1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel probes (kprobes) for SuperH 4 * 5 * Copyright (C) 2007 Chris Smith <chris.smith@st.com> 6 * Copyright (C) 2006 Lineo Solutions, Inc. 7 */ 8 #include <linux/kprobes.h> 9 #include <linux/extable.h> 10 #include <linux/ptrace.h> 11 #include <linux/preempt.h> 12 #include <linux/kdebug.h> 13 #include <linux/slab.h> 14 #include <asm/cacheflush.h> 15 #include <linux/uaccess.h> 16 17 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 18 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 19 20 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode); 21 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode); 22 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2); 23 24 #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b) 25 #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b) 26 #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000) 27 #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023) 28 #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000) 29 #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003) 30 31 #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00) 32 #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00) 33 34 #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00) 35 #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900) 36 37 #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b) 38 #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b) 39 40 int __kprobes arch_prepare_kprobe(struct kprobe *p) 41 { 42 kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr); 43 44 if (OPCODE_RTE(opcode)) 45 return -EFAULT; /* Bad breakpoint */ 46 47 p->opcode = opcode; 48 49 return 0; 50 } 51 52 void __kprobes arch_copy_kprobe(struct kprobe *p) 53 { 54 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 55 p->opcode = *p->addr; 56 } 57 58 void __kprobes arch_arm_kprobe(struct kprobe *p) 59 { 60 *p->addr = BREAKPOINT_INSTRUCTION; 61 flush_icache_range((unsigned long)p->addr, 62 (unsigned long)p->addr + sizeof(kprobe_opcode_t)); 63 } 64 65 void __kprobes arch_disarm_kprobe(struct kprobe *p) 66 { 67 *p->addr = p->opcode; 68 flush_icache_range((unsigned long)p->addr, 69 (unsigned long)p->addr + sizeof(kprobe_opcode_t)); 70 } 71 72 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 73 { 74 if (*p->addr == BREAKPOINT_INSTRUCTION) 75 return 1; 76 77 return 0; 78 } 79 80 /** 81 * If an illegal slot instruction exception occurs for an address 82 * containing a kprobe, remove the probe. 83 * 84 * Returns 0 if the exception was handled successfully, 1 otherwise. 85 */ 86 int __kprobes kprobe_handle_illslot(unsigned long pc) 87 { 88 struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1); 89 90 if (p != NULL) { 91 printk("Warning: removing kprobe from delay slot: 0x%.8x\n", 92 (unsigned int)pc + 2); 93 unregister_kprobe(p); 94 return 0; 95 } 96 97 return 1; 98 } 99 100 void __kprobes arch_remove_kprobe(struct kprobe *p) 101 { 102 struct kprobe *saved = this_cpu_ptr(&saved_next_opcode); 103 104 if (saved->addr) { 105 arch_disarm_kprobe(p); 106 arch_disarm_kprobe(saved); 107 108 saved->addr = NULL; 109 saved->opcode = 0; 110 111 saved = this_cpu_ptr(&saved_next_opcode2); 112 if (saved->addr) { 113 arch_disarm_kprobe(saved); 114 115 saved->addr = NULL; 116 saved->opcode = 0; 117 } 118 } 119 } 120 121 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 122 { 123 kcb->prev_kprobe.kp = kprobe_running(); 124 kcb->prev_kprobe.status = kcb->kprobe_status; 125 } 126 127 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 128 { 129 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 130 kcb->kprobe_status = kcb->prev_kprobe.status; 131 } 132 133 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 134 struct kprobe_ctlblk *kcb) 135 { 136 __this_cpu_write(current_kprobe, p); 137 } 138 139 /* 140 * Singlestep is implemented by disabling the current kprobe and setting one 141 * on the next instruction, following branches. Two probes are set if the 142 * branch is conditional. 143 */ 144 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 145 { 146 __this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc); 147 148 if (p != NULL) { 149 struct kprobe *op1, *op2; 150 151 arch_disarm_kprobe(p); 152 153 op1 = this_cpu_ptr(&saved_next_opcode); 154 op2 = this_cpu_ptr(&saved_next_opcode2); 155 156 if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) { 157 unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); 158 op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr]; 159 } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) { 160 unsigned long disp = (p->opcode & 0x0FFF); 161 op1->addr = 162 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); 163 164 } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) { 165 unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); 166 op1->addr = 167 (kprobe_opcode_t *) (regs->pc + 4 + 168 regs->regs[reg_nr]); 169 170 } else if (OPCODE_RTS(p->opcode)) { 171 op1->addr = (kprobe_opcode_t *) regs->pr; 172 173 } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) { 174 unsigned long disp = (p->opcode & 0x00FF); 175 /* case 1 */ 176 op1->addr = p->addr + 1; 177 /* case 2 */ 178 op2->addr = 179 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); 180 op2->opcode = *(op2->addr); 181 arch_arm_kprobe(op2); 182 183 } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) { 184 unsigned long disp = (p->opcode & 0x00FF); 185 /* case 1 */ 186 op1->addr = p->addr + 2; 187 /* case 2 */ 188 op2->addr = 189 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); 190 op2->opcode = *(op2->addr); 191 arch_arm_kprobe(op2); 192 193 } else { 194 op1->addr = p->addr + 1; 195 } 196 197 op1->opcode = *(op1->addr); 198 arch_arm_kprobe(op1); 199 } 200 } 201 202 /* Called with kretprobe_lock held */ 203 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 204 struct pt_regs *regs) 205 { 206 ri->ret_addr = (kprobe_opcode_t *) regs->pr; 207 208 /* Replace the return addr with trampoline addr */ 209 regs->pr = (unsigned long)kretprobe_trampoline; 210 } 211 212 static int __kprobes kprobe_handler(struct pt_regs *regs) 213 { 214 struct kprobe *p; 215 int ret = 0; 216 kprobe_opcode_t *addr = NULL; 217 struct kprobe_ctlblk *kcb; 218 219 /* 220 * We don't want to be preempted for the entire 221 * duration of kprobe processing 222 */ 223 preempt_disable(); 224 kcb = get_kprobe_ctlblk(); 225 226 addr = (kprobe_opcode_t *) (regs->pc); 227 228 /* Check we're not actually recursing */ 229 if (kprobe_running()) { 230 p = get_kprobe(addr); 231 if (p) { 232 if (kcb->kprobe_status == KPROBE_HIT_SS && 233 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { 234 goto no_kprobe; 235 } 236 /* We have reentered the kprobe_handler(), since 237 * another probe was hit while within the handler. 238 * We here save the original kprobes variables and 239 * just single step on the instruction of the new probe 240 * without calling any user handlers. 241 */ 242 save_previous_kprobe(kcb); 243 set_current_kprobe(p, regs, kcb); 244 kprobes_inc_nmissed_count(p); 245 prepare_singlestep(p, regs); 246 kcb->kprobe_status = KPROBE_REENTER; 247 return 1; 248 } 249 goto no_kprobe; 250 } 251 252 p = get_kprobe(addr); 253 if (!p) { 254 /* Not one of ours: let kernel handle it */ 255 if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) { 256 /* 257 * The breakpoint instruction was removed right 258 * after we hit it. Another cpu has removed 259 * either a probepoint or a debugger breakpoint 260 * at this address. In either case, no further 261 * handling of this interrupt is appropriate. 262 */ 263 ret = 1; 264 } 265 266 goto no_kprobe; 267 } 268 269 set_current_kprobe(p, regs, kcb); 270 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 271 272 if (p->pre_handler && p->pre_handler(p, regs)) { 273 /* handler has already set things up, so skip ss setup */ 274 reset_current_kprobe(); 275 preempt_enable_no_resched(); 276 return 1; 277 } 278 279 prepare_singlestep(p, regs); 280 kcb->kprobe_status = KPROBE_HIT_SS; 281 return 1; 282 283 no_kprobe: 284 preempt_enable_no_resched(); 285 return ret; 286 } 287 288 /* 289 * For function-return probes, init_kprobes() establishes a probepoint 290 * here. When a retprobed function returns, this probe is hit and 291 * trampoline_probe_handler() runs, calling the kretprobe's handler. 292 */ 293 static void __used kretprobe_trampoline_holder(void) 294 { 295 asm volatile (".globl kretprobe_trampoline\n" 296 "kretprobe_trampoline:\n\t" 297 "nop\n"); 298 } 299 300 /* 301 * Called when we hit the probe point at kretprobe_trampoline 302 */ 303 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 304 { 305 struct kretprobe_instance *ri = NULL; 306 struct hlist_head *head, empty_rp; 307 struct hlist_node *tmp; 308 unsigned long flags, orig_ret_address = 0; 309 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 310 311 INIT_HLIST_HEAD(&empty_rp); 312 kretprobe_hash_lock(current, &head, &flags); 313 314 /* 315 * It is possible to have multiple instances associated with a given 316 * task either because an multiple functions in the call path 317 * have a return probe installed on them, and/or more then one return 318 * return probe was registered for a target function. 319 * 320 * We can handle this because: 321 * - instances are always inserted at the head of the list 322 * - when multiple return probes are registered for the same 323 * function, the first instance's ret_addr will point to the 324 * real return address, and all the rest will point to 325 * kretprobe_trampoline 326 */ 327 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 328 if (ri->task != current) 329 /* another task is sharing our hash bucket */ 330 continue; 331 332 if (ri->rp && ri->rp->handler) { 333 __this_cpu_write(current_kprobe, &ri->rp->kp); 334 ri->rp->handler(ri, regs); 335 __this_cpu_write(current_kprobe, NULL); 336 } 337 338 orig_ret_address = (unsigned long)ri->ret_addr; 339 recycle_rp_inst(ri, &empty_rp); 340 341 if (orig_ret_address != trampoline_address) 342 /* 343 * This is the real return address. Any other 344 * instances associated with this task are for 345 * other calls deeper on the call stack 346 */ 347 break; 348 } 349 350 kretprobe_assert(ri, orig_ret_address, trampoline_address); 351 352 regs->pc = orig_ret_address; 353 kretprobe_hash_unlock(current, &flags); 354 355 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 356 hlist_del(&ri->hlist); 357 kfree(ri); 358 } 359 360 return orig_ret_address; 361 } 362 363 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 364 { 365 struct kprobe *cur = kprobe_running(); 366 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 367 kprobe_opcode_t *addr = NULL; 368 struct kprobe *p = NULL; 369 370 if (!cur) 371 return 0; 372 373 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 374 kcb->kprobe_status = KPROBE_HIT_SSDONE; 375 cur->post_handler(cur, regs, 0); 376 } 377 378 p = this_cpu_ptr(&saved_next_opcode); 379 if (p->addr) { 380 arch_disarm_kprobe(p); 381 p->addr = NULL; 382 p->opcode = 0; 383 384 addr = __this_cpu_read(saved_current_opcode.addr); 385 __this_cpu_write(saved_current_opcode.addr, NULL); 386 387 p = get_kprobe(addr); 388 arch_arm_kprobe(p); 389 390 p = this_cpu_ptr(&saved_next_opcode2); 391 if (p->addr) { 392 arch_disarm_kprobe(p); 393 p->addr = NULL; 394 p->opcode = 0; 395 } 396 } 397 398 /* Restore back the original saved kprobes variables and continue. */ 399 if (kcb->kprobe_status == KPROBE_REENTER) { 400 restore_previous_kprobe(kcb); 401 goto out; 402 } 403 404 reset_current_kprobe(); 405 406 out: 407 preempt_enable_no_resched(); 408 409 return 1; 410 } 411 412 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 413 { 414 struct kprobe *cur = kprobe_running(); 415 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 416 const struct exception_table_entry *entry; 417 418 switch (kcb->kprobe_status) { 419 case KPROBE_HIT_SS: 420 case KPROBE_REENTER: 421 /* 422 * We are here because the instruction being single 423 * stepped caused a page fault. We reset the current 424 * kprobe, point the pc back to the probe address 425 * and allow the page fault handler to continue as a 426 * normal page fault. 427 */ 428 regs->pc = (unsigned long)cur->addr; 429 if (kcb->kprobe_status == KPROBE_REENTER) 430 restore_previous_kprobe(kcb); 431 else 432 reset_current_kprobe(); 433 preempt_enable_no_resched(); 434 break; 435 case KPROBE_HIT_ACTIVE: 436 case KPROBE_HIT_SSDONE: 437 /* 438 * We increment the nmissed count for accounting, 439 * we can also use npre/npostfault count for accounting 440 * these specific fault cases. 441 */ 442 kprobes_inc_nmissed_count(cur); 443 444 /* 445 * We come here because instructions in the pre/post 446 * handler caused the page_fault, this could happen 447 * if handler tries to access user space by 448 * copy_from_user(), get_user() etc. Let the 449 * user-specified handler try to fix it first. 450 */ 451 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 452 return 1; 453 454 /* 455 * In case the user-specified fault handler returned 456 * zero, try to fix up. 457 */ 458 if ((entry = search_exception_tables(regs->pc)) != NULL) { 459 regs->pc = entry->fixup; 460 return 1; 461 } 462 463 /* 464 * fixup_exception() could not handle it, 465 * Let do_page_fault() fix it. 466 */ 467 break; 468 default: 469 break; 470 } 471 472 return 0; 473 } 474 475 /* 476 * Wrapper routine to for handling exceptions. 477 */ 478 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 479 unsigned long val, void *data) 480 { 481 struct kprobe *p = NULL; 482 struct die_args *args = (struct die_args *)data; 483 int ret = NOTIFY_DONE; 484 kprobe_opcode_t *addr = NULL; 485 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 486 487 addr = (kprobe_opcode_t *) (args->regs->pc); 488 if (val == DIE_TRAP) { 489 if (!kprobe_running()) { 490 if (kprobe_handler(args->regs)) { 491 ret = NOTIFY_STOP; 492 } else { 493 /* Not a kprobe trap */ 494 ret = NOTIFY_DONE; 495 } 496 } else { 497 p = get_kprobe(addr); 498 if ((kcb->kprobe_status == KPROBE_HIT_SS) || 499 (kcb->kprobe_status == KPROBE_REENTER)) { 500 if (post_kprobe_handler(args->regs)) 501 ret = NOTIFY_STOP; 502 } else { 503 if (kprobe_handler(args->regs)) 504 ret = NOTIFY_STOP; 505 } 506 } 507 } 508 509 return ret; 510 } 511 512 static struct kprobe trampoline_p = { 513 .addr = (kprobe_opcode_t *)&kretprobe_trampoline, 514 .pre_handler = trampoline_probe_handler 515 }; 516 517 int __init arch_init_kprobes(void) 518 { 519 return register_kprobe(&trampoline_p); 520 } 521