xref: /linux/arch/sh/kernel/dwarf.c (revision e638fab91e5d1c4db3a80957546c32ed4bd75086)
1 /*
2  * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * This is an implementation of a DWARF unwinder. Its main purpose is
9  * for generating stacktrace information. Based on the DWARF 3
10  * specification from http://www.dwarfstd.org.
11  *
12  * TODO:
13  *	- DWARF64 doesn't work.
14  */
15 
16 /* #define DEBUG */
17 #include <linux/kernel.h>
18 #include <linux/io.h>
19 #include <linux/list.h>
20 #include <linux/mm.h>
21 #include <asm/dwarf.h>
22 #include <asm/unwinder.h>
23 #include <asm/sections.h>
24 #include <asm/unaligned.h>
25 #include <asm/dwarf.h>
26 #include <asm/stacktrace.h>
27 
28 static LIST_HEAD(dwarf_cie_list);
29 DEFINE_SPINLOCK(dwarf_cie_lock);
30 
31 static LIST_HEAD(dwarf_fde_list);
32 DEFINE_SPINLOCK(dwarf_fde_lock);
33 
34 static struct dwarf_cie *cached_cie;
35 
36 /*
37  * Figure out whether we need to allocate some dwarf registers. If dwarf
38  * registers have already been allocated then we may need to realloc
39  * them. "reg" is a register number that we need to be able to access
40  * after this call.
41  *
42  * Register numbers start at zero, therefore we need to allocate space
43  * for "reg" + 1 registers.
44  */
45 static void dwarf_frame_alloc_regs(struct dwarf_frame *frame,
46 				   unsigned int reg)
47 {
48 	struct dwarf_reg *regs;
49 	unsigned int num_regs = reg + 1;
50 	size_t new_size;
51 	size_t old_size;
52 
53 	new_size = num_regs * sizeof(*regs);
54 	old_size = frame->num_regs * sizeof(*regs);
55 
56 	/* Fast path: don't allocate any regs if we've already got enough. */
57 	if (frame->num_regs >= num_regs)
58 		return;
59 
60 	regs = kzalloc(new_size, GFP_ATOMIC);
61 	if (!regs) {
62 		printk(KERN_WARNING "Unable to allocate DWARF registers\n");
63 		/*
64 		 * Let's just bomb hard here, we have no way to
65 		 * gracefully recover.
66 		 */
67 		BUG();
68 	}
69 
70 	if (frame->regs) {
71 		memcpy(regs, frame->regs, old_size);
72 		kfree(frame->regs);
73 	}
74 
75 	frame->regs = regs;
76 	frame->num_regs = num_regs;
77 }
78 
79 /**
80  *	dwarf_read_addr - read dwarf data
81  *	@src: source address of data
82  *	@dst: destination address to store the data to
83  *
84  *	Read 'n' bytes from @src, where 'n' is the size of an address on
85  *	the native machine. We return the number of bytes read, which
86  *	should always be 'n'. We also have to be careful when reading
87  *	from @src and writing to @dst, because they can be arbitrarily
88  *	aligned. Return 'n' - the number of bytes read.
89  */
90 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
91 {
92 	u32 val = get_unaligned(src);
93 	put_unaligned(val, dst);
94 	return sizeof(unsigned long *);
95 }
96 
97 /**
98  *	dwarf_read_uleb128 - read unsigned LEB128 data
99  *	@addr: the address where the ULEB128 data is stored
100  *	@ret: address to store the result
101  *
102  *	Decode an unsigned LEB128 encoded datum. The algorithm is taken
103  *	from Appendix C of the DWARF 3 spec. For information on the
104  *	encodings refer to section "7.6 - Variable Length Data". Return
105  *	the number of bytes read.
106  */
107 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
108 {
109 	unsigned int result;
110 	unsigned char byte;
111 	int shift, count;
112 
113 	result = 0;
114 	shift = 0;
115 	count = 0;
116 
117 	while (1) {
118 		byte = __raw_readb(addr);
119 		addr++;
120 		count++;
121 
122 		result |= (byte & 0x7f) << shift;
123 		shift += 7;
124 
125 		if (!(byte & 0x80))
126 			break;
127 	}
128 
129 	*ret = result;
130 
131 	return count;
132 }
133 
134 /**
135  *	dwarf_read_leb128 - read signed LEB128 data
136  *	@addr: the address of the LEB128 encoded data
137  *	@ret: address to store the result
138  *
139  *	Decode signed LEB128 data. The algorithm is taken from Appendix
140  *	C of the DWARF 3 spec. Return the number of bytes read.
141  */
142 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
143 {
144 	unsigned char byte;
145 	int result, shift;
146 	int num_bits;
147 	int count;
148 
149 	result = 0;
150 	shift = 0;
151 	count = 0;
152 
153 	while (1) {
154 		byte = __raw_readb(addr);
155 		addr++;
156 		result |= (byte & 0x7f) << shift;
157 		shift += 7;
158 		count++;
159 
160 		if (!(byte & 0x80))
161 			break;
162 	}
163 
164 	/* The number of bits in a signed integer. */
165 	num_bits = 8 * sizeof(result);
166 
167 	if ((shift < num_bits) && (byte & 0x40))
168 		result |= (-1 << shift);
169 
170 	*ret = result;
171 
172 	return count;
173 }
174 
175 /**
176  *	dwarf_read_encoded_value - return the decoded value at @addr
177  *	@addr: the address of the encoded value
178  *	@val: where to write the decoded value
179  *	@encoding: the encoding with which we can decode @addr
180  *
181  *	GCC emits encoded address in the .eh_frame FDE entries. Decode
182  *	the value at @addr using @encoding. The decoded value is written
183  *	to @val and the number of bytes read is returned.
184  */
185 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
186 				    char encoding)
187 {
188 	unsigned long decoded_addr = 0;
189 	int count = 0;
190 
191 	switch (encoding & 0x70) {
192 	case DW_EH_PE_absptr:
193 		break;
194 	case DW_EH_PE_pcrel:
195 		decoded_addr = (unsigned long)addr;
196 		break;
197 	default:
198 		pr_debug("encoding=0x%x\n", (encoding & 0x70));
199 		BUG();
200 	}
201 
202 	if ((encoding & 0x07) == 0x00)
203 		encoding |= DW_EH_PE_udata4;
204 
205 	switch (encoding & 0x0f) {
206 	case DW_EH_PE_sdata4:
207 	case DW_EH_PE_udata4:
208 		count += 4;
209 		decoded_addr += get_unaligned((u32 *)addr);
210 		__raw_writel(decoded_addr, val);
211 		break;
212 	default:
213 		pr_debug("encoding=0x%x\n", encoding);
214 		BUG();
215 	}
216 
217 	return count;
218 }
219 
220 /**
221  *	dwarf_entry_len - return the length of an FDE or CIE
222  *	@addr: the address of the entry
223  *	@len: the length of the entry
224  *
225  *	Read the initial_length field of the entry and store the size of
226  *	the entry in @len. We return the number of bytes read. Return a
227  *	count of 0 on error.
228  */
229 static inline int dwarf_entry_len(char *addr, unsigned long *len)
230 {
231 	u32 initial_len;
232 	int count;
233 
234 	initial_len = get_unaligned((u32 *)addr);
235 	count = 4;
236 
237 	/*
238 	 * An initial length field value in the range DW_LEN_EXT_LO -
239 	 * DW_LEN_EXT_HI indicates an extension, and should not be
240 	 * interpreted as a length. The only extension that we currently
241 	 * understand is the use of DWARF64 addresses.
242 	 */
243 	if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
244 		/*
245 		 * The 64-bit length field immediately follows the
246 		 * compulsory 32-bit length field.
247 		 */
248 		if (initial_len == DW_EXT_DWARF64) {
249 			*len = get_unaligned((u64 *)addr + 4);
250 			count = 12;
251 		} else {
252 			printk(KERN_WARNING "Unknown DWARF extension\n");
253 			count = 0;
254 		}
255 	} else
256 		*len = initial_len;
257 
258 	return count;
259 }
260 
261 /**
262  *	dwarf_lookup_cie - locate the cie
263  *	@cie_ptr: pointer to help with lookup
264  */
265 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
266 {
267 	struct dwarf_cie *cie, *n;
268 	unsigned long flags;
269 
270 	spin_lock_irqsave(&dwarf_cie_lock, flags);
271 
272 	/*
273 	 * We've cached the last CIE we looked up because chances are
274 	 * that the FDE wants this CIE.
275 	 */
276 	if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
277 		cie = cached_cie;
278 		goto out;
279 	}
280 
281 	list_for_each_entry_safe(cie, n, &dwarf_cie_list, link) {
282 		if (cie->cie_pointer == cie_ptr) {
283 			cached_cie = cie;
284 			break;
285 		}
286 	}
287 
288 	/* Couldn't find the entry in the list. */
289 	if (&cie->link == &dwarf_cie_list)
290 		cie = NULL;
291 out:
292 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
293 	return cie;
294 }
295 
296 /**
297  *	dwarf_lookup_fde - locate the FDE that covers pc
298  *	@pc: the program counter
299  */
300 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
301 {
302 	unsigned long flags;
303 	struct dwarf_fde *fde, *n;
304 
305 	spin_lock_irqsave(&dwarf_fde_lock, flags);
306 	list_for_each_entry_safe(fde, n, &dwarf_fde_list, link) {
307 		unsigned long start, end;
308 
309 		start = fde->initial_location;
310 		end = fde->initial_location + fde->address_range;
311 
312 		if (pc >= start && pc < end)
313 			break;
314 	}
315 
316 	/* Couldn't find the entry in the list. */
317 	if (&fde->link == &dwarf_fde_list)
318 		fde = NULL;
319 
320 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
321 
322 	return fde;
323 }
324 
325 /**
326  *	dwarf_cfa_execute_insns - execute instructions to calculate a CFA
327  *	@insn_start: address of the first instruction
328  *	@insn_end: address of the last instruction
329  *	@cie: the CIE for this function
330  *	@fde: the FDE for this function
331  *	@frame: the instructions calculate the CFA for this frame
332  *	@pc: the program counter of the address we're interested in
333  *
334  *	Execute the Call Frame instruction sequence starting at
335  *	@insn_start and ending at @insn_end. The instructions describe
336  *	how to calculate the Canonical Frame Address of a stackframe.
337  *	Store the results in @frame.
338  */
339 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
340 				   unsigned char *insn_end,
341 				   struct dwarf_cie *cie,
342 				   struct dwarf_fde *fde,
343 				   struct dwarf_frame *frame,
344 				   unsigned long pc)
345 {
346 	unsigned char insn;
347 	unsigned char *current_insn;
348 	unsigned int count, delta, reg, expr_len, offset;
349 
350 	current_insn = insn_start;
351 
352 	while (current_insn < insn_end && frame->pc <= pc) {
353 		insn = __raw_readb(current_insn++);
354 
355 		/*
356 		 * Firstly, handle the opcodes that embed their operands
357 		 * in the instructions.
358 		 */
359 		switch (DW_CFA_opcode(insn)) {
360 		case DW_CFA_advance_loc:
361 			delta = DW_CFA_operand(insn);
362 			delta *= cie->code_alignment_factor;
363 			frame->pc += delta;
364 			continue;
365 			/* NOTREACHED */
366 		case DW_CFA_offset:
367 			reg = DW_CFA_operand(insn);
368 			count = dwarf_read_uleb128(current_insn, &offset);
369 			current_insn += count;
370 			offset *= cie->data_alignment_factor;
371 			dwarf_frame_alloc_regs(frame, reg);
372 			frame->regs[reg].addr = offset;
373 			frame->regs[reg].flags |= DWARF_REG_OFFSET;
374 			continue;
375 			/* NOTREACHED */
376 		case DW_CFA_restore:
377 			reg = DW_CFA_operand(insn);
378 			continue;
379 			/* NOTREACHED */
380 		}
381 
382 		/*
383 		 * Secondly, handle the opcodes that don't embed their
384 		 * operands in the instruction.
385 		 */
386 		switch (insn) {
387 		case DW_CFA_nop:
388 			continue;
389 		case DW_CFA_advance_loc1:
390 			delta = *current_insn++;
391 			frame->pc += delta * cie->code_alignment_factor;
392 			break;
393 		case DW_CFA_advance_loc2:
394 			delta = get_unaligned((u16 *)current_insn);
395 			current_insn += 2;
396 			frame->pc += delta * cie->code_alignment_factor;
397 			break;
398 		case DW_CFA_advance_loc4:
399 			delta = get_unaligned((u32 *)current_insn);
400 			current_insn += 4;
401 			frame->pc += delta * cie->code_alignment_factor;
402 			break;
403 		case DW_CFA_offset_extended:
404 			count = dwarf_read_uleb128(current_insn, &reg);
405 			current_insn += count;
406 			count = dwarf_read_uleb128(current_insn, &offset);
407 			current_insn += count;
408 			offset *= cie->data_alignment_factor;
409 			break;
410 		case DW_CFA_restore_extended:
411 			count = dwarf_read_uleb128(current_insn, &reg);
412 			current_insn += count;
413 			break;
414 		case DW_CFA_undefined:
415 			count = dwarf_read_uleb128(current_insn, &reg);
416 			current_insn += count;
417 			break;
418 		case DW_CFA_def_cfa:
419 			count = dwarf_read_uleb128(current_insn,
420 						   &frame->cfa_register);
421 			current_insn += count;
422 			count = dwarf_read_uleb128(current_insn,
423 						   &frame->cfa_offset);
424 			current_insn += count;
425 
426 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
427 			break;
428 		case DW_CFA_def_cfa_register:
429 			count = dwarf_read_uleb128(current_insn,
430 						   &frame->cfa_register);
431 			current_insn += count;
432 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
433 			break;
434 		case DW_CFA_def_cfa_offset:
435 			count = dwarf_read_uleb128(current_insn, &offset);
436 			current_insn += count;
437 			frame->cfa_offset = offset;
438 			break;
439 		case DW_CFA_def_cfa_expression:
440 			count = dwarf_read_uleb128(current_insn, &expr_len);
441 			current_insn += count;
442 
443 			frame->cfa_expr = current_insn;
444 			frame->cfa_expr_len = expr_len;
445 			current_insn += expr_len;
446 
447 			frame->flags |= DWARF_FRAME_CFA_REG_EXP;
448 			break;
449 		case DW_CFA_offset_extended_sf:
450 			count = dwarf_read_uleb128(current_insn, &reg);
451 			current_insn += count;
452 			count = dwarf_read_leb128(current_insn, &offset);
453 			current_insn += count;
454 			offset *= cie->data_alignment_factor;
455 			dwarf_frame_alloc_regs(frame, reg);
456 			frame->regs[reg].flags |= DWARF_REG_OFFSET;
457 			frame->regs[reg].addr = offset;
458 			break;
459 		case DW_CFA_val_offset:
460 			count = dwarf_read_uleb128(current_insn, &reg);
461 			current_insn += count;
462 			count = dwarf_read_leb128(current_insn, &offset);
463 			offset *= cie->data_alignment_factor;
464 			frame->regs[reg].flags |= DWARF_REG_OFFSET;
465 			frame->regs[reg].addr = offset;
466 			break;
467 		case DW_CFA_GNU_args_size:
468 			count = dwarf_read_uleb128(current_insn, &offset);
469 			current_insn += count;
470 			break;
471 		case DW_CFA_GNU_negative_offset_extended:
472 			count = dwarf_read_uleb128(current_insn, &reg);
473 			current_insn += count;
474 			count = dwarf_read_uleb128(current_insn, &offset);
475 			offset *= cie->data_alignment_factor;
476 			dwarf_frame_alloc_regs(frame, reg);
477 			frame->regs[reg].flags |= DWARF_REG_OFFSET;
478 			frame->regs[reg].addr = -offset;
479 			break;
480 		default:
481 			pr_debug("unhandled DWARF instruction 0x%x\n", insn);
482 			break;
483 		}
484 	}
485 
486 	return 0;
487 }
488 
489 /**
490  *	dwarf_unwind_stack - recursively unwind the stack
491  *	@pc: address of the function to unwind
492  *	@prev: struct dwarf_frame of the previous stackframe on the callstack
493  *
494  *	Return a struct dwarf_frame representing the most recent frame
495  *	on the callstack. Each of the lower (older) stack frames are
496  *	linked via the "prev" member.
497  */
498 struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
499 				       struct dwarf_frame *prev)
500 {
501 	struct dwarf_frame *frame;
502 	struct dwarf_cie *cie;
503 	struct dwarf_fde *fde;
504 	unsigned long addr;
505 	int i, offset;
506 
507 	/*
508 	 * If this is the first invocation of this recursive function we
509 	 * need get the contents of a physical register to get the CFA
510 	 * in order to begin the virtual unwinding of the stack.
511 	 *
512 	 * NOTE: the return address is guaranteed to be setup by the
513 	 * time this function makes its first function call.
514 	 */
515 	if (!pc && !prev)
516 		pc = (unsigned long)current_text_addr();
517 
518 	frame = kzalloc(sizeof(*frame), GFP_ATOMIC);
519 	if (!frame)
520 		return NULL;
521 
522 	frame->prev = prev;
523 
524 	fde = dwarf_lookup_fde(pc);
525 	if (!fde) {
526 		/*
527 		 * This is our normal exit path - the one that stops the
528 		 * recursion. There's two reasons why we might exit
529 		 * here,
530 		 *
531 		 *	a) pc has no asscociated DWARF frame info and so
532 		 *	we don't know how to unwind this frame. This is
533 		 *	usually the case when we're trying to unwind a
534 		 *	frame that was called from some assembly code
535 		 *	that has no DWARF info, e.g. syscalls.
536 		 *
537 		 *	b) the DEBUG info for pc is bogus. There's
538 		 *	really no way to distinguish this case from the
539 		 *	case above, which sucks because we could print a
540 		 *	warning here.
541 		 */
542 		return NULL;
543 	}
544 
545 	cie = dwarf_lookup_cie(fde->cie_pointer);
546 
547 	frame->pc = fde->initial_location;
548 
549 	/* CIE initial instructions */
550 	dwarf_cfa_execute_insns(cie->initial_instructions,
551 				cie->instructions_end, cie, fde,
552 				frame, pc);
553 
554 	/* FDE instructions */
555 	dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
556 				fde, frame, pc);
557 
558 	/* Calculate the CFA */
559 	switch (frame->flags) {
560 	case DWARF_FRAME_CFA_REG_OFFSET:
561 		if (prev) {
562 			BUG_ON(!prev->regs[frame->cfa_register].flags);
563 
564 			addr = prev->cfa;
565 			addr += prev->regs[frame->cfa_register].addr;
566 			frame->cfa = __raw_readl(addr);
567 
568 		} else {
569 			/*
570 			 * Again, this is the first invocation of this
571 			 * recurisve function. We need to physically
572 			 * read the contents of a register in order to
573 			 * get the Canonical Frame Address for this
574 			 * function.
575 			 */
576 			frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
577 		}
578 
579 		frame->cfa += frame->cfa_offset;
580 		break;
581 	default:
582 		BUG();
583 	}
584 
585 	/* If we haven't seen the return address reg, we're screwed. */
586 	BUG_ON(!frame->regs[DWARF_ARCH_RA_REG].flags);
587 
588 	for (i = 0; i <= frame->num_regs; i++) {
589 		struct dwarf_reg *reg = &frame->regs[i];
590 
591 		if (!reg->flags)
592 			continue;
593 
594 		offset = reg->addr;
595 		offset += frame->cfa;
596 	}
597 
598 	addr = frame->cfa + frame->regs[DWARF_ARCH_RA_REG].addr;
599 	frame->return_addr = __raw_readl(addr);
600 
601 	frame->next = dwarf_unwind_stack(frame->return_addr, frame);
602 	return frame;
603 }
604 
605 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
606 			   unsigned char *end)
607 {
608 	struct dwarf_cie *cie;
609 	unsigned long flags;
610 	int count;
611 
612 	cie = kzalloc(sizeof(*cie), GFP_KERNEL);
613 	if (!cie)
614 		return -ENOMEM;
615 
616 	cie->length = len;
617 
618 	/*
619 	 * Record the offset into the .eh_frame section
620 	 * for this CIE. It allows this CIE to be
621 	 * quickly and easily looked up from the
622 	 * corresponding FDE.
623 	 */
624 	cie->cie_pointer = (unsigned long)entry;
625 
626 	cie->version = *(char *)p++;
627 	BUG_ON(cie->version != 1);
628 
629 	cie->augmentation = p;
630 	p += strlen(cie->augmentation) + 1;
631 
632 	count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
633 	p += count;
634 
635 	count = dwarf_read_leb128(p, &cie->data_alignment_factor);
636 	p += count;
637 
638 	/*
639 	 * Which column in the rule table contains the
640 	 * return address?
641 	 */
642 	if (cie->version == 1) {
643 		cie->return_address_reg = __raw_readb(p);
644 		p++;
645 	} else {
646 		count = dwarf_read_uleb128(p, &cie->return_address_reg);
647 		p += count;
648 	}
649 
650 	if (cie->augmentation[0] == 'z') {
651 		unsigned int length, count;
652 		cie->flags |= DWARF_CIE_Z_AUGMENTATION;
653 
654 		count = dwarf_read_uleb128(p, &length);
655 		p += count;
656 
657 		BUG_ON((unsigned char *)p > end);
658 
659 		cie->initial_instructions = p + length;
660 		cie->augmentation++;
661 	}
662 
663 	while (*cie->augmentation) {
664 		/*
665 		 * "L" indicates a byte showing how the
666 		 * LSDA pointer is encoded. Skip it.
667 		 */
668 		if (*cie->augmentation == 'L') {
669 			p++;
670 			cie->augmentation++;
671 		} else if (*cie->augmentation == 'R') {
672 			/*
673 			 * "R" indicates a byte showing
674 			 * how FDE addresses are
675 			 * encoded.
676 			 */
677 			cie->encoding = *(char *)p++;
678 			cie->augmentation++;
679 		} else if (*cie->augmentation == 'P') {
680 			/*
681 			 * "R" indicates a personality
682 			 * routine in the CIE
683 			 * augmentation.
684 			 */
685 			BUG();
686 		} else if (*cie->augmentation == 'S') {
687 			BUG();
688 		} else {
689 			/*
690 			 * Unknown augmentation. Assume
691 			 * 'z' augmentation.
692 			 */
693 			p = cie->initial_instructions;
694 			BUG_ON(!p);
695 			break;
696 		}
697 	}
698 
699 	cie->initial_instructions = p;
700 	cie->instructions_end = end;
701 
702 	/* Add to list */
703 	spin_lock_irqsave(&dwarf_cie_lock, flags);
704 	list_add_tail(&cie->link, &dwarf_cie_list);
705 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
706 
707 	return 0;
708 }
709 
710 static int dwarf_parse_fde(void *entry, u32 entry_type,
711 			   void *start, unsigned long len)
712 {
713 	struct dwarf_fde *fde;
714 	struct dwarf_cie *cie;
715 	unsigned long flags;
716 	int count;
717 	void *p = start;
718 
719 	fde = kzalloc(sizeof(*fde), GFP_KERNEL);
720 	if (!fde)
721 		return -ENOMEM;
722 
723 	fde->length = len;
724 
725 	/*
726 	 * In a .eh_frame section the CIE pointer is the
727 	 * delta between the address within the FDE
728 	 */
729 	fde->cie_pointer = (unsigned long)(p - entry_type - 4);
730 
731 	cie = dwarf_lookup_cie(fde->cie_pointer);
732 	fde->cie = cie;
733 
734 	if (cie->encoding)
735 		count = dwarf_read_encoded_value(p, &fde->initial_location,
736 						 cie->encoding);
737 	else
738 		count = dwarf_read_addr(p, &fde->initial_location);
739 
740 	p += count;
741 
742 	if (cie->encoding)
743 		count = dwarf_read_encoded_value(p, &fde->address_range,
744 						 cie->encoding & 0x0f);
745 	else
746 		count = dwarf_read_addr(p, &fde->address_range);
747 
748 	p += count;
749 
750 	if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
751 		unsigned int length;
752 		count = dwarf_read_uleb128(p, &length);
753 		p += count + length;
754 	}
755 
756 	/* Call frame instructions. */
757 	fde->instructions = p;
758 	fde->end = start + len;
759 
760 	/* Add to list. */
761 	spin_lock_irqsave(&dwarf_fde_lock, flags);
762 	list_add_tail(&fde->link, &dwarf_fde_list);
763 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
764 
765 	return 0;
766 }
767 
768 static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
769 				unsigned long *sp,
770 				const struct stacktrace_ops *ops, void *data)
771 {
772 	struct dwarf_frame *frame;
773 
774 	frame = dwarf_unwind_stack(0, NULL);
775 
776 	while (frame && frame->return_addr) {
777 		ops->address(data, frame->return_addr, 1);
778 		frame = frame->next;
779 	}
780 }
781 
782 static struct unwinder dwarf_unwinder = {
783 	.name = "dwarf-unwinder",
784 	.dump = dwarf_unwinder_dump,
785 	.rating = 150,
786 };
787 
788 static void dwarf_unwinder_cleanup(void)
789 {
790 	struct dwarf_cie *cie, *m;
791 	struct dwarf_fde *fde, *n;
792 	unsigned long flags;
793 
794 	/*
795 	 * Deallocate all the memory allocated for the DWARF unwinder.
796 	 * Traverse all the FDE/CIE lists and remove and free all the
797 	 * memory associated with those data structures.
798 	 */
799 	spin_lock_irqsave(&dwarf_cie_lock, flags);
800 	list_for_each_entry_safe(cie, m, &dwarf_cie_list, link)
801 		kfree(cie);
802 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
803 
804 	spin_lock_irqsave(&dwarf_fde_lock, flags);
805 	list_for_each_entry_safe(fde, n, &dwarf_fde_list, link)
806 		kfree(fde);
807 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
808 }
809 
810 /**
811  *	dwarf_unwinder_init - initialise the dwarf unwinder
812  *
813  *	Build the data structures describing the .dwarf_frame section to
814  *	make it easier to lookup CIE and FDE entries. Because the
815  *	.eh_frame section is packed as tightly as possible it is not
816  *	easy to lookup the FDE for a given PC, so we build a list of FDE
817  *	and CIE entries that make it easier.
818  */
819 void dwarf_unwinder_init(void)
820 {
821 	u32 entry_type;
822 	void *p, *entry;
823 	int count, err;
824 	unsigned long len;
825 	unsigned int c_entries, f_entries;
826 	unsigned char *end;
827 	INIT_LIST_HEAD(&dwarf_cie_list);
828 	INIT_LIST_HEAD(&dwarf_fde_list);
829 
830 	c_entries = 0;
831 	f_entries = 0;
832 	entry = &__start_eh_frame;
833 
834 	while ((char *)entry < __stop_eh_frame) {
835 		p = entry;
836 
837 		count = dwarf_entry_len(p, &len);
838 		if (count == 0) {
839 			/*
840 			 * We read a bogus length field value. There is
841 			 * nothing we can do here apart from disabling
842 			 * the DWARF unwinder. We can't even skip this
843 			 * entry and move to the next one because 'len'
844 			 * tells us where our next entry is.
845 			 */
846 			goto out;
847 		} else
848 			p += count;
849 
850 		/* initial length does not include itself */
851 		end = p + len;
852 
853 		entry_type = get_unaligned((u32 *)p);
854 		p += 4;
855 
856 		if (entry_type == DW_EH_FRAME_CIE) {
857 			err = dwarf_parse_cie(entry, p, len, end);
858 			if (err < 0)
859 				goto out;
860 			else
861 				c_entries++;
862 		} else {
863 			err = dwarf_parse_fde(entry, entry_type, p, len);
864 			if (err < 0)
865 				goto out;
866 			else
867 				f_entries++;
868 		}
869 
870 		entry = (char *)entry + len + 4;
871 	}
872 
873 	printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
874 	       c_entries, f_entries);
875 
876 	err = unwinder_register(&dwarf_unwinder);
877 	if (err)
878 		goto out;
879 
880 	return;
881 
882 out:
883 	printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
884 	dwarf_unwinder_cleanup();
885 }
886