xref: /linux/arch/sh/kernel/kprobes.c (revision 0c874100108f03401cb3154801d2671bbad40ad4)
1 /*
2  * Kernel probes (kprobes) for SuperH
3  *
4  * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
5  * Copyright (C) 2006 Lineo Solutions, Inc.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file "COPYING" in the main directory of this archive
9  * for more details.
10  */
11 #include <linux/kprobes.h>
12 #include <linux/extable.h>
13 #include <linux/ptrace.h>
14 #include <linux/preempt.h>
15 #include <linux/kdebug.h>
16 #include <linux/slab.h>
17 #include <asm/cacheflush.h>
18 #include <linux/uaccess.h>
19 
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22 
23 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
24 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
25 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
26 
27 #define OPCODE_JMP(x)	(((x) & 0xF0FF) == 0x402b)
28 #define OPCODE_JSR(x)	(((x) & 0xF0FF) == 0x400b)
29 #define OPCODE_BRA(x)	(((x) & 0xF000) == 0xa000)
30 #define OPCODE_BRAF(x)	(((x) & 0xF0FF) == 0x0023)
31 #define OPCODE_BSR(x)	(((x) & 0xF000) == 0xb000)
32 #define OPCODE_BSRF(x)	(((x) & 0xF0FF) == 0x0003)
33 
34 #define OPCODE_BF_S(x)	(((x) & 0xFF00) == 0x8f00)
35 #define OPCODE_BT_S(x)	(((x) & 0xFF00) == 0x8d00)
36 
37 #define OPCODE_BF(x)	(((x) & 0xFF00) == 0x8b00)
38 #define OPCODE_BT(x)	(((x) & 0xFF00) == 0x8900)
39 
40 #define OPCODE_RTS(x)	(((x) & 0x000F) == 0x000b)
41 #define OPCODE_RTE(x)	(((x) & 0xFFFF) == 0x002b)
42 
43 int __kprobes arch_prepare_kprobe(struct kprobe *p)
44 {
45 	kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
46 
47 	if (OPCODE_RTE(opcode))
48 		return -EFAULT;	/* Bad breakpoint */
49 
50 	p->opcode = opcode;
51 
52 	return 0;
53 }
54 
55 void __kprobes arch_copy_kprobe(struct kprobe *p)
56 {
57 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
58 	p->opcode = *p->addr;
59 }
60 
61 void __kprobes arch_arm_kprobe(struct kprobe *p)
62 {
63 	*p->addr = BREAKPOINT_INSTRUCTION;
64 	flush_icache_range((unsigned long)p->addr,
65 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
66 }
67 
68 void __kprobes arch_disarm_kprobe(struct kprobe *p)
69 {
70 	*p->addr = p->opcode;
71 	flush_icache_range((unsigned long)p->addr,
72 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
73 }
74 
75 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
76 {
77 	if (*p->addr == BREAKPOINT_INSTRUCTION)
78 		return 1;
79 
80 	return 0;
81 }
82 
83 /**
84  * If an illegal slot instruction exception occurs for an address
85  * containing a kprobe, remove the probe.
86  *
87  * Returns 0 if the exception was handled successfully, 1 otherwise.
88  */
89 int __kprobes kprobe_handle_illslot(unsigned long pc)
90 {
91 	struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
92 
93 	if (p != NULL) {
94 		printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
95 		       (unsigned int)pc + 2);
96 		unregister_kprobe(p);
97 		return 0;
98 	}
99 
100 	return 1;
101 }
102 
103 void __kprobes arch_remove_kprobe(struct kprobe *p)
104 {
105 	struct kprobe *saved = this_cpu_ptr(&saved_next_opcode);
106 
107 	if (saved->addr) {
108 		arch_disarm_kprobe(p);
109 		arch_disarm_kprobe(saved);
110 
111 		saved->addr = NULL;
112 		saved->opcode = 0;
113 
114 		saved = this_cpu_ptr(&saved_next_opcode2);
115 		if (saved->addr) {
116 			arch_disarm_kprobe(saved);
117 
118 			saved->addr = NULL;
119 			saved->opcode = 0;
120 		}
121 	}
122 }
123 
124 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
125 {
126 	kcb->prev_kprobe.kp = kprobe_running();
127 	kcb->prev_kprobe.status = kcb->kprobe_status;
128 }
129 
130 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
131 {
132 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
133 	kcb->kprobe_status = kcb->prev_kprobe.status;
134 }
135 
136 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
137 					 struct kprobe_ctlblk *kcb)
138 {
139 	__this_cpu_write(current_kprobe, p);
140 }
141 
142 /*
143  * Singlestep is implemented by disabling the current kprobe and setting one
144  * on the next instruction, following branches. Two probes are set if the
145  * branch is conditional.
146  */
147 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
148 {
149 	__this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc);
150 
151 	if (p != NULL) {
152 		struct kprobe *op1, *op2;
153 
154 		arch_disarm_kprobe(p);
155 
156 		op1 = this_cpu_ptr(&saved_next_opcode);
157 		op2 = this_cpu_ptr(&saved_next_opcode2);
158 
159 		if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
160 			unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
161 			op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
162 		} else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
163 			unsigned long disp = (p->opcode & 0x0FFF);
164 			op1->addr =
165 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
166 
167 		} else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
168 			unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
169 			op1->addr =
170 			    (kprobe_opcode_t *) (regs->pc + 4 +
171 						 regs->regs[reg_nr]);
172 
173 		} else if (OPCODE_RTS(p->opcode)) {
174 			op1->addr = (kprobe_opcode_t *) regs->pr;
175 
176 		} else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
177 			unsigned long disp = (p->opcode & 0x00FF);
178 			/* case 1 */
179 			op1->addr = p->addr + 1;
180 			/* case 2 */
181 			op2->addr =
182 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
183 			op2->opcode = *(op2->addr);
184 			arch_arm_kprobe(op2);
185 
186 		} else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
187 			unsigned long disp = (p->opcode & 0x00FF);
188 			/* case 1 */
189 			op1->addr = p->addr + 2;
190 			/* case 2 */
191 			op2->addr =
192 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
193 			op2->opcode = *(op2->addr);
194 			arch_arm_kprobe(op2);
195 
196 		} else {
197 			op1->addr = p->addr + 1;
198 		}
199 
200 		op1->opcode = *(op1->addr);
201 		arch_arm_kprobe(op1);
202 	}
203 }
204 
205 /* Called with kretprobe_lock held */
206 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
207 				      struct pt_regs *regs)
208 {
209 	ri->ret_addr = (kprobe_opcode_t *) regs->pr;
210 
211 	/* Replace the return addr with trampoline addr */
212 	regs->pr = (unsigned long)kretprobe_trampoline;
213 }
214 
215 static int __kprobes kprobe_handler(struct pt_regs *regs)
216 {
217 	struct kprobe *p;
218 	int ret = 0;
219 	kprobe_opcode_t *addr = NULL;
220 	struct kprobe_ctlblk *kcb;
221 
222 	/*
223 	 * We don't want to be preempted for the entire
224 	 * duration of kprobe processing
225 	 */
226 	preempt_disable();
227 	kcb = get_kprobe_ctlblk();
228 
229 	addr = (kprobe_opcode_t *) (regs->pc);
230 
231 	/* Check we're not actually recursing */
232 	if (kprobe_running()) {
233 		p = get_kprobe(addr);
234 		if (p) {
235 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
236 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
237 				goto no_kprobe;
238 			}
239 			/* We have reentered the kprobe_handler(), since
240 			 * another probe was hit while within the handler.
241 			 * We here save the original kprobes variables and
242 			 * just single step on the instruction of the new probe
243 			 * without calling any user handlers.
244 			 */
245 			save_previous_kprobe(kcb);
246 			set_current_kprobe(p, regs, kcb);
247 			kprobes_inc_nmissed_count(p);
248 			prepare_singlestep(p, regs);
249 			kcb->kprobe_status = KPROBE_REENTER;
250 			return 1;
251 		}
252 		goto no_kprobe;
253 	}
254 
255 	p = get_kprobe(addr);
256 	if (!p) {
257 		/* Not one of ours: let kernel handle it */
258 		if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
259 			/*
260 			 * The breakpoint instruction was removed right
261 			 * after we hit it. Another cpu has removed
262 			 * either a probepoint or a debugger breakpoint
263 			 * at this address. In either case, no further
264 			 * handling of this interrupt is appropriate.
265 			 */
266 			ret = 1;
267 		}
268 
269 		goto no_kprobe;
270 	}
271 
272 	set_current_kprobe(p, regs, kcb);
273 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
274 
275 	if (p->pre_handler && p->pre_handler(p, regs)) {
276 		/* handler has already set things up, so skip ss setup */
277 		reset_current_kprobe();
278 		preempt_enable_no_resched();
279 		return 1;
280 	}
281 
282 	prepare_singlestep(p, regs);
283 	kcb->kprobe_status = KPROBE_HIT_SS;
284 	return 1;
285 
286 no_kprobe:
287 	preempt_enable_no_resched();
288 	return ret;
289 }
290 
291 /*
292  * For function-return probes, init_kprobes() establishes a probepoint
293  * here. When a retprobed function returns, this probe is hit and
294  * trampoline_probe_handler() runs, calling the kretprobe's handler.
295  */
296 static void __used kretprobe_trampoline_holder(void)
297 {
298 	asm volatile (".globl kretprobe_trampoline\n"
299 		      "kretprobe_trampoline:\n\t"
300 		      "nop\n");
301 }
302 
303 /*
304  * Called when we hit the probe point at kretprobe_trampoline
305  */
306 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
307 {
308 	struct kretprobe_instance *ri = NULL;
309 	struct hlist_head *head, empty_rp;
310 	struct hlist_node *tmp;
311 	unsigned long flags, orig_ret_address = 0;
312 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
313 
314 	INIT_HLIST_HEAD(&empty_rp);
315 	kretprobe_hash_lock(current, &head, &flags);
316 
317 	/*
318 	 * It is possible to have multiple instances associated with a given
319 	 * task either because an multiple functions in the call path
320 	 * have a return probe installed on them, and/or more then one return
321 	 * return probe was registered for a target function.
322 	 *
323 	 * We can handle this because:
324 	 *     - instances are always inserted at the head of the list
325 	 *     - when multiple return probes are registered for the same
326 	 *       function, the first instance's ret_addr will point to the
327 	 *       real return address, and all the rest will point to
328 	 *       kretprobe_trampoline
329 	 */
330 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
331 		if (ri->task != current)
332 			/* another task is sharing our hash bucket */
333 			continue;
334 
335 		if (ri->rp && ri->rp->handler) {
336 			__this_cpu_write(current_kprobe, &ri->rp->kp);
337 			ri->rp->handler(ri, regs);
338 			__this_cpu_write(current_kprobe, NULL);
339 		}
340 
341 		orig_ret_address = (unsigned long)ri->ret_addr;
342 		recycle_rp_inst(ri, &empty_rp);
343 
344 		if (orig_ret_address != trampoline_address)
345 			/*
346 			 * This is the real return address. Any other
347 			 * instances associated with this task are for
348 			 * other calls deeper on the call stack
349 			 */
350 			break;
351 	}
352 
353 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
354 
355 	regs->pc = orig_ret_address;
356 	kretprobe_hash_unlock(current, &flags);
357 
358 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
359 		hlist_del(&ri->hlist);
360 		kfree(ri);
361 	}
362 
363 	return orig_ret_address;
364 }
365 
366 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
367 {
368 	struct kprobe *cur = kprobe_running();
369 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
370 	kprobe_opcode_t *addr = NULL;
371 	struct kprobe *p = NULL;
372 
373 	if (!cur)
374 		return 0;
375 
376 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
377 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
378 		cur->post_handler(cur, regs, 0);
379 	}
380 
381 	p = this_cpu_ptr(&saved_next_opcode);
382 	if (p->addr) {
383 		arch_disarm_kprobe(p);
384 		p->addr = NULL;
385 		p->opcode = 0;
386 
387 		addr = __this_cpu_read(saved_current_opcode.addr);
388 		__this_cpu_write(saved_current_opcode.addr, NULL);
389 
390 		p = get_kprobe(addr);
391 		arch_arm_kprobe(p);
392 
393 		p = this_cpu_ptr(&saved_next_opcode2);
394 		if (p->addr) {
395 			arch_disarm_kprobe(p);
396 			p->addr = NULL;
397 			p->opcode = 0;
398 		}
399 	}
400 
401 	/* Restore back the original saved kprobes variables and continue. */
402 	if (kcb->kprobe_status == KPROBE_REENTER) {
403 		restore_previous_kprobe(kcb);
404 		goto out;
405 	}
406 
407 	reset_current_kprobe();
408 
409 out:
410 	preempt_enable_no_resched();
411 
412 	return 1;
413 }
414 
415 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
416 {
417 	struct kprobe *cur = kprobe_running();
418 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
419 	const struct exception_table_entry *entry;
420 
421 	switch (kcb->kprobe_status) {
422 	case KPROBE_HIT_SS:
423 	case KPROBE_REENTER:
424 		/*
425 		 * We are here because the instruction being single
426 		 * stepped caused a page fault. We reset the current
427 		 * kprobe, point the pc back to the probe address
428 		 * and allow the page fault handler to continue as a
429 		 * normal page fault.
430 		 */
431 		regs->pc = (unsigned long)cur->addr;
432 		if (kcb->kprobe_status == KPROBE_REENTER)
433 			restore_previous_kprobe(kcb);
434 		else
435 			reset_current_kprobe();
436 		preempt_enable_no_resched();
437 		break;
438 	case KPROBE_HIT_ACTIVE:
439 	case KPROBE_HIT_SSDONE:
440 		/*
441 		 * We increment the nmissed count for accounting,
442 		 * we can also use npre/npostfault count for accounting
443 		 * these specific fault cases.
444 		 */
445 		kprobes_inc_nmissed_count(cur);
446 
447 		/*
448 		 * We come here because instructions in the pre/post
449 		 * handler caused the page_fault, this could happen
450 		 * if handler tries to access user space by
451 		 * copy_from_user(), get_user() etc. Let the
452 		 * user-specified handler try to fix it first.
453 		 */
454 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
455 			return 1;
456 
457 		/*
458 		 * In case the user-specified fault handler returned
459 		 * zero, try to fix up.
460 		 */
461 		if ((entry = search_exception_tables(regs->pc)) != NULL) {
462 			regs->pc = entry->fixup;
463 			return 1;
464 		}
465 
466 		/*
467 		 * fixup_exception() could not handle it,
468 		 * Let do_page_fault() fix it.
469 		 */
470 		break;
471 	default:
472 		break;
473 	}
474 
475 	return 0;
476 }
477 
478 /*
479  * Wrapper routine to for handling exceptions.
480  */
481 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
482 				       unsigned long val, void *data)
483 {
484 	struct kprobe *p = NULL;
485 	struct die_args *args = (struct die_args *)data;
486 	int ret = NOTIFY_DONE;
487 	kprobe_opcode_t *addr = NULL;
488 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
489 
490 	addr = (kprobe_opcode_t *) (args->regs->pc);
491 	if (val == DIE_TRAP) {
492 		if (!kprobe_running()) {
493 			if (kprobe_handler(args->regs)) {
494 				ret = NOTIFY_STOP;
495 			} else {
496 				/* Not a kprobe trap */
497 				ret = NOTIFY_DONE;
498 			}
499 		} else {
500 			p = get_kprobe(addr);
501 			if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
502 			    (kcb->kprobe_status == KPROBE_REENTER)) {
503 				if (post_kprobe_handler(args->regs))
504 					ret = NOTIFY_STOP;
505 			} else {
506 				if (kprobe_handler(args->regs))
507 					ret = NOTIFY_STOP;
508 			}
509 		}
510 	}
511 
512 	return ret;
513 }
514 
515 static struct kprobe trampoline_p = {
516 	.addr = (kprobe_opcode_t *)&kretprobe_trampoline,
517 	.pre_handler = trampoline_probe_handler
518 };
519 
520 int __init arch_init_kprobes(void)
521 {
522 	return register_kprobe(&trampoline_p);
523 }
524