xref: /linux/arch/sh/kernel/irq.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  * linux/arch/sh/kernel/irq.c
3  *
4  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
5  *
6  *
7  * SuperH version:  Copyright (C) 1999  Niibe Yutaka
8  */
9 #include <linux/irq.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/seq_file.h>
14 #include <linux/ftrace.h>
15 #include <linux/delay.h>
16 #include <linux/ratelimit.h>
17 #include <asm/processor.h>
18 #include <asm/machvec.h>
19 #include <asm/uaccess.h>
20 #include <asm/thread_info.h>
21 #include <cpu/mmu_context.h>
22 
23 atomic_t irq_err_count;
24 
25 /*
26  * 'what should we do if we get a hw irq event on an illegal vector'.
27  * each architecture has to answer this themselves, it doesn't deserve
28  * a generic callback i think.
29  */
30 void ack_bad_irq(unsigned int irq)
31 {
32 	atomic_inc(&irq_err_count);
33 	printk("unexpected IRQ trap at vector %02x\n", irq);
34 }
35 
36 #if defined(CONFIG_PROC_FS)
37 /*
38  * /proc/interrupts printing for arch specific interrupts
39  */
40 int arch_show_interrupts(struct seq_file *p, int prec)
41 {
42 	int j;
43 
44 	seq_printf(p, "%*s: ", prec, "NMI");
45 	for_each_online_cpu(j)
46 		seq_printf(p, "%10u ", irq_stat[j].__nmi_count);
47 	seq_printf(p, "  Non-maskable interrupts\n");
48 
49 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
50 
51 	return 0;
52 }
53 #endif
54 
55 #ifdef CONFIG_IRQSTACKS
56 /*
57  * per-CPU IRQ handling contexts (thread information and stack)
58  */
59 union irq_ctx {
60 	struct thread_info	tinfo;
61 	u32			stack[THREAD_SIZE/sizeof(u32)];
62 };
63 
64 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
65 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
66 
67 static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
68 static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
69 
70 static inline void handle_one_irq(unsigned int irq)
71 {
72 	union irq_ctx *curctx, *irqctx;
73 
74 	curctx = (union irq_ctx *)current_thread_info();
75 	irqctx = hardirq_ctx[smp_processor_id()];
76 
77 	/*
78 	 * this is where we switch to the IRQ stack. However, if we are
79 	 * already using the IRQ stack (because we interrupted a hardirq
80 	 * handler) we can't do that and just have to keep using the
81 	 * current stack (which is the irq stack already after all)
82 	 */
83 	if (curctx != irqctx) {
84 		u32 *isp;
85 
86 		isp = (u32 *)((char *)irqctx + sizeof(*irqctx));
87 		irqctx->tinfo.task = curctx->tinfo.task;
88 		irqctx->tinfo.previous_sp = current_stack_pointer;
89 
90 		/*
91 		 * Copy the softirq bits in preempt_count so that the
92 		 * softirq checks work in the hardirq context.
93 		 */
94 		irqctx->tinfo.preempt_count =
95 			(irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
96 			(curctx->tinfo.preempt_count & SOFTIRQ_MASK);
97 
98 		__asm__ __volatile__ (
99 			"mov	%0, r4		\n"
100 			"mov	r15, r8		\n"
101 			"jsr	@%1		\n"
102 			/* swith to the irq stack */
103 			" mov	%2, r15		\n"
104 			/* restore the stack (ring zero) */
105 			"mov	r8, r15		\n"
106 			: /* no outputs */
107 			: "r" (irq), "r" (generic_handle_irq), "r" (isp)
108 			: "memory", "r0", "r1", "r2", "r3", "r4",
109 			  "r5", "r6", "r7", "r8", "t", "pr"
110 		);
111 	} else
112 		generic_handle_irq(irq);
113 }
114 
115 /*
116  * allocate per-cpu stacks for hardirq and for softirq processing
117  */
118 void irq_ctx_init(int cpu)
119 {
120 	union irq_ctx *irqctx;
121 
122 	if (hardirq_ctx[cpu])
123 		return;
124 
125 	irqctx = (union irq_ctx *)&hardirq_stack[cpu * THREAD_SIZE];
126 	irqctx->tinfo.task		= NULL;
127 	irqctx->tinfo.exec_domain	= NULL;
128 	irqctx->tinfo.cpu		= cpu;
129 	irqctx->tinfo.preempt_count	= HARDIRQ_OFFSET;
130 	irqctx->tinfo.addr_limit	= MAKE_MM_SEG(0);
131 
132 	hardirq_ctx[cpu] = irqctx;
133 
134 	irqctx = (union irq_ctx *)&softirq_stack[cpu * THREAD_SIZE];
135 	irqctx->tinfo.task		= NULL;
136 	irqctx->tinfo.exec_domain	= NULL;
137 	irqctx->tinfo.cpu		= cpu;
138 	irqctx->tinfo.preempt_count	= 0;
139 	irqctx->tinfo.addr_limit	= MAKE_MM_SEG(0);
140 
141 	softirq_ctx[cpu] = irqctx;
142 
143 	printk("CPU %u irqstacks, hard=%p soft=%p\n",
144 		cpu, hardirq_ctx[cpu], softirq_ctx[cpu]);
145 }
146 
147 void irq_ctx_exit(int cpu)
148 {
149 	hardirq_ctx[cpu] = NULL;
150 }
151 
152 asmlinkage void do_softirq(void)
153 {
154 	unsigned long flags;
155 	struct thread_info *curctx;
156 	union irq_ctx *irqctx;
157 	u32 *isp;
158 
159 	if (in_interrupt())
160 		return;
161 
162 	local_irq_save(flags);
163 
164 	if (local_softirq_pending()) {
165 		curctx = current_thread_info();
166 		irqctx = softirq_ctx[smp_processor_id()];
167 		irqctx->tinfo.task = curctx->task;
168 		irqctx->tinfo.previous_sp = current_stack_pointer;
169 
170 		/* build the stack frame on the softirq stack */
171 		isp = (u32 *)((char *)irqctx + sizeof(*irqctx));
172 
173 		__asm__ __volatile__ (
174 			"mov	r15, r9		\n"
175 			"jsr	@%0		\n"
176 			/* switch to the softirq stack */
177 			" mov	%1, r15		\n"
178 			/* restore the thread stack */
179 			"mov	r9, r15		\n"
180 			: /* no outputs */
181 			: "r" (__do_softirq), "r" (isp)
182 			: "memory", "r0", "r1", "r2", "r3", "r4",
183 			  "r5", "r6", "r7", "r8", "r9", "r15", "t", "pr"
184 		);
185 
186 		/*
187 		 * Shouldn't happen, we returned above if in_interrupt():
188 		 */
189 		WARN_ON_ONCE(softirq_count());
190 	}
191 
192 	local_irq_restore(flags);
193 }
194 #else
195 static inline void handle_one_irq(unsigned int irq)
196 {
197 	generic_handle_irq(irq);
198 }
199 #endif
200 
201 asmlinkage __irq_entry int do_IRQ(unsigned int irq, struct pt_regs *regs)
202 {
203 	struct pt_regs *old_regs = set_irq_regs(regs);
204 
205 	irq_enter();
206 
207 	irq = irq_demux(irq_lookup(irq));
208 
209 	if (irq != NO_IRQ_IGNORE) {
210 		handle_one_irq(irq);
211 		irq_finish(irq);
212 	}
213 
214 	irq_exit();
215 
216 	set_irq_regs(old_regs);
217 
218 	return IRQ_HANDLED;
219 }
220 
221 void __init init_IRQ(void)
222 {
223 	plat_irq_setup();
224 
225 	/* Perform the machine specific initialisation */
226 	if (sh_mv.mv_init_irq)
227 		sh_mv.mv_init_irq();
228 
229 	intc_finalize();
230 
231 	irq_ctx_init(smp_processor_id());
232 }
233 
234 #ifdef CONFIG_HOTPLUG_CPU
235 static void route_irq(struct irq_data *data, unsigned int irq, unsigned int cpu)
236 {
237 	struct irq_desc *desc = irq_to_desc(irq);
238 	struct irq_chip *chip = irq_data_get_irq_chip(data);
239 
240 	printk(KERN_INFO "IRQ%u: moving from cpu%u to cpu%u\n",
241 	       irq, data->node, cpu);
242 
243 	raw_spin_lock_irq(&desc->lock);
244 	chip->irq_set_affinity(data, cpumask_of(cpu), false);
245 	raw_spin_unlock_irq(&desc->lock);
246 }
247 
248 /*
249  * The CPU has been marked offline.  Migrate IRQs off this CPU.  If
250  * the affinity settings do not allow other CPUs, force them onto any
251  * available CPU.
252  */
253 void migrate_irqs(void)
254 {
255 	unsigned int irq, cpu = smp_processor_id();
256 
257 	for_each_active_irq(irq) {
258 		struct irq_data *data = irq_get_irq_data(irq);
259 
260 		if (data->node == cpu) {
261 			unsigned int newcpu = cpumask_any_and(data->affinity,
262 							      cpu_online_mask);
263 			if (newcpu >= nr_cpu_ids) {
264 				pr_info_ratelimited("IRQ%u no longer affine to CPU%u\n",
265 						    irq, cpu);
266 
267 				cpumask_setall(data->affinity);
268 				newcpu = cpumask_any_and(data->affinity,
269 							 cpu_online_mask);
270 			}
271 
272 			route_irq(data, irq, newcpu);
273 		}
274 	}
275 }
276 #endif
277