xref: /linux/arch/sh/kernel/perf_event.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support framework for SuperH hardware counters.
4  *
5  *  Copyright (C) 2009  Paul Mundt
6  *
7  * Heavily based on the x86 and PowerPC implementations.
8  *
9  * x86:
10  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
11  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
12  *  Copyright (C) 2009 Jaswinder Singh Rajput
13  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
14  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
15  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
16  *
17  * ppc:
18  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
19  */
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/perf_event.h>
25 #include <linux/export.h>
26 #include <asm/processor.h>
27 
28 struct cpu_hw_events {
29 	struct perf_event	*events[MAX_HWEVENTS];
30 	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
31 	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
32 };
33 
34 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
35 
36 static struct sh_pmu *sh_pmu __read_mostly;
37 
38 /* Number of perf_events counting hardware events */
39 static atomic_t num_events;
40 /* Used to avoid races in calling reserve/release_pmc_hardware */
41 static DEFINE_MUTEX(pmc_reserve_mutex);
42 
43 /*
44  * Stub these out for now, do something more profound later.
45  */
46 int reserve_pmc_hardware(void)
47 {
48 	return 0;
49 }
50 
51 void release_pmc_hardware(void)
52 {
53 }
54 
55 static inline int sh_pmu_initialized(void)
56 {
57 	return !!sh_pmu;
58 }
59 
60 const char *perf_pmu_name(void)
61 {
62 	if (!sh_pmu)
63 		return NULL;
64 
65 	return sh_pmu->name;
66 }
67 EXPORT_SYMBOL_GPL(perf_pmu_name);
68 
69 int perf_num_counters(void)
70 {
71 	if (!sh_pmu)
72 		return 0;
73 
74 	return sh_pmu->num_events;
75 }
76 EXPORT_SYMBOL_GPL(perf_num_counters);
77 
78 /*
79  * Release the PMU if this is the last perf_event.
80  */
81 static void hw_perf_event_destroy(struct perf_event *event)
82 {
83 	if (!atomic_add_unless(&num_events, -1, 1)) {
84 		mutex_lock(&pmc_reserve_mutex);
85 		if (atomic_dec_return(&num_events) == 0)
86 			release_pmc_hardware();
87 		mutex_unlock(&pmc_reserve_mutex);
88 	}
89 }
90 
91 static int hw_perf_cache_event(int config, int *evp)
92 {
93 	unsigned long type, op, result;
94 	int ev;
95 
96 	if (!sh_pmu->cache_events)
97 		return -EINVAL;
98 
99 	/* unpack config */
100 	type = config & 0xff;
101 	op = (config >> 8) & 0xff;
102 	result = (config >> 16) & 0xff;
103 
104 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
105 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
106 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
107 		return -EINVAL;
108 
109 	ev = (*sh_pmu->cache_events)[type][op][result];
110 	if (ev == 0)
111 		return -EOPNOTSUPP;
112 	if (ev == -1)
113 		return -EINVAL;
114 	*evp = ev;
115 	return 0;
116 }
117 
118 static int __hw_perf_event_init(struct perf_event *event)
119 {
120 	struct perf_event_attr *attr = &event->attr;
121 	struct hw_perf_event *hwc = &event->hw;
122 	int config = -1;
123 	int err;
124 
125 	if (!sh_pmu_initialized())
126 		return -ENODEV;
127 
128 	/*
129 	 * See if we need to reserve the counter.
130 	 *
131 	 * If no events are currently in use, then we have to take a
132 	 * mutex to ensure that we don't race with another task doing
133 	 * reserve_pmc_hardware or release_pmc_hardware.
134 	 */
135 	err = 0;
136 	if (!atomic_inc_not_zero(&num_events)) {
137 		mutex_lock(&pmc_reserve_mutex);
138 		if (atomic_read(&num_events) == 0 &&
139 		    reserve_pmc_hardware())
140 			err = -EBUSY;
141 		else
142 			atomic_inc(&num_events);
143 		mutex_unlock(&pmc_reserve_mutex);
144 	}
145 
146 	if (err)
147 		return err;
148 
149 	event->destroy = hw_perf_event_destroy;
150 
151 	switch (attr->type) {
152 	case PERF_TYPE_RAW:
153 		config = attr->config & sh_pmu->raw_event_mask;
154 		break;
155 	case PERF_TYPE_HW_CACHE:
156 		err = hw_perf_cache_event(attr->config, &config);
157 		if (err)
158 			return err;
159 		break;
160 	case PERF_TYPE_HARDWARE:
161 		if (attr->config >= sh_pmu->max_events)
162 			return -EINVAL;
163 
164 		config = sh_pmu->event_map(attr->config);
165 		break;
166 	}
167 
168 	if (config == -1)
169 		return -EINVAL;
170 
171 	hwc->config |= config;
172 
173 	return 0;
174 }
175 
176 static void sh_perf_event_update(struct perf_event *event,
177 				   struct hw_perf_event *hwc, int idx)
178 {
179 	u64 prev_raw_count, new_raw_count;
180 	s64 delta;
181 	int shift = 0;
182 
183 	/*
184 	 * Depending on the counter configuration, they may or may not
185 	 * be chained, in which case the previous counter value can be
186 	 * updated underneath us if the lower-half overflows.
187 	 *
188 	 * Our tactic to handle this is to first atomically read and
189 	 * exchange a new raw count - then add that new-prev delta
190 	 * count to the generic counter atomically.
191 	 *
192 	 * As there is no interrupt associated with the overflow events,
193 	 * this is the simplest approach for maintaining consistency.
194 	 */
195 again:
196 	prev_raw_count = local64_read(&hwc->prev_count);
197 	new_raw_count = sh_pmu->read(idx);
198 
199 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
200 			     new_raw_count) != prev_raw_count)
201 		goto again;
202 
203 	/*
204 	 * Now we have the new raw value and have updated the prev
205 	 * timestamp already. We can now calculate the elapsed delta
206 	 * (counter-)time and add that to the generic counter.
207 	 *
208 	 * Careful, not all hw sign-extends above the physical width
209 	 * of the count.
210 	 */
211 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
212 	delta >>= shift;
213 
214 	local64_add(delta, &event->count);
215 }
216 
217 static void sh_pmu_stop(struct perf_event *event, int flags)
218 {
219 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
220 	struct hw_perf_event *hwc = &event->hw;
221 	int idx = hwc->idx;
222 
223 	if (!(event->hw.state & PERF_HES_STOPPED)) {
224 		sh_pmu->disable(hwc, idx);
225 		cpuc->events[idx] = NULL;
226 		event->hw.state |= PERF_HES_STOPPED;
227 	}
228 
229 	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
230 		sh_perf_event_update(event, &event->hw, idx);
231 		event->hw.state |= PERF_HES_UPTODATE;
232 	}
233 }
234 
235 static void sh_pmu_start(struct perf_event *event, int flags)
236 {
237 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
238 	struct hw_perf_event *hwc = &event->hw;
239 	int idx = hwc->idx;
240 
241 	if (WARN_ON_ONCE(idx == -1))
242 		return;
243 
244 	if (flags & PERF_EF_RELOAD)
245 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
246 
247 	cpuc->events[idx] = event;
248 	event->hw.state = 0;
249 	sh_pmu->enable(hwc, idx);
250 }
251 
252 static void sh_pmu_del(struct perf_event *event, int flags)
253 {
254 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
255 
256 	sh_pmu_stop(event, PERF_EF_UPDATE);
257 	__clear_bit(event->hw.idx, cpuc->used_mask);
258 
259 	perf_event_update_userpage(event);
260 }
261 
262 static int sh_pmu_add(struct perf_event *event, int flags)
263 {
264 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
265 	struct hw_perf_event *hwc = &event->hw;
266 	int idx = hwc->idx;
267 	int ret = -EAGAIN;
268 
269 	perf_pmu_disable(event->pmu);
270 
271 	if (__test_and_set_bit(idx, cpuc->used_mask)) {
272 		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
273 		if (idx == sh_pmu->num_events)
274 			goto out;
275 
276 		__set_bit(idx, cpuc->used_mask);
277 		hwc->idx = idx;
278 	}
279 
280 	sh_pmu->disable(hwc, idx);
281 
282 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
283 	if (flags & PERF_EF_START)
284 		sh_pmu_start(event, PERF_EF_RELOAD);
285 
286 	perf_event_update_userpage(event);
287 	ret = 0;
288 out:
289 	perf_pmu_enable(event->pmu);
290 	return ret;
291 }
292 
293 static void sh_pmu_read(struct perf_event *event)
294 {
295 	sh_perf_event_update(event, &event->hw, event->hw.idx);
296 }
297 
298 static int sh_pmu_event_init(struct perf_event *event)
299 {
300 	int err;
301 
302 	/* does not support taken branch sampling */
303 	if (has_branch_stack(event))
304 		return -EOPNOTSUPP;
305 
306 	switch (event->attr.type) {
307 	case PERF_TYPE_RAW:
308 	case PERF_TYPE_HW_CACHE:
309 	case PERF_TYPE_HARDWARE:
310 		err = __hw_perf_event_init(event);
311 		break;
312 
313 	default:
314 		return -ENOENT;
315 	}
316 
317 	if (unlikely(err)) {
318 		if (event->destroy)
319 			event->destroy(event);
320 	}
321 
322 	return err;
323 }
324 
325 static void sh_pmu_enable(struct pmu *pmu)
326 {
327 	if (!sh_pmu_initialized())
328 		return;
329 
330 	sh_pmu->enable_all();
331 }
332 
333 static void sh_pmu_disable(struct pmu *pmu)
334 {
335 	if (!sh_pmu_initialized())
336 		return;
337 
338 	sh_pmu->disable_all();
339 }
340 
341 static struct pmu pmu = {
342 	.pmu_enable	= sh_pmu_enable,
343 	.pmu_disable	= sh_pmu_disable,
344 	.event_init	= sh_pmu_event_init,
345 	.add		= sh_pmu_add,
346 	.del		= sh_pmu_del,
347 	.start		= sh_pmu_start,
348 	.stop		= sh_pmu_stop,
349 	.read		= sh_pmu_read,
350 };
351 
352 static int sh_pmu_prepare_cpu(unsigned int cpu)
353 {
354 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
355 
356 	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
357 	return 0;
358 }
359 
360 int register_sh_pmu(struct sh_pmu *_pmu)
361 {
362 	if (sh_pmu)
363 		return -EBUSY;
364 	sh_pmu = _pmu;
365 
366 	pr_info("Performance Events: %s support registered\n", _pmu->name);
367 
368 	/*
369 	 * All of the on-chip counters are "limited", in that they have
370 	 * no interrupts, and are therefore unable to do sampling without
371 	 * further work and timer assistance.
372 	 */
373 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
374 
375 	WARN_ON(_pmu->num_events > MAX_HWEVENTS);
376 
377 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
378 	cpuhp_setup_state(CPUHP_PERF_SUPERH, "PERF_SUPERH", sh_pmu_prepare_cpu,
379 			  NULL);
380 	return 0;
381 }
382