xref: /linux/arch/sh/kernel/kgdb.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * SuperH KGDB support
3  *
4  * Copyright (C) 2008 - 2012  Paul Mundt
5  *
6  * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
7  *
8  * This file is subject to the terms and conditions of the GNU General Public
9  * License.  See the file "COPYING" in the main directory of this archive
10  * for more details.
11  */
12 #include <linux/kgdb.h>
13 #include <linux/kdebug.h>
14 #include <linux/irq.h>
15 #include <linux/io.h>
16 #include <linux/sched.h>
17 #include <asm/cacheflush.h>
18 #include <asm/traps.h>
19 
20 /* Macros for single step instruction identification */
21 #define OPCODE_BT(op)		(((op) & 0xff00) == 0x8900)
22 #define OPCODE_BF(op)		(((op) & 0xff00) == 0x8b00)
23 #define OPCODE_BTF_DISP(op)	(((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
24 				 (((op) & 0x7f ) << 1))
25 #define OPCODE_BFS(op)		(((op) & 0xff00) == 0x8f00)
26 #define OPCODE_BTS(op)		(((op) & 0xff00) == 0x8d00)
27 #define OPCODE_BRA(op)		(((op) & 0xf000) == 0xa000)
28 #define OPCODE_BRA_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
29 				 (((op) & 0x7ff) << 1))
30 #define OPCODE_BRAF(op)		(((op) & 0xf0ff) == 0x0023)
31 #define OPCODE_BRAF_REG(op)	(((op) & 0x0f00) >> 8)
32 #define OPCODE_BSR(op)		(((op) & 0xf000) == 0xb000)
33 #define OPCODE_BSR_DISP(op)	(((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
34 				 (((op) & 0x7ff) << 1))
35 #define OPCODE_BSRF(op)		(((op) & 0xf0ff) == 0x0003)
36 #define OPCODE_BSRF_REG(op)	(((op) >> 8) & 0xf)
37 #define OPCODE_JMP(op)		(((op) & 0xf0ff) == 0x402b)
38 #define OPCODE_JMP_REG(op)	(((op) >> 8) & 0xf)
39 #define OPCODE_JSR(op)		(((op) & 0xf0ff) == 0x400b)
40 #define OPCODE_JSR_REG(op)	(((op) >> 8) & 0xf)
41 #define OPCODE_RTS(op)		((op) == 0xb)
42 #define OPCODE_RTE(op)		((op) == 0x2b)
43 
44 #define SR_T_BIT_MASK           0x1
45 #define STEP_OPCODE             0xc33d
46 
47 /* Calculate the new address for after a step */
48 static short *get_step_address(struct pt_regs *linux_regs)
49 {
50 	insn_size_t op = __raw_readw(linux_regs->pc);
51 	long addr;
52 
53 	/* BT */
54 	if (OPCODE_BT(op)) {
55 		if (linux_regs->sr & SR_T_BIT_MASK)
56 			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
57 		else
58 			addr = linux_regs->pc + 2;
59 	}
60 
61 	/* BTS */
62 	else if (OPCODE_BTS(op)) {
63 		if (linux_regs->sr & SR_T_BIT_MASK)
64 			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
65 		else
66 			addr = linux_regs->pc + 4;	/* Not in delay slot */
67 	}
68 
69 	/* BF */
70 	else if (OPCODE_BF(op)) {
71 		if (!(linux_regs->sr & SR_T_BIT_MASK))
72 			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
73 		else
74 			addr = linux_regs->pc + 2;
75 	}
76 
77 	/* BFS */
78 	else if (OPCODE_BFS(op)) {
79 		if (!(linux_regs->sr & SR_T_BIT_MASK))
80 			addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
81 		else
82 			addr = linux_regs->pc + 4;	/* Not in delay slot */
83 	}
84 
85 	/* BRA */
86 	else if (OPCODE_BRA(op))
87 		addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
88 
89 	/* BRAF */
90 	else if (OPCODE_BRAF(op))
91 		addr = linux_regs->pc + 4
92 		    + linux_regs->regs[OPCODE_BRAF_REG(op)];
93 
94 	/* BSR */
95 	else if (OPCODE_BSR(op))
96 		addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
97 
98 	/* BSRF */
99 	else if (OPCODE_BSRF(op))
100 		addr = linux_regs->pc + 4
101 		    + linux_regs->regs[OPCODE_BSRF_REG(op)];
102 
103 	/* JMP */
104 	else if (OPCODE_JMP(op))
105 		addr = linux_regs->regs[OPCODE_JMP_REG(op)];
106 
107 	/* JSR */
108 	else if (OPCODE_JSR(op))
109 		addr = linux_regs->regs[OPCODE_JSR_REG(op)];
110 
111 	/* RTS */
112 	else if (OPCODE_RTS(op))
113 		addr = linux_regs->pr;
114 
115 	/* RTE */
116 	else if (OPCODE_RTE(op))
117 		addr = linux_regs->regs[15];
118 
119 	/* Other */
120 	else
121 		addr = linux_regs->pc + instruction_size(op);
122 
123 	flush_icache_range(addr, addr + instruction_size(op));
124 	return (short *)addr;
125 }
126 
127 /*
128  * Replace the instruction immediately after the current instruction
129  * (i.e. next in the expected flow of control) with a trap instruction,
130  * so that returning will cause only a single instruction to be executed.
131  * Note that this model is slightly broken for instructions with delay
132  * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
133  * instruction in the delay slot will be executed.
134  */
135 
136 static unsigned long stepped_address;
137 static insn_size_t stepped_opcode;
138 
139 static void do_single_step(struct pt_regs *linux_regs)
140 {
141 	/* Determine where the target instruction will send us to */
142 	unsigned short *addr = get_step_address(linux_regs);
143 
144 	stepped_address = (int)addr;
145 
146 	/* Replace it */
147 	stepped_opcode = __raw_readw((long)addr);
148 	*addr = STEP_OPCODE;
149 
150 	/* Flush and return */
151 	flush_icache_range((long)addr, (long)addr +
152 			   instruction_size(stepped_opcode));
153 }
154 
155 /* Undo a single step */
156 static void undo_single_step(struct pt_regs *linux_regs)
157 {
158 	/* If we have stepped, put back the old instruction */
159 	/* Use stepped_address in case we stopped elsewhere */
160 	if (stepped_opcode != 0) {
161 		__raw_writew(stepped_opcode, stepped_address);
162 		flush_icache_range(stepped_address, stepped_address + 2);
163 	}
164 
165 	stepped_opcode = 0;
166 }
167 
168 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
169 	{ "r0",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
170 	{ "r1",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
171 	{ "r2",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
172 	{ "r3",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
173 	{ "r4",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
174 	{ "r5",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
175 	{ "r6",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
176 	{ "r7",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
177 	{ "r8",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
178 	{ "r9",		GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
179 	{ "r10",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
180 	{ "r11",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
181 	{ "r12",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
182 	{ "r13",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
183 	{ "r14",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
184 	{ "r15",	GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
185 	{ "pc",		GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
186 	{ "pr",		GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
187 	{ "sr",		GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
188 	{ "gbr",	GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
189 	{ "mach",	GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
190 	{ "macl",	GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
191 	{ "vbr",	GDB_SIZEOF_REG, -1 },
192 };
193 
194 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
195 {
196 	if (regno < 0 || regno >= DBG_MAX_REG_NUM)
197 		return -EINVAL;
198 
199 	if (dbg_reg_def[regno].offset != -1)
200 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
201 		       dbg_reg_def[regno].size);
202 
203 	return 0;
204 }
205 
206 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
207 {
208 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
209 		return NULL;
210 
211 	if (dbg_reg_def[regno].size != -1)
212 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
213 		       dbg_reg_def[regno].size);
214 
215 	switch (regno) {
216 	case GDB_VBR:
217 		__asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
218 		break;
219 	}
220 
221 	return dbg_reg_def[regno].name;
222 }
223 
224 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
225 {
226 	struct pt_regs *thread_regs = task_pt_regs(p);
227 	int reg;
228 
229 	/* Initialize to zero */
230 	for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
231 		gdb_regs[reg] = 0;
232 
233 	/*
234 	 * Copy out GP regs 8 to 14.
235 	 *
236 	 * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
237 	 * and need privileged instructions to get to. The r15 value we
238 	 * fetch from the thread info directly.
239 	 */
240 	for (reg = GDB_R8; reg < GDB_R15; reg++)
241 		gdb_regs[reg] = thread_regs->regs[reg];
242 
243 	gdb_regs[GDB_R15] = p->thread.sp;
244 	gdb_regs[GDB_PC] = p->thread.pc;
245 
246 	/*
247 	 * Additional registers we have context for
248 	 */
249 	gdb_regs[GDB_PR] = thread_regs->pr;
250 	gdb_regs[GDB_GBR] = thread_regs->gbr;
251 }
252 
253 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
254 			       char *remcomInBuffer, char *remcomOutBuffer,
255 			       struct pt_regs *linux_regs)
256 {
257 	unsigned long addr;
258 	char *ptr;
259 
260 	/* Undo any stepping we may have done */
261 	undo_single_step(linux_regs);
262 
263 	switch (remcomInBuffer[0]) {
264 	case 'c':
265 	case 's':
266 		/* try to read optional parameter, pc unchanged if no parm */
267 		ptr = &remcomInBuffer[1];
268 		if (kgdb_hex2long(&ptr, &addr))
269 			linux_regs->pc = addr;
270 	case 'D':
271 	case 'k':
272 		atomic_set(&kgdb_cpu_doing_single_step, -1);
273 
274 		if (remcomInBuffer[0] == 's') {
275 			do_single_step(linux_regs);
276 			kgdb_single_step = 1;
277 
278 			atomic_set(&kgdb_cpu_doing_single_step,
279 				   raw_smp_processor_id());
280 		}
281 
282 		return 0;
283 	}
284 
285 	/* this means that we do not want to exit from the handler: */
286 	return -1;
287 }
288 
289 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
290 {
291 	if (exception == 60)
292 		return instruction_pointer(regs) - 2;
293 	return instruction_pointer(regs);
294 }
295 
296 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
297 {
298 	regs->pc = ip;
299 }
300 
301 /*
302  * The primary entry points for the kgdb debug trap table entries.
303  */
304 BUILD_TRAP_HANDLER(singlestep)
305 {
306 	unsigned long flags;
307 	TRAP_HANDLER_DECL;
308 
309 	local_irq_save(flags);
310 	regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
311 	kgdb_handle_exception(0, SIGTRAP, 0, regs);
312 	local_irq_restore(flags);
313 }
314 
315 static void kgdb_call_nmi_hook(void *ignored)
316 {
317 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
318 }
319 
320 void kgdb_roundup_cpus(unsigned long flags)
321 {
322 	local_irq_enable();
323 	smp_call_function(kgdb_call_nmi_hook, NULL, 0);
324 	local_irq_disable();
325 }
326 
327 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
328 {
329 	int ret;
330 
331 	switch (cmd) {
332 	case DIE_BREAKPOINT:
333 		/*
334 		 * This means a user thread is single stepping
335 		 * a system call which should be ignored
336 		 */
337 		if (test_thread_flag(TIF_SINGLESTEP))
338 			return NOTIFY_DONE;
339 
340 		ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
341 					    args->err, args->regs);
342 		if (ret)
343 			return NOTIFY_DONE;
344 
345 		break;
346 	}
347 
348 	return NOTIFY_STOP;
349 }
350 
351 static int
352 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
353 {
354 	unsigned long flags;
355 	int ret;
356 
357 	local_irq_save(flags);
358 	ret = __kgdb_notify(ptr, cmd);
359 	local_irq_restore(flags);
360 
361 	return ret;
362 }
363 
364 static struct notifier_block kgdb_notifier = {
365 	.notifier_call	= kgdb_notify,
366 
367 	/*
368 	 * Lowest-prio notifier priority, we want to be notified last:
369 	 */
370 	.priority	= -INT_MAX,
371 };
372 
373 int kgdb_arch_init(void)
374 {
375 	return register_die_notifier(&kgdb_notifier);
376 }
377 
378 void kgdb_arch_exit(void)
379 {
380 	unregister_die_notifier(&kgdb_notifier);
381 }
382 
383 struct kgdb_arch arch_kgdb_ops = {
384 	/* Breakpoint instruction: trapa #0x3c */
385 #ifdef CONFIG_CPU_LITTLE_ENDIAN
386 	.gdb_bpt_instr		= { 0x3c, 0xc3 },
387 #else
388 	.gdb_bpt_instr		= { 0xc3, 0x3c },
389 #endif
390 };
391