xref: /linux/arch/sh/kernel/kprobes.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Kernel probes (kprobes) for SuperH
4  *
5  * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
6  * Copyright (C) 2006 Lineo Solutions, Inc.
7  */
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/ptrace.h>
11 #include <linux/preempt.h>
12 #include <linux/kdebug.h>
13 #include <linux/slab.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
16 
17 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
18 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
19 
20 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
21 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
22 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
23 
24 #define OPCODE_JMP(x)	(((x) & 0xF0FF) == 0x402b)
25 #define OPCODE_JSR(x)	(((x) & 0xF0FF) == 0x400b)
26 #define OPCODE_BRA(x)	(((x) & 0xF000) == 0xa000)
27 #define OPCODE_BRAF(x)	(((x) & 0xF0FF) == 0x0023)
28 #define OPCODE_BSR(x)	(((x) & 0xF000) == 0xb000)
29 #define OPCODE_BSRF(x)	(((x) & 0xF0FF) == 0x0003)
30 
31 #define OPCODE_BF_S(x)	(((x) & 0xFF00) == 0x8f00)
32 #define OPCODE_BT_S(x)	(((x) & 0xFF00) == 0x8d00)
33 
34 #define OPCODE_BF(x)	(((x) & 0xFF00) == 0x8b00)
35 #define OPCODE_BT(x)	(((x) & 0xFF00) == 0x8900)
36 
37 #define OPCODE_RTS(x)	(((x) & 0x000F) == 0x000b)
38 #define OPCODE_RTE(x)	(((x) & 0xFFFF) == 0x002b)
39 
40 int __kprobes arch_prepare_kprobe(struct kprobe *p)
41 {
42 	kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
43 
44 	if (OPCODE_RTE(opcode))
45 		return -EFAULT;	/* Bad breakpoint */
46 
47 	p->opcode = opcode;
48 
49 	return 0;
50 }
51 
52 void __kprobes arch_copy_kprobe(struct kprobe *p)
53 {
54 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
55 	p->opcode = *p->addr;
56 }
57 
58 void __kprobes arch_arm_kprobe(struct kprobe *p)
59 {
60 	*p->addr = BREAKPOINT_INSTRUCTION;
61 	flush_icache_range((unsigned long)p->addr,
62 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
63 }
64 
65 void __kprobes arch_disarm_kprobe(struct kprobe *p)
66 {
67 	*p->addr = p->opcode;
68 	flush_icache_range((unsigned long)p->addr,
69 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
70 }
71 
72 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
73 {
74 	if (*p->addr == BREAKPOINT_INSTRUCTION)
75 		return 1;
76 
77 	return 0;
78 }
79 
80 /**
81  * If an illegal slot instruction exception occurs for an address
82  * containing a kprobe, remove the probe.
83  *
84  * Returns 0 if the exception was handled successfully, 1 otherwise.
85  */
86 int __kprobes kprobe_handle_illslot(unsigned long pc)
87 {
88 	struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
89 
90 	if (p != NULL) {
91 		printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
92 		       (unsigned int)pc + 2);
93 		unregister_kprobe(p);
94 		return 0;
95 	}
96 
97 	return 1;
98 }
99 
100 void __kprobes arch_remove_kprobe(struct kprobe *p)
101 {
102 	struct kprobe *saved = this_cpu_ptr(&saved_next_opcode);
103 
104 	if (saved->addr) {
105 		arch_disarm_kprobe(p);
106 		arch_disarm_kprobe(saved);
107 
108 		saved->addr = NULL;
109 		saved->opcode = 0;
110 
111 		saved = this_cpu_ptr(&saved_next_opcode2);
112 		if (saved->addr) {
113 			arch_disarm_kprobe(saved);
114 
115 			saved->addr = NULL;
116 			saved->opcode = 0;
117 		}
118 	}
119 }
120 
121 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
122 {
123 	kcb->prev_kprobe.kp = kprobe_running();
124 	kcb->prev_kprobe.status = kcb->kprobe_status;
125 }
126 
127 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
128 {
129 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
130 	kcb->kprobe_status = kcb->prev_kprobe.status;
131 }
132 
133 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
134 					 struct kprobe_ctlblk *kcb)
135 {
136 	__this_cpu_write(current_kprobe, p);
137 }
138 
139 /*
140  * Singlestep is implemented by disabling the current kprobe and setting one
141  * on the next instruction, following branches. Two probes are set if the
142  * branch is conditional.
143  */
144 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
145 {
146 	__this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc);
147 
148 	if (p != NULL) {
149 		struct kprobe *op1, *op2;
150 
151 		arch_disarm_kprobe(p);
152 
153 		op1 = this_cpu_ptr(&saved_next_opcode);
154 		op2 = this_cpu_ptr(&saved_next_opcode2);
155 
156 		if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
157 			unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
158 			op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
159 		} else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
160 			unsigned long disp = (p->opcode & 0x0FFF);
161 			op1->addr =
162 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
163 
164 		} else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
165 			unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
166 			op1->addr =
167 			    (kprobe_opcode_t *) (regs->pc + 4 +
168 						 regs->regs[reg_nr]);
169 
170 		} else if (OPCODE_RTS(p->opcode)) {
171 			op1->addr = (kprobe_opcode_t *) regs->pr;
172 
173 		} else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
174 			unsigned long disp = (p->opcode & 0x00FF);
175 			/* case 1 */
176 			op1->addr = p->addr + 1;
177 			/* case 2 */
178 			op2->addr =
179 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
180 			op2->opcode = *(op2->addr);
181 			arch_arm_kprobe(op2);
182 
183 		} else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
184 			unsigned long disp = (p->opcode & 0x00FF);
185 			/* case 1 */
186 			op1->addr = p->addr + 2;
187 			/* case 2 */
188 			op2->addr =
189 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
190 			op2->opcode = *(op2->addr);
191 			arch_arm_kprobe(op2);
192 
193 		} else {
194 			op1->addr = p->addr + 1;
195 		}
196 
197 		op1->opcode = *(op1->addr);
198 		arch_arm_kprobe(op1);
199 	}
200 }
201 
202 /* Called with kretprobe_lock held */
203 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
204 				      struct pt_regs *regs)
205 {
206 	ri->ret_addr = (kprobe_opcode_t *) regs->pr;
207 
208 	/* Replace the return addr with trampoline addr */
209 	regs->pr = (unsigned long)kretprobe_trampoline;
210 }
211 
212 static int __kprobes kprobe_handler(struct pt_regs *regs)
213 {
214 	struct kprobe *p;
215 	int ret = 0;
216 	kprobe_opcode_t *addr = NULL;
217 	struct kprobe_ctlblk *kcb;
218 
219 	/*
220 	 * We don't want to be preempted for the entire
221 	 * duration of kprobe processing
222 	 */
223 	preempt_disable();
224 	kcb = get_kprobe_ctlblk();
225 
226 	addr = (kprobe_opcode_t *) (regs->pc);
227 
228 	/* Check we're not actually recursing */
229 	if (kprobe_running()) {
230 		p = get_kprobe(addr);
231 		if (p) {
232 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
233 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
234 				goto no_kprobe;
235 			}
236 			/* We have reentered the kprobe_handler(), since
237 			 * another probe was hit while within the handler.
238 			 * We here save the original kprobes variables and
239 			 * just single step on the instruction of the new probe
240 			 * without calling any user handlers.
241 			 */
242 			save_previous_kprobe(kcb);
243 			set_current_kprobe(p, regs, kcb);
244 			kprobes_inc_nmissed_count(p);
245 			prepare_singlestep(p, regs);
246 			kcb->kprobe_status = KPROBE_REENTER;
247 			return 1;
248 		}
249 		goto no_kprobe;
250 	}
251 
252 	p = get_kprobe(addr);
253 	if (!p) {
254 		/* Not one of ours: let kernel handle it */
255 		if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
256 			/*
257 			 * The breakpoint instruction was removed right
258 			 * after we hit it. Another cpu has removed
259 			 * either a probepoint or a debugger breakpoint
260 			 * at this address. In either case, no further
261 			 * handling of this interrupt is appropriate.
262 			 */
263 			ret = 1;
264 		}
265 
266 		goto no_kprobe;
267 	}
268 
269 	set_current_kprobe(p, regs, kcb);
270 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
271 
272 	if (p->pre_handler && p->pre_handler(p, regs)) {
273 		/* handler has already set things up, so skip ss setup */
274 		reset_current_kprobe();
275 		preempt_enable_no_resched();
276 		return 1;
277 	}
278 
279 	prepare_singlestep(p, regs);
280 	kcb->kprobe_status = KPROBE_HIT_SS;
281 	return 1;
282 
283 no_kprobe:
284 	preempt_enable_no_resched();
285 	return ret;
286 }
287 
288 /*
289  * For function-return probes, init_kprobes() establishes a probepoint
290  * here. When a retprobed function returns, this probe is hit and
291  * trampoline_probe_handler() runs, calling the kretprobe's handler.
292  */
293 static void __used kretprobe_trampoline_holder(void)
294 {
295 	asm volatile (".globl kretprobe_trampoline\n"
296 		      "kretprobe_trampoline:\n\t"
297 		      "nop\n");
298 }
299 
300 /*
301  * Called when we hit the probe point at kretprobe_trampoline
302  */
303 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
304 {
305 	struct kretprobe_instance *ri = NULL;
306 	struct hlist_head *head, empty_rp;
307 	struct hlist_node *tmp;
308 	unsigned long flags, orig_ret_address = 0;
309 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
310 
311 	INIT_HLIST_HEAD(&empty_rp);
312 	kretprobe_hash_lock(current, &head, &flags);
313 
314 	/*
315 	 * It is possible to have multiple instances associated with a given
316 	 * task either because an multiple functions in the call path
317 	 * have a return probe installed on them, and/or more then one return
318 	 * return probe was registered for a target function.
319 	 *
320 	 * We can handle this because:
321 	 *     - instances are always inserted at the head of the list
322 	 *     - when multiple return probes are registered for the same
323 	 *       function, the first instance's ret_addr will point to the
324 	 *       real return address, and all the rest will point to
325 	 *       kretprobe_trampoline
326 	 */
327 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
328 		if (ri->task != current)
329 			/* another task is sharing our hash bucket */
330 			continue;
331 
332 		if (ri->rp && ri->rp->handler) {
333 			__this_cpu_write(current_kprobe, &ri->rp->kp);
334 			ri->rp->handler(ri, regs);
335 			__this_cpu_write(current_kprobe, NULL);
336 		}
337 
338 		orig_ret_address = (unsigned long)ri->ret_addr;
339 		recycle_rp_inst(ri, &empty_rp);
340 
341 		if (orig_ret_address != trampoline_address)
342 			/*
343 			 * This is the real return address. Any other
344 			 * instances associated with this task are for
345 			 * other calls deeper on the call stack
346 			 */
347 			break;
348 	}
349 
350 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
351 
352 	regs->pc = orig_ret_address;
353 	kretprobe_hash_unlock(current, &flags);
354 
355 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
356 		hlist_del(&ri->hlist);
357 		kfree(ri);
358 	}
359 
360 	return orig_ret_address;
361 }
362 
363 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
364 {
365 	struct kprobe *cur = kprobe_running();
366 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
367 	kprobe_opcode_t *addr = NULL;
368 	struct kprobe *p = NULL;
369 
370 	if (!cur)
371 		return 0;
372 
373 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
374 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
375 		cur->post_handler(cur, regs, 0);
376 	}
377 
378 	p = this_cpu_ptr(&saved_next_opcode);
379 	if (p->addr) {
380 		arch_disarm_kprobe(p);
381 		p->addr = NULL;
382 		p->opcode = 0;
383 
384 		addr = __this_cpu_read(saved_current_opcode.addr);
385 		__this_cpu_write(saved_current_opcode.addr, NULL);
386 
387 		p = get_kprobe(addr);
388 		arch_arm_kprobe(p);
389 
390 		p = this_cpu_ptr(&saved_next_opcode2);
391 		if (p->addr) {
392 			arch_disarm_kprobe(p);
393 			p->addr = NULL;
394 			p->opcode = 0;
395 		}
396 	}
397 
398 	/* Restore back the original saved kprobes variables and continue. */
399 	if (kcb->kprobe_status == KPROBE_REENTER) {
400 		restore_previous_kprobe(kcb);
401 		goto out;
402 	}
403 
404 	reset_current_kprobe();
405 
406 out:
407 	preempt_enable_no_resched();
408 
409 	return 1;
410 }
411 
412 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
413 {
414 	struct kprobe *cur = kprobe_running();
415 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
416 	const struct exception_table_entry *entry;
417 
418 	switch (kcb->kprobe_status) {
419 	case KPROBE_HIT_SS:
420 	case KPROBE_REENTER:
421 		/*
422 		 * We are here because the instruction being single
423 		 * stepped caused a page fault. We reset the current
424 		 * kprobe, point the pc back to the probe address
425 		 * and allow the page fault handler to continue as a
426 		 * normal page fault.
427 		 */
428 		regs->pc = (unsigned long)cur->addr;
429 		if (kcb->kprobe_status == KPROBE_REENTER)
430 			restore_previous_kprobe(kcb);
431 		else
432 			reset_current_kprobe();
433 		preempt_enable_no_resched();
434 		break;
435 	case KPROBE_HIT_ACTIVE:
436 	case KPROBE_HIT_SSDONE:
437 		/*
438 		 * We increment the nmissed count for accounting,
439 		 * we can also use npre/npostfault count for accounting
440 		 * these specific fault cases.
441 		 */
442 		kprobes_inc_nmissed_count(cur);
443 
444 		/*
445 		 * We come here because instructions in the pre/post
446 		 * handler caused the page_fault, this could happen
447 		 * if handler tries to access user space by
448 		 * copy_from_user(), get_user() etc. Let the
449 		 * user-specified handler try to fix it first.
450 		 */
451 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
452 			return 1;
453 
454 		/*
455 		 * In case the user-specified fault handler returned
456 		 * zero, try to fix up.
457 		 */
458 		if ((entry = search_exception_tables(regs->pc)) != NULL) {
459 			regs->pc = entry->fixup;
460 			return 1;
461 		}
462 
463 		/*
464 		 * fixup_exception() could not handle it,
465 		 * Let do_page_fault() fix it.
466 		 */
467 		break;
468 	default:
469 		break;
470 	}
471 
472 	return 0;
473 }
474 
475 /*
476  * Wrapper routine to for handling exceptions.
477  */
478 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
479 				       unsigned long val, void *data)
480 {
481 	struct kprobe *p = NULL;
482 	struct die_args *args = (struct die_args *)data;
483 	int ret = NOTIFY_DONE;
484 	kprobe_opcode_t *addr = NULL;
485 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
486 
487 	addr = (kprobe_opcode_t *) (args->regs->pc);
488 	if (val == DIE_TRAP) {
489 		if (!kprobe_running()) {
490 			if (kprobe_handler(args->regs)) {
491 				ret = NOTIFY_STOP;
492 			} else {
493 				/* Not a kprobe trap */
494 				ret = NOTIFY_DONE;
495 			}
496 		} else {
497 			p = get_kprobe(addr);
498 			if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
499 			    (kcb->kprobe_status == KPROBE_REENTER)) {
500 				if (post_kprobe_handler(args->regs))
501 					ret = NOTIFY_STOP;
502 			} else {
503 				if (kprobe_handler(args->regs))
504 					ret = NOTIFY_STOP;
505 			}
506 		}
507 	}
508 
509 	return ret;
510 }
511 
512 static struct kprobe trampoline_p = {
513 	.addr = (kprobe_opcode_t *)&kretprobe_trampoline,
514 	.pre_handler = trampoline_probe_handler
515 };
516 
517 int __init arch_init_kprobes(void)
518 {
519 	return register_kprobe(&trampoline_p);
520 }
521