xref: /linux/arch/sh/kernel/hw_breakpoint.c (revision 088e88be5a380cc4e81963a9a02815da465d144f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sh/kernel/hw_breakpoint.c
4  *
5  * Unified kernel/user-space hardware breakpoint facility for the on-chip UBC.
6  *
7  * Copyright (C) 2009 - 2010  Paul Mundt
8  */
9 #include <linux/init.h>
10 #include <linux/perf_event.h>
11 #include <linux/sched/signal.h>
12 #include <linux/hw_breakpoint.h>
13 #include <linux/percpu.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/kprobes.h>
17 #include <linux/kdebug.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <asm/hw_breakpoint.h>
21 #include <asm/mmu_context.h>
22 #include <asm/ptrace.h>
23 #include <asm/traps.h>
24 
25 /*
26  * Stores the breakpoints currently in use on each breakpoint address
27  * register for each cpus
28  */
29 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
30 
31 /*
32  * A dummy placeholder for early accesses until the CPUs get a chance to
33  * register their UBCs later in the boot process.
34  */
35 static struct sh_ubc ubc_dummy = { .num_events = 0 };
36 
37 static struct sh_ubc *sh_ubc __read_mostly = &ubc_dummy;
38 
39 /*
40  * Install a perf counter breakpoint.
41  *
42  * We seek a free UBC channel and use it for this breakpoint.
43  *
44  * Atomic: we hold the counter->ctx->lock and we only handle variables
45  * and registers local to this cpu.
46  */
47 int arch_install_hw_breakpoint(struct perf_event *bp)
48 {
49 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
50 	int i;
51 
52 	for (i = 0; i < sh_ubc->num_events; i++) {
53 		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
54 
55 		if (!*slot) {
56 			*slot = bp;
57 			break;
58 		}
59 	}
60 
61 	if (WARN_ONCE(i == sh_ubc->num_events, "Can't find any breakpoint slot"))
62 		return -EBUSY;
63 
64 	clk_enable(sh_ubc->clk);
65 	sh_ubc->enable(info, i);
66 
67 	return 0;
68 }
69 
70 /*
71  * Uninstall the breakpoint contained in the given counter.
72  *
73  * First we search the debug address register it uses and then we disable
74  * it.
75  *
76  * Atomic: we hold the counter->ctx->lock and we only handle variables
77  * and registers local to this cpu.
78  */
79 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
80 {
81 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
82 	int i;
83 
84 	for (i = 0; i < sh_ubc->num_events; i++) {
85 		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
86 
87 		if (*slot == bp) {
88 			*slot = NULL;
89 			break;
90 		}
91 	}
92 
93 	if (WARN_ONCE(i == sh_ubc->num_events, "Can't find any breakpoint slot"))
94 		return;
95 
96 	sh_ubc->disable(info, i);
97 	clk_disable(sh_ubc->clk);
98 }
99 
100 static int get_hbp_len(u16 hbp_len)
101 {
102 	unsigned int len_in_bytes = 0;
103 
104 	switch (hbp_len) {
105 	case SH_BREAKPOINT_LEN_1:
106 		len_in_bytes = 1;
107 		break;
108 	case SH_BREAKPOINT_LEN_2:
109 		len_in_bytes = 2;
110 		break;
111 	case SH_BREAKPOINT_LEN_4:
112 		len_in_bytes = 4;
113 		break;
114 	case SH_BREAKPOINT_LEN_8:
115 		len_in_bytes = 8;
116 		break;
117 	}
118 	return len_in_bytes;
119 }
120 
121 /*
122  * Check for virtual address in kernel space.
123  */
124 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
125 {
126 	unsigned int len;
127 	unsigned long va;
128 
129 	va = hw->address;
130 	len = get_hbp_len(hw->len);
131 
132 	return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
133 }
134 
135 int arch_bp_generic_fields(int sh_len, int sh_type,
136 			   int *gen_len, int *gen_type)
137 {
138 	/* Len */
139 	switch (sh_len) {
140 	case SH_BREAKPOINT_LEN_1:
141 		*gen_len = HW_BREAKPOINT_LEN_1;
142 		break;
143 	case SH_BREAKPOINT_LEN_2:
144 		*gen_len = HW_BREAKPOINT_LEN_2;
145 		break;
146 	case SH_BREAKPOINT_LEN_4:
147 		*gen_len = HW_BREAKPOINT_LEN_4;
148 		break;
149 	case SH_BREAKPOINT_LEN_8:
150 		*gen_len = HW_BREAKPOINT_LEN_8;
151 		break;
152 	default:
153 		return -EINVAL;
154 	}
155 
156 	/* Type */
157 	switch (sh_type) {
158 	case SH_BREAKPOINT_READ:
159 		*gen_type = HW_BREAKPOINT_R;
160 	case SH_BREAKPOINT_WRITE:
161 		*gen_type = HW_BREAKPOINT_W;
162 		break;
163 	case SH_BREAKPOINT_RW:
164 		*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
165 		break;
166 	default:
167 		return -EINVAL;
168 	}
169 
170 	return 0;
171 }
172 
173 static int arch_build_bp_info(struct perf_event *bp,
174 			      const struct perf_event_attr *attr,
175 			      struct arch_hw_breakpoint *hw)
176 {
177 	hw->address = attr->bp_addr;
178 
179 	/* Len */
180 	switch (attr->bp_len) {
181 	case HW_BREAKPOINT_LEN_1:
182 		hw->len = SH_BREAKPOINT_LEN_1;
183 		break;
184 	case HW_BREAKPOINT_LEN_2:
185 		hw->len = SH_BREAKPOINT_LEN_2;
186 		break;
187 	case HW_BREAKPOINT_LEN_4:
188 		hw->len = SH_BREAKPOINT_LEN_4;
189 		break;
190 	case HW_BREAKPOINT_LEN_8:
191 		hw->len = SH_BREAKPOINT_LEN_8;
192 		break;
193 	default:
194 		return -EINVAL;
195 	}
196 
197 	/* Type */
198 	switch (attr->bp_type) {
199 	case HW_BREAKPOINT_R:
200 		hw->type = SH_BREAKPOINT_READ;
201 		break;
202 	case HW_BREAKPOINT_W:
203 		hw->type = SH_BREAKPOINT_WRITE;
204 		break;
205 	case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
206 		hw->type = SH_BREAKPOINT_RW;
207 		break;
208 	default:
209 		return -EINVAL;
210 	}
211 
212 	return 0;
213 }
214 
215 /*
216  * Validate the arch-specific HW Breakpoint register settings
217  */
218 int hw_breakpoint_arch_parse(struct perf_event *bp,
219 			     const struct perf_event_attr *attr,
220 			     struct arch_hw_breakpoint *hw)
221 {
222 	unsigned int align;
223 	int ret;
224 
225 	ret = arch_build_bp_info(bp, attr, hw);
226 	if (ret)
227 		return ret;
228 
229 	ret = -EINVAL;
230 
231 	switch (hw->len) {
232 	case SH_BREAKPOINT_LEN_1:
233 		align = 0;
234 		break;
235 	case SH_BREAKPOINT_LEN_2:
236 		align = 1;
237 		break;
238 	case SH_BREAKPOINT_LEN_4:
239 		align = 3;
240 		break;
241 	case SH_BREAKPOINT_LEN_8:
242 		align = 7;
243 		break;
244 	default:
245 		return ret;
246 	}
247 
248 	/*
249 	 * Check that the low-order bits of the address are appropriate
250 	 * for the alignment implied by len.
251 	 */
252 	if (hw->address & align)
253 		return -EINVAL;
254 
255 	return 0;
256 }
257 
258 /*
259  * Release the user breakpoints used by ptrace
260  */
261 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
262 {
263 	int i;
264 	struct thread_struct *t = &tsk->thread;
265 
266 	for (i = 0; i < sh_ubc->num_events; i++) {
267 		unregister_hw_breakpoint(t->ptrace_bps[i]);
268 		t->ptrace_bps[i] = NULL;
269 	}
270 }
271 
272 static int __kprobes hw_breakpoint_handler(struct die_args *args)
273 {
274 	int cpu, i, rc = NOTIFY_STOP;
275 	struct perf_event *bp;
276 	unsigned int cmf, resume_mask;
277 
278 	/*
279 	 * Do an early return if none of the channels triggered.
280 	 */
281 	cmf = sh_ubc->triggered_mask();
282 	if (unlikely(!cmf))
283 		return NOTIFY_DONE;
284 
285 	/*
286 	 * By default, resume all of the active channels.
287 	 */
288 	resume_mask = sh_ubc->active_mask();
289 
290 	/*
291 	 * Disable breakpoints during exception handling.
292 	 */
293 	sh_ubc->disable_all();
294 
295 	cpu = get_cpu();
296 	for (i = 0; i < sh_ubc->num_events; i++) {
297 		unsigned long event_mask = (1 << i);
298 
299 		if (likely(!(cmf & event_mask)))
300 			continue;
301 
302 		/*
303 		 * The counter may be concurrently released but that can only
304 		 * occur from a call_rcu() path. We can then safely fetch
305 		 * the breakpoint, use its callback, touch its counter
306 		 * while we are in an rcu_read_lock() path.
307 		 */
308 		rcu_read_lock();
309 
310 		bp = per_cpu(bp_per_reg[i], cpu);
311 		if (bp)
312 			rc = NOTIFY_DONE;
313 
314 		/*
315 		 * Reset the condition match flag to denote completion of
316 		 * exception handling.
317 		 */
318 		sh_ubc->clear_triggered_mask(event_mask);
319 
320 		/*
321 		 * bp can be NULL due to concurrent perf counter
322 		 * removing.
323 		 */
324 		if (!bp) {
325 			rcu_read_unlock();
326 			break;
327 		}
328 
329 		/*
330 		 * Don't restore the channel if the breakpoint is from
331 		 * ptrace, as it always operates in one-shot mode.
332 		 */
333 		if (bp->overflow_handler == ptrace_triggered)
334 			resume_mask &= ~(1 << i);
335 
336 		perf_bp_event(bp, args->regs);
337 
338 		/* Deliver the signal to userspace */
339 		if (!arch_check_bp_in_kernelspace(&bp->hw.info)) {
340 			force_sig_fault(SIGTRAP, TRAP_HWBKPT,
341 					(void __user *)NULL);
342 		}
343 
344 		rcu_read_unlock();
345 	}
346 
347 	if (cmf == 0)
348 		rc = NOTIFY_DONE;
349 
350 	sh_ubc->enable_all(resume_mask);
351 
352 	put_cpu();
353 
354 	return rc;
355 }
356 
357 BUILD_TRAP_HANDLER(breakpoint)
358 {
359 	unsigned long ex = lookup_exception_vector();
360 	TRAP_HANDLER_DECL;
361 
362 	notify_die(DIE_BREAKPOINT, "breakpoint", regs, 0, ex, SIGTRAP);
363 }
364 
365 /*
366  * Handle debug exception notifications.
367  */
368 int __kprobes hw_breakpoint_exceptions_notify(struct notifier_block *unused,
369 				    unsigned long val, void *data)
370 {
371 	struct die_args *args = data;
372 
373 	if (val != DIE_BREAKPOINT)
374 		return NOTIFY_DONE;
375 
376 	/*
377 	 * If the breakpoint hasn't been triggered by the UBC, it's
378 	 * probably from a debugger, so don't do anything more here.
379 	 *
380 	 * This also permits the UBC interface clock to remain off for
381 	 * non-UBC breakpoints, as we don't need to check the triggered
382 	 * or active channel masks.
383 	 */
384 	if (args->trapnr != sh_ubc->trap_nr)
385 		return NOTIFY_DONE;
386 
387 	return hw_breakpoint_handler(data);
388 }
389 
390 void hw_breakpoint_pmu_read(struct perf_event *bp)
391 {
392 	/* TODO */
393 }
394 
395 int register_sh_ubc(struct sh_ubc *ubc)
396 {
397 	/* Bail if it's already assigned */
398 	if (sh_ubc != &ubc_dummy)
399 		return -EBUSY;
400 	sh_ubc = ubc;
401 
402 	pr_info("HW Breakpoints: %s UBC support registered\n", ubc->name);
403 
404 	WARN_ON(ubc->num_events > HBP_NUM);
405 
406 	return 0;
407 }
408