xref: /linux/arch/sh/kernel/perf_event.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Performance event support framework for SuperH hardware counters.
3  *
4  *  Copyright (C) 2009  Paul Mundt
5  *
6  * Heavily based on the x86 and PowerPC implementations.
7  *
8  * x86:
9  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11  *  Copyright (C) 2009 Jaswinder Singh Rajput
12  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
14  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
15  *
16  * ppc:
17  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
18  *
19  * This file is subject to the terms and conditions of the GNU General Public
20  * License.  See the file "COPYING" in the main directory of this archive
21  * for more details.
22  */
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/perf_event.h>
28 #include <linux/export.h>
29 #include <asm/processor.h>
30 
31 struct cpu_hw_events {
32 	struct perf_event	*events[MAX_HWEVENTS];
33 	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
34 	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
35 };
36 
37 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
38 
39 static struct sh_pmu *sh_pmu __read_mostly;
40 
41 /* Number of perf_events counting hardware events */
42 static atomic_t num_events;
43 /* Used to avoid races in calling reserve/release_pmc_hardware */
44 static DEFINE_MUTEX(pmc_reserve_mutex);
45 
46 /*
47  * Stub these out for now, do something more profound later.
48  */
49 int reserve_pmc_hardware(void)
50 {
51 	return 0;
52 }
53 
54 void release_pmc_hardware(void)
55 {
56 }
57 
58 static inline int sh_pmu_initialized(void)
59 {
60 	return !!sh_pmu;
61 }
62 
63 const char *perf_pmu_name(void)
64 {
65 	if (!sh_pmu)
66 		return NULL;
67 
68 	return sh_pmu->name;
69 }
70 EXPORT_SYMBOL_GPL(perf_pmu_name);
71 
72 int perf_num_counters(void)
73 {
74 	if (!sh_pmu)
75 		return 0;
76 
77 	return sh_pmu->num_events;
78 }
79 EXPORT_SYMBOL_GPL(perf_num_counters);
80 
81 /*
82  * Release the PMU if this is the last perf_event.
83  */
84 static void hw_perf_event_destroy(struct perf_event *event)
85 {
86 	if (!atomic_add_unless(&num_events, -1, 1)) {
87 		mutex_lock(&pmc_reserve_mutex);
88 		if (atomic_dec_return(&num_events) == 0)
89 			release_pmc_hardware();
90 		mutex_unlock(&pmc_reserve_mutex);
91 	}
92 }
93 
94 static int hw_perf_cache_event(int config, int *evp)
95 {
96 	unsigned long type, op, result;
97 	int ev;
98 
99 	if (!sh_pmu->cache_events)
100 		return -EINVAL;
101 
102 	/* unpack config */
103 	type = config & 0xff;
104 	op = (config >> 8) & 0xff;
105 	result = (config >> 16) & 0xff;
106 
107 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
108 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
109 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
110 		return -EINVAL;
111 
112 	ev = (*sh_pmu->cache_events)[type][op][result];
113 	if (ev == 0)
114 		return -EOPNOTSUPP;
115 	if (ev == -1)
116 		return -EINVAL;
117 	*evp = ev;
118 	return 0;
119 }
120 
121 static int __hw_perf_event_init(struct perf_event *event)
122 {
123 	struct perf_event_attr *attr = &event->attr;
124 	struct hw_perf_event *hwc = &event->hw;
125 	int config = -1;
126 	int err;
127 
128 	if (!sh_pmu_initialized())
129 		return -ENODEV;
130 
131 	/*
132 	 * See if we need to reserve the counter.
133 	 *
134 	 * If no events are currently in use, then we have to take a
135 	 * mutex to ensure that we don't race with another task doing
136 	 * reserve_pmc_hardware or release_pmc_hardware.
137 	 */
138 	err = 0;
139 	if (!atomic_inc_not_zero(&num_events)) {
140 		mutex_lock(&pmc_reserve_mutex);
141 		if (atomic_read(&num_events) == 0 &&
142 		    reserve_pmc_hardware())
143 			err = -EBUSY;
144 		else
145 			atomic_inc(&num_events);
146 		mutex_unlock(&pmc_reserve_mutex);
147 	}
148 
149 	if (err)
150 		return err;
151 
152 	event->destroy = hw_perf_event_destroy;
153 
154 	switch (attr->type) {
155 	case PERF_TYPE_RAW:
156 		config = attr->config & sh_pmu->raw_event_mask;
157 		break;
158 	case PERF_TYPE_HW_CACHE:
159 		err = hw_perf_cache_event(attr->config, &config);
160 		if (err)
161 			return err;
162 		break;
163 	case PERF_TYPE_HARDWARE:
164 		if (attr->config >= sh_pmu->max_events)
165 			return -EINVAL;
166 
167 		config = sh_pmu->event_map(attr->config);
168 		break;
169 	}
170 
171 	if (config == -1)
172 		return -EINVAL;
173 
174 	hwc->config |= config;
175 
176 	return 0;
177 }
178 
179 static void sh_perf_event_update(struct perf_event *event,
180 				   struct hw_perf_event *hwc, int idx)
181 {
182 	u64 prev_raw_count, new_raw_count;
183 	s64 delta;
184 	int shift = 0;
185 
186 	/*
187 	 * Depending on the counter configuration, they may or may not
188 	 * be chained, in which case the previous counter value can be
189 	 * updated underneath us if the lower-half overflows.
190 	 *
191 	 * Our tactic to handle this is to first atomically read and
192 	 * exchange a new raw count - then add that new-prev delta
193 	 * count to the generic counter atomically.
194 	 *
195 	 * As there is no interrupt associated with the overflow events,
196 	 * this is the simplest approach for maintaining consistency.
197 	 */
198 again:
199 	prev_raw_count = local64_read(&hwc->prev_count);
200 	new_raw_count = sh_pmu->read(idx);
201 
202 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
203 			     new_raw_count) != prev_raw_count)
204 		goto again;
205 
206 	/*
207 	 * Now we have the new raw value and have updated the prev
208 	 * timestamp already. We can now calculate the elapsed delta
209 	 * (counter-)time and add that to the generic counter.
210 	 *
211 	 * Careful, not all hw sign-extends above the physical width
212 	 * of the count.
213 	 */
214 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
215 	delta >>= shift;
216 
217 	local64_add(delta, &event->count);
218 }
219 
220 static void sh_pmu_stop(struct perf_event *event, int flags)
221 {
222 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
223 	struct hw_perf_event *hwc = &event->hw;
224 	int idx = hwc->idx;
225 
226 	if (!(event->hw.state & PERF_HES_STOPPED)) {
227 		sh_pmu->disable(hwc, idx);
228 		cpuc->events[idx] = NULL;
229 		event->hw.state |= PERF_HES_STOPPED;
230 	}
231 
232 	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
233 		sh_perf_event_update(event, &event->hw, idx);
234 		event->hw.state |= PERF_HES_UPTODATE;
235 	}
236 }
237 
238 static void sh_pmu_start(struct perf_event *event, int flags)
239 {
240 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
241 	struct hw_perf_event *hwc = &event->hw;
242 	int idx = hwc->idx;
243 
244 	if (WARN_ON_ONCE(idx == -1))
245 		return;
246 
247 	if (flags & PERF_EF_RELOAD)
248 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
249 
250 	cpuc->events[idx] = event;
251 	event->hw.state = 0;
252 	sh_pmu->enable(hwc, idx);
253 }
254 
255 static void sh_pmu_del(struct perf_event *event, int flags)
256 {
257 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
258 
259 	sh_pmu_stop(event, PERF_EF_UPDATE);
260 	__clear_bit(event->hw.idx, cpuc->used_mask);
261 
262 	perf_event_update_userpage(event);
263 }
264 
265 static int sh_pmu_add(struct perf_event *event, int flags)
266 {
267 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
268 	struct hw_perf_event *hwc = &event->hw;
269 	int idx = hwc->idx;
270 	int ret = -EAGAIN;
271 
272 	perf_pmu_disable(event->pmu);
273 
274 	if (__test_and_set_bit(idx, cpuc->used_mask)) {
275 		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
276 		if (idx == sh_pmu->num_events)
277 			goto out;
278 
279 		__set_bit(idx, cpuc->used_mask);
280 		hwc->idx = idx;
281 	}
282 
283 	sh_pmu->disable(hwc, idx);
284 
285 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
286 	if (flags & PERF_EF_START)
287 		sh_pmu_start(event, PERF_EF_RELOAD);
288 
289 	perf_event_update_userpage(event);
290 	ret = 0;
291 out:
292 	perf_pmu_enable(event->pmu);
293 	return ret;
294 }
295 
296 static void sh_pmu_read(struct perf_event *event)
297 {
298 	sh_perf_event_update(event, &event->hw, event->hw.idx);
299 }
300 
301 static int sh_pmu_event_init(struct perf_event *event)
302 {
303 	int err;
304 
305 	/* does not support taken branch sampling */
306 	if (has_branch_stack(event))
307 		return -EOPNOTSUPP;
308 
309 	switch (event->attr.type) {
310 	case PERF_TYPE_RAW:
311 	case PERF_TYPE_HW_CACHE:
312 	case PERF_TYPE_HARDWARE:
313 		err = __hw_perf_event_init(event);
314 		break;
315 
316 	default:
317 		return -ENOENT;
318 	}
319 
320 	if (unlikely(err)) {
321 		if (event->destroy)
322 			event->destroy(event);
323 	}
324 
325 	return err;
326 }
327 
328 static void sh_pmu_enable(struct pmu *pmu)
329 {
330 	if (!sh_pmu_initialized())
331 		return;
332 
333 	sh_pmu->enable_all();
334 }
335 
336 static void sh_pmu_disable(struct pmu *pmu)
337 {
338 	if (!sh_pmu_initialized())
339 		return;
340 
341 	sh_pmu->disable_all();
342 }
343 
344 static struct pmu pmu = {
345 	.pmu_enable	= sh_pmu_enable,
346 	.pmu_disable	= sh_pmu_disable,
347 	.event_init	= sh_pmu_event_init,
348 	.add		= sh_pmu_add,
349 	.del		= sh_pmu_del,
350 	.start		= sh_pmu_start,
351 	.stop		= sh_pmu_stop,
352 	.read		= sh_pmu_read,
353 };
354 
355 static void sh_pmu_setup(int cpu)
356 {
357 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
358 
359 	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
360 }
361 
362 static int
363 sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
364 {
365 	unsigned int cpu = (long)hcpu;
366 
367 	switch (action & ~CPU_TASKS_FROZEN) {
368 	case CPU_UP_PREPARE:
369 		sh_pmu_setup(cpu);
370 		break;
371 
372 	default:
373 		break;
374 	}
375 
376 	return NOTIFY_OK;
377 }
378 
379 int register_sh_pmu(struct sh_pmu *_pmu)
380 {
381 	if (sh_pmu)
382 		return -EBUSY;
383 	sh_pmu = _pmu;
384 
385 	pr_info("Performance Events: %s support registered\n", _pmu->name);
386 
387 	/*
388 	 * All of the on-chip counters are "limited", in that they have
389 	 * no interrupts, and are therefore unable to do sampling without
390 	 * further work and timer assistance.
391 	 */
392 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
393 
394 	WARN_ON(_pmu->num_events > MAX_HWEVENTS);
395 
396 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
397 	perf_cpu_notifier(sh_pmu_notifier);
398 	return 0;
399 }
400