 
243 	sh_pmu->disable(hwc, idx);
244 
245 	cpuc->events[idx] = event;
246 	set_bit(idx, cpuc->active_mask);
247 
248 	sh_pmu->enable(hwc, idx);
249 
250 	perf_event_update_userpage(event);
251 
252 	return 0;
253 }
254 
255 static void sh_pmu_read(struct perf_event *event)
256 {
257 	sh_perf_event_update(event, &event->hw, event->hw.idx);
258 }
259 
260 static const struct pmu pmu = {
261 	.enable		= sh_pmu_enable,
262 	.disable	= sh_pmu_disable,
263 	.read		= sh_pmu_read,
264 };
265 
266 const struct pmu *hw_perf_event_init(struct perf_event *event)
267 {
268 	int err = __hw_perf_event_init(event);
269 	if (unlikely(err)) {
270 		if (event->destroy)
271 			event->destroy(event);
272 		return ERR_PTR(err);
273 	}
274 
275 	return &pmu;
276 }
277 
278 void hw_perf_event_setup(int cpu)
279 {
280 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
281 
282 	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
283 }
284 
285 void hw_perf_enable(void)
286 {
287 	if (!sh_pmu_initialized())
288 		return;
289 
290 	sh_pmu->enable_all();
291 }
292 
293 void hw_perf_disable(void)
294 {
295 	if (!sh_pmu_initialized())
296 		return;
297 
298 	sh_pmu->disable_all();
299 }
300 
301 int register_sh_pmu(struct sh_pmu *pmu)
302 {
303 	if (sh_pmu)
304 		return -EBUSY;
305 	sh_pmu = pmu;
306 
307 	pr_info("Performance Events: %s support registered\n", pmu->name);
308 
309 	WARN_ON(pmu->num_events > MAX_HWEVENTS);
310 
311 	return 0;
312 }
313