1 /* 2 * linux/arch/sh/kernel/irq.c 3 * 4 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar 5 * 6 * 7 * SuperH version: Copyright (C) 1999 Niibe Yutaka 8 */ 9 #include <linux/irq.h> 10 #include <linux/interrupt.h> 11 #include <linux/module.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/seq_file.h> 14 #include <linux/ftrace.h> 15 #include <linux/delay.h> 16 #include <linux/ratelimit.h> 17 #include <asm/processor.h> 18 #include <asm/machvec.h> 19 #include <asm/uaccess.h> 20 #include <asm/thread_info.h> 21 #include <cpu/mmu_context.h> 22 23 atomic_t irq_err_count; 24 25 /* 26 * 'what should we do if we get a hw irq event on an illegal vector'. 27 * each architecture has to answer this themselves, it doesn't deserve 28 * a generic callback i think. 29 */ 30 void ack_bad_irq(unsigned int irq) 31 { 32 atomic_inc(&irq_err_count); 33 printk("unexpected IRQ trap at vector %02x\n", irq); 34 } 35 36 #if defined(CONFIG_PROC_FS) 37 /* 38 * /proc/interrupts printing for arch specific interrupts 39 */ 40 int arch_show_interrupts(struct seq_file *p, int prec) 41 { 42 int j; 43 44 seq_printf(p, "%*s: ", prec, "NMI"); 45 for_each_online_cpu(j) 46 seq_printf(p, "%10u ", irq_stat[j].__nmi_count); 47 seq_printf(p, " Non-maskable interrupts\n"); 48 49 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); 50 51 return 0; 52 } 53 #endif 54 55 #ifdef CONFIG_IRQSTACKS 56 /* 57 * per-CPU IRQ handling contexts (thread information and stack) 58 */ 59 union irq_ctx { 60 struct thread_info tinfo; 61 u32 stack[THREAD_SIZE/sizeof(u32)]; 62 }; 63 64 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly; 65 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly; 66 67 static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss; 68 static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss; 69 70 static inline void handle_one_irq(unsigned int irq) 71 { 72 union irq_ctx *curctx, *irqctx; 73 74 curctx = (union irq_ctx *)current_thread_info(); 75 irqctx = hardirq_ctx[smp_processor_id()]; 76 77 /* 78 * this is where we switch to the IRQ stack. However, if we are 79 * already using the IRQ stack (because we interrupted a hardirq 80 * handler) we can't do that and just have to keep using the 81 * current stack (which is the irq stack already after all) 82 */ 83 if (curctx != irqctx) { 84 u32 *isp; 85 86 isp = (u32 *)((char *)irqctx + sizeof(*irqctx)); 87 irqctx->tinfo.task = curctx->tinfo.task; 88 irqctx->tinfo.previous_sp = current_stack_pointer; 89 90 /* 91 * Copy the softirq bits in preempt_count so that the 92 * softirq checks work in the hardirq context. 93 */ 94 irqctx->tinfo.preempt_count = 95 (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) | 96 (curctx->tinfo.preempt_count & SOFTIRQ_MASK); 97 98 __asm__ __volatile__ ( 99 "mov %0, r4 \n" 100 "mov r15, r8 \n" 101 "jsr @%1 \n" 102 /* swith to the irq stack */ 103 " mov %2, r15 \n" 104 /* restore the stack (ring zero) */ 105 "mov r8, r15 \n" 106 : /* no outputs */ 107 : "r" (irq), "r" (generic_handle_irq), "r" (isp) 108 : "memory", "r0", "r1", "r2", "r3", "r4", 109 "r5", "r6", "r7", "r8", "t", "pr" 110 ); 111 } else 112 generic_handle_irq(irq); 113 } 114 115 /* 116 * allocate per-cpu stacks for hardirq and for softirq processing 117 */ 118 void irq_ctx_init(int cpu) 119 { 120 union irq_ctx *irqctx; 121 122 if (hardirq_ctx[cpu]) 123 return; 124 125 irqctx = (union irq_ctx *)&hardirq_stack[cpu * THREAD_SIZE]; 126 irqctx->tinfo.task = NULL; 127 irqctx->tinfo.exec_domain = NULL; 128 irqctx->tinfo.cpu = cpu; 129 irqctx->tinfo.preempt_count = HARDIRQ_OFFSET; 130 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0); 131 132 hardirq_ctx[cpu] = irqctx; 133 134 irqctx = (union irq_ctx *)&softirq_stack[cpu * THREAD_SIZE]; 135 irqctx->tinfo.task = NULL; 136 irqctx->tinfo.exec_domain = NULL; 137 irqctx->tinfo.cpu = cpu; 138 irqctx->tinfo.preempt_count = 0; 139 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0); 140 141 softirq_ctx[cpu] = irqctx; 142 143 printk("CPU %u irqstacks, hard=%p soft=%p\n", 144 cpu, hardirq_ctx[cpu], softirq_ctx[cpu]); 145 } 146 147 void irq_ctx_exit(int cpu) 148 { 149 hardirq_ctx[cpu] = NULL; 150 } 151 152 asmlinkage void do_softirq(void) 153 { 154 unsigned long flags; 155 struct thread_info *curctx; 156 union irq_ctx *irqctx; 157 u32 *isp; 158 159 if (in_interrupt()) 160 return; 161 162 local_irq_save(flags); 163 164 if (local_softirq_pending()) { 165 curctx = current_thread_info(); 166 irqctx = softirq_ctx[smp_processor_id()]; 167 irqctx->tinfo.task = curctx->task; 168 irqctx->tinfo.previous_sp = current_stack_pointer; 169 170 /* build the stack frame on the softirq stack */ 171 isp = (u32 *)((char *)irqctx + sizeof(*irqctx)); 172 173 __asm__ __volatile__ ( 174 "mov r15, r9 \n" 175 "jsr @%0 \n" 176 /* switch to the softirq stack */ 177 " mov %1, r15 \n" 178 /* restore the thread stack */ 179 "mov r9, r15 \n" 180 : /* no outputs */ 181 : "r" (__do_softirq), "r" (isp) 182 : "memory", "r0", "r1", "r2", "r3", "r4", 183 "r5", "r6", "r7", "r8", "r9", "r15", "t", "pr" 184 ); 185 186 /* 187 * Shouldn't happen, we returned above if in_interrupt(): 188 */ 189 WARN_ON_ONCE(softirq_count()); 190 } 191 192 local_irq_restore(flags); 193 } 194 #else 195 static inline void handle_one_irq(unsigned int irq) 196 { 197 generic_handle_irq(irq); 198 } 199 #endif 200 201 asmlinkage __irq_entry int do_IRQ(unsigned int irq, struct pt_regs *regs) 202 { 203 struct pt_regs *old_regs = set_irq_regs(regs); 204 205 irq_enter(); 206 207 irq = irq_demux(irq_lookup(irq)); 208 209 if (irq != NO_IRQ_IGNORE) { 210 handle_one_irq(irq); 211 irq_finish(irq); 212 } 213 214 irq_exit(); 215 216 set_irq_regs(old_regs); 217 218 return IRQ_HANDLED; 219 } 220 221 void __init init_IRQ(void) 222 { 223 plat_irq_setup(); 224 225 /* Perform the machine specific initialisation */ 226 if (sh_mv.mv_init_irq) 227 sh_mv.mv_init_irq(); 228 229 intc_finalize(); 230 231 irq_ctx_init(smp_processor_id()); 232 } 233 234 #ifdef CONFIG_HOTPLUG_CPU 235 static void route_irq(struct irq_data *data, unsigned int irq, unsigned int cpu) 236 { 237 struct irq_desc *desc = irq_to_desc(irq); 238 struct irq_chip *chip = irq_data_get_irq_chip(data); 239 240 printk(KERN_INFO "IRQ%u: moving from cpu%u to cpu%u\n", 241 irq, data->node, cpu); 242 243 raw_spin_lock_irq(&desc->lock); 244 chip->irq_set_affinity(data, cpumask_of(cpu), false); 245 raw_spin_unlock_irq(&desc->lock); 246 } 247 248 /* 249 * The CPU has been marked offline. Migrate IRQs off this CPU. If 250 * the affinity settings do not allow other CPUs, force them onto any 251 * available CPU. 252 */ 253 void migrate_irqs(void) 254 { 255 unsigned int irq, cpu = smp_processor_id(); 256 257 for_each_active_irq(irq) { 258 struct irq_data *data = irq_get_irq_data(irq); 259 260 if (data->node == cpu) { 261 unsigned int newcpu = cpumask_any_and(data->affinity, 262 cpu_online_mask); 263 if (newcpu >= nr_cpu_ids) { 264 pr_info_ratelimited("IRQ%u no longer affine to CPU%u\n", 265 irq, cpu); 266 267 cpumask_setall(data->affinity); 268 newcpu = cpumask_any_and(data->affinity, 269 cpu_online_mask); 270 } 271 272 route_irq(data, irq, newcpu); 273 } 274 } 275 } 276 #endif 277