xref: /linux/arch/sh/kernel/dwarf.c (revision dde5e3ffb770ef2854bbc32c51a365e932919e19)
1 /*
2  * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * This is an implementation of a DWARF unwinder. Its main purpose is
9  * for generating stacktrace information. Based on the DWARF 3
10  * specification from http://www.dwarfstd.org.
11  *
12  * TODO:
13  *	- DWARF64 doesn't work.
14  */
15 
16 /* #define DEBUG */
17 #include <linux/kernel.h>
18 #include <linux/io.h>
19 #include <linux/list.h>
20 #include <linux/mm.h>
21 #include <asm/dwarf.h>
22 #include <asm/unwinder.h>
23 #include <asm/sections.h>
24 #include <asm/unaligned.h>
25 #include <asm/dwarf.h>
26 #include <asm/stacktrace.h>
27 
28 static LIST_HEAD(dwarf_cie_list);
29 DEFINE_SPINLOCK(dwarf_cie_lock);
30 
31 static LIST_HEAD(dwarf_fde_list);
32 DEFINE_SPINLOCK(dwarf_fde_lock);
33 
34 static struct dwarf_cie *cached_cie;
35 
36 /*
37  * Figure out whether we need to allocate some dwarf registers. If dwarf
38  * registers have already been allocated then we may need to realloc
39  * them. "reg" is a register number that we need to be able to access
40  * after this call.
41  *
42  * Register numbers start at zero, therefore we need to allocate space
43  * for "reg" + 1 registers.
44  */
45 static void dwarf_frame_alloc_regs(struct dwarf_frame *frame,
46 				   unsigned int reg)
47 {
48 	struct dwarf_reg *regs;
49 	unsigned int num_regs = reg + 1;
50 	size_t new_size;
51 	size_t old_size;
52 
53 	new_size = num_regs * sizeof(*regs);
54 	old_size = frame->num_regs * sizeof(*regs);
55 
56 	/* Fast path: don't allocate any regs if we've already got enough. */
57 	if (frame->num_regs >= num_regs)
58 		return;
59 
60 	regs = kzalloc(new_size, GFP_ATOMIC);
61 	if (!regs) {
62 		printk(KERN_WARNING "Unable to allocate DWARF registers\n");
63 		/*
64 		 * Let's just bomb hard here, we have no way to
65 		 * gracefully recover.
66 		 */
67 		BUG();
68 	}
69 
70 	if (frame->regs) {
71 		memcpy(regs, frame->regs, old_size);
72 		kfree(frame->regs);
73 	}
74 
75 	frame->regs = regs;
76 	frame->num_regs = num_regs;
77 }
78 
79 /**
80  *	dwarf_read_addr - read dwarf data
81  *	@src: source address of data
82  *	@dst: destination address to store the data to
83  *
84  *	Read 'n' bytes from @src, where 'n' is the size of an address on
85  *	the native machine. We return the number of bytes read, which
86  *	should always be 'n'. We also have to be careful when reading
87  *	from @src and writing to @dst, because they can be arbitrarily
88  *	aligned. Return 'n' - the number of bytes read.
89  */
90 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
91 {
92 	u32 val = get_unaligned(src);
93 	put_unaligned(val, dst);
94 	return sizeof(unsigned long *);
95 }
96 
97 /**
98  *	dwarf_read_uleb128 - read unsigned LEB128 data
99  *	@addr: the address where the ULEB128 data is stored
100  *	@ret: address to store the result
101  *
102  *	Decode an unsigned LEB128 encoded datum. The algorithm is taken
103  *	from Appendix C of the DWARF 3 spec. For information on the
104  *	encodings refer to section "7.6 - Variable Length Data". Return
105  *	the number of bytes read.
106  */
107 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
108 {
109 	unsigned int result;
110 	unsigned char byte;
111 	int shift, count;
112 
113 	result = 0;
114 	shift = 0;
115 	count = 0;
116 
117 	while (1) {
118 		byte = __raw_readb(addr);
119 		addr++;
120 		count++;
121 
122 		result |= (byte & 0x7f) << shift;
123 		shift += 7;
124 
125 		if (!(byte & 0x80))
126 			break;
127 	}
128 
129 	*ret = result;
130 
131 	return count;
132 }
133 
134 /**
135  *	dwarf_read_leb128 - read signed LEB128 data
136  *	@addr: the address of the LEB128 encoded data
137  *	@ret: address to store the result
138  *
139  *	Decode signed LEB128 data. The algorithm is taken from Appendix
140  *	C of the DWARF 3 spec. Return the number of bytes read.
141  */
142 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
143 {
144 	unsigned char byte;
145 	int result, shift;
146 	int num_bits;
147 	int count;
148 
149 	result = 0;
150 	shift = 0;
151 	count = 0;
152 
153 	while (1) {
154 		byte = __raw_readb(addr);
155 		addr++;
156 		result |= (byte & 0x7f) << shift;
157 		shift += 7;
158 		count++;
159 
160 		if (!(byte & 0x80))
161 			break;
162 	}
163 
164 	/* The number of bits in a signed integer. */
165 	num_bits = 8 * sizeof(result);
166 
167 	if ((shift < num_bits) && (byte & 0x40))
168 		result |= (-1 << shift);
169 
170 	*ret = result;
171 
172 	return count;
173 }
174 
175 /**
176  *	dwarf_read_encoded_value - return the decoded value at @addr
177  *	@addr: the address of the encoded value
178  *	@val: where to write the decoded value
179  *	@encoding: the encoding with which we can decode @addr
180  *
181  *	GCC emits encoded address in the .eh_frame FDE entries. Decode
182  *	the value at @addr using @encoding. The decoded value is written
183  *	to @val and the number of bytes read is returned.
184  */
185 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
186 				    char encoding)
187 {
188 	unsigned long decoded_addr = 0;
189 	int count = 0;
190 
191 	switch (encoding & 0x70) {
192 	case DW_EH_PE_absptr:
193 		break;
194 	case DW_EH_PE_pcrel:
195 		decoded_addr = (unsigned long)addr;
196 		break;
197 	default:
198 		pr_debug("encoding=0x%x\n", (encoding & 0x70));
199 		BUG();
200 	}
201 
202 	if ((encoding & 0x07) == 0x00)
203 		encoding |= DW_EH_PE_udata4;
204 
205 	switch (encoding & 0x0f) {
206 	case DW_EH_PE_sdata4:
207 	case DW_EH_PE_udata4:
208 		count += 4;
209 		decoded_addr += get_unaligned((u32 *)addr);
210 		__raw_writel(decoded_addr, val);
211 		break;
212 	default:
213 		pr_debug("encoding=0x%x\n", encoding);
214 		BUG();
215 	}
216 
217 	return count;
218 }
219 
220 /**
221  *	dwarf_entry_len - return the length of an FDE or CIE
222  *	@addr: the address of the entry
223  *	@len: the length of the entry
224  *
225  *	Read the initial_length field of the entry and store the size of
226  *	the entry in @len. We return the number of bytes read. Return a
227  *	count of 0 on error.
228  */
229 static inline int dwarf_entry_len(char *addr, unsigned long *len)
230 {
231 	u32 initial_len;
232 	int count;
233 
234 	initial_len = get_unaligned((u32 *)addr);
235 	count = 4;
236 
237 	/*
238 	 * An initial length field value in the range DW_LEN_EXT_LO -
239 	 * DW_LEN_EXT_HI indicates an extension, and should not be
240 	 * interpreted as a length. The only extension that we currently
241 	 * understand is the use of DWARF64 addresses.
242 	 */
243 	if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
244 		/*
245 		 * The 64-bit length field immediately follows the
246 		 * compulsory 32-bit length field.
247 		 */
248 		if (initial_len == DW_EXT_DWARF64) {
249 			*len = get_unaligned((u64 *)addr + 4);
250 			count = 12;
251 		} else {
252 			printk(KERN_WARNING "Unknown DWARF extension\n");
253 			count = 0;
254 		}
255 	} else
256 		*len = initial_len;
257 
258 	return count;
259 }
260 
261 /**
262  *	dwarf_lookup_cie - locate the cie
263  *	@cie_ptr: pointer to help with lookup
264  */
265 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
266 {
267 	struct dwarf_cie *cie, *n;
268 	unsigned long flags;
269 
270 	spin_lock_irqsave(&dwarf_cie_lock, flags);
271 
272 	/*
273 	 * We've cached the last CIE we looked up because chances are
274 	 * that the FDE wants this CIE.
275 	 */
276 	if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
277 		cie = cached_cie;
278 		goto out;
279 	}
280 
281 	list_for_each_entry_safe(cie, n, &dwarf_cie_list, link) {
282 		if (cie->cie_pointer == cie_ptr) {
283 			cached_cie = cie;
284 			break;
285 		}
286 	}
287 
288 	/* Couldn't find the entry in the list. */
289 	if (&cie->link == &dwarf_cie_list)
290 		cie = NULL;
291 out:
292 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
293 	return cie;
294 }
295 
296 /**
297  *	dwarf_lookup_fde - locate the FDE that covers pc
298  *	@pc: the program counter
299  */
300 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
301 {
302 	unsigned long flags;
303 	struct dwarf_fde *fde, *n;
304 
305 	spin_lock_irqsave(&dwarf_fde_lock, flags);
306 	list_for_each_entry_safe(fde, n, &dwarf_fde_list, link) {
307 		unsigned long start, end;
308 
309 		start = fde->initial_location;
310 		end = fde->initial_location + fde->address_range;
311 
312 		if (pc >= start && pc < end)
313 			break;
314 	}
315 
316 	/* Couldn't find the entry in the list. */
317 	if (&fde->link == &dwarf_fde_list)
318 		fde = NULL;
319 
320 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
321 
322 	return fde;
323 }
324 
325 /**
326  *	dwarf_cfa_execute_insns - execute instructions to calculate a CFA
327  *	@insn_start: address of the first instruction
328  *	@insn_end: address of the last instruction
329  *	@cie: the CIE for this function
330  *	@fde: the FDE for this function
331  *	@frame: the instructions calculate the CFA for this frame
332  *	@pc: the program counter of the address we're interested in
333  *	@define_ra: keep executing insns until the return addr reg is defined?
334  *
335  *	Execute the Call Frame instruction sequence starting at
336  *	@insn_start and ending at @insn_end. The instructions describe
337  *	how to calculate the Canonical Frame Address of a stackframe.
338  *	Store the results in @frame.
339  */
340 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
341 				   unsigned char *insn_end,
342 				   struct dwarf_cie *cie,
343 				   struct dwarf_fde *fde,
344 				   struct dwarf_frame *frame,
345 				   unsigned long pc,
346 				   bool define_ra)
347 {
348 	unsigned char insn;
349 	unsigned char *current_insn;
350 	unsigned int count, delta, reg, expr_len, offset;
351 	bool seen_ra_reg;
352 
353 	current_insn = insn_start;
354 
355 	/*
356 	 * If we're executing instructions for the dwarf_unwind_stack()
357 	 * FDE we need to keep executing instructions until the value of
358 	 * DWARF_ARCH_RA_REG is defined. See the comment in
359 	 * dwarf_unwind_stack() for more details.
360 	 */
361 	if (define_ra)
362 		seen_ra_reg = false;
363 	else
364 		seen_ra_reg = true;
365 
366 	while (current_insn < insn_end && (frame->pc <= pc || !seen_ra_reg) ) {
367 		insn = __raw_readb(current_insn++);
368 
369 		if (!seen_ra_reg) {
370 			if (frame->num_regs >= DWARF_ARCH_RA_REG &&
371 			    frame->regs[DWARF_ARCH_RA_REG].flags)
372 				seen_ra_reg = true;
373 		}
374 
375 		/*
376 		 * Firstly, handle the opcodes that embed their operands
377 		 * in the instructions.
378 		 */
379 		switch (DW_CFA_opcode(insn)) {
380 		case DW_CFA_advance_loc:
381 			delta = DW_CFA_operand(insn);
382 			delta *= cie->code_alignment_factor;
383 			frame->pc += delta;
384 			continue;
385 			/* NOTREACHED */
386 		case DW_CFA_offset:
387 			reg = DW_CFA_operand(insn);
388 			count = dwarf_read_uleb128(current_insn, &offset);
389 			current_insn += count;
390 			offset *= cie->data_alignment_factor;
391 			dwarf_frame_alloc_regs(frame, reg);
392 			frame->regs[reg].addr = offset;
393 			frame->regs[reg].flags |= DWARF_REG_OFFSET;
394 			continue;
395 			/* NOTREACHED */
396 		case DW_CFA_restore:
397 			reg = DW_CFA_operand(insn);
398 			continue;
399 			/* NOTREACHED */
400 		}
401 
402 		/*
403 		 * Secondly, handle the opcodes that don't embed their
404 		 * operands in the instruction.
405 		 */
406 		switch (insn) {
407 		case DW_CFA_nop:
408 			continue;
409 		case DW_CFA_advance_loc1:
410 			delta = *current_insn++;
411 			frame->pc += delta * cie->code_alignment_factor;
412 			break;
413 		case DW_CFA_advance_loc2:
414 			delta = get_unaligned((u16 *)current_insn);
415 			current_insn += 2;
416 			frame->pc += delta * cie->code_alignment_factor;
417 			break;
418 		case DW_CFA_advance_loc4:
419 			delta = get_unaligned((u32 *)current_insn);
420 			current_insn += 4;
421 			frame->pc += delta * cie->code_alignment_factor;
422 			break;
423 		case DW_CFA_offset_extended:
424 			count = dwarf_read_uleb128(current_insn, &reg);
425 			current_insn += count;
426 			count = dwarf_read_uleb128(current_insn, &offset);
427 			current_insn += count;
428 			offset *= cie->data_alignment_factor;
429 			break;
430 		case DW_CFA_restore_extended:
431 			count = dwarf_read_uleb128(current_insn, &reg);
432 			current_insn += count;
433 			break;
434 		case DW_CFA_undefined:
435 			count = dwarf_read_uleb128(current_insn, &reg);
436 			current_insn += count;
437 			break;
438 		case DW_CFA_def_cfa:
439 			count = dwarf_read_uleb128(current_insn,
440 						   &frame->cfa_register);
441 			current_insn += count;
442 			count = dwarf_read_uleb128(current_insn,
443 						   &frame->cfa_offset);
444 			current_insn += count;
445 
446 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
447 			break;
448 		case DW_CFA_def_cfa_register:
449 			count = dwarf_read_uleb128(current_insn,
450 						   &frame->cfa_register);
451 			current_insn += count;
452 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
453 			break;
454 		case DW_CFA_def_cfa_offset:
455 			count = dwarf_read_uleb128(current_insn, &offset);
456 			current_insn += count;
457 			frame->cfa_offset = offset;
458 			break;
459 		case DW_CFA_def_cfa_expression:
460 			count = dwarf_read_uleb128(current_insn, &expr_len);
461 			current_insn += count;
462 
463 			frame->cfa_expr = current_insn;
464 			frame->cfa_expr_len = expr_len;
465 			current_insn += expr_len;
466 
467 			frame->flags |= DWARF_FRAME_CFA_REG_EXP;
468 			break;
469 		case DW_CFA_offset_extended_sf:
470 			count = dwarf_read_uleb128(current_insn, &reg);
471 			current_insn += count;
472 			count = dwarf_read_leb128(current_insn, &offset);
473 			current_insn += count;
474 			offset *= cie->data_alignment_factor;
475 			dwarf_frame_alloc_regs(frame, reg);
476 			frame->regs[reg].flags |= DWARF_REG_OFFSET;
477 			frame->regs[reg].addr = offset;
478 			break;
479 		case DW_CFA_val_offset:
480 			count = dwarf_read_uleb128(current_insn, &reg);
481 			current_insn += count;
482 			count = dwarf_read_leb128(current_insn, &offset);
483 			offset *= cie->data_alignment_factor;
484 			frame->regs[reg].flags |= DWARF_REG_OFFSET;
485 			frame->regs[reg].addr = offset;
486 			break;
487 		default:
488 			pr_debug("unhandled DWARF instruction 0x%x\n", insn);
489 			break;
490 		}
491 	}
492 
493 	return 0;
494 }
495 
496 /**
497  *	dwarf_unwind_stack - recursively unwind the stack
498  *	@pc: address of the function to unwind
499  *	@prev: struct dwarf_frame of the previous stackframe on the callstack
500  *
501  *	Return a struct dwarf_frame representing the most recent frame
502  *	on the callstack. Each of the lower (older) stack frames are
503  *	linked via the "prev" member.
504  */
505 struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
506 				       struct dwarf_frame *prev)
507 {
508 	struct dwarf_frame *frame;
509 	struct dwarf_cie *cie;
510 	struct dwarf_fde *fde;
511 	unsigned long addr;
512 	int i, offset;
513 	bool define_ra = false;
514 
515 	/*
516 	 * If this is the first invocation of this recursive function we
517 	 * need get the contents of a physical register to get the CFA
518 	 * in order to begin the virtual unwinding of the stack.
519 	 *
520 	 * Setting "define_ra" to true indictates that we want
521 	 * dwarf_cfa_execute_insns() to continue executing instructions
522 	 * until we know how to calculate the value of DWARF_ARCH_RA_REG
523 	 * (which we need in order to kick off the whole unwinding
524 	 * process).
525 	 *
526 	 * NOTE: the return address is guaranteed to be setup by the
527 	 * time this function makes its first function call.
528 	 */
529 	if (!pc && !prev) {
530 		pc = (unsigned long)&dwarf_unwind_stack;
531 		define_ra = true;
532 	}
533 
534 	frame = kzalloc(sizeof(*frame), GFP_ATOMIC);
535 	if (!frame)
536 		return NULL;
537 
538 	frame->prev = prev;
539 
540 	fde = dwarf_lookup_fde(pc);
541 	if (!fde) {
542 		/*
543 		 * This is our normal exit path - the one that stops the
544 		 * recursion. There's two reasons why we might exit
545 		 * here,
546 		 *
547 		 *	a) pc has no asscociated DWARF frame info and so
548 		 *	we don't know how to unwind this frame. This is
549 		 *	usually the case when we're trying to unwind a
550 		 *	frame that was called from some assembly code
551 		 *	that has no DWARF info, e.g. syscalls.
552 		 *
553 		 *	b) the DEBUG info for pc is bogus. There's
554 		 *	really no way to distinguish this case from the
555 		 *	case above, which sucks because we could print a
556 		 *	warning here.
557 		 */
558 		return NULL;
559 	}
560 
561 	cie = dwarf_lookup_cie(fde->cie_pointer);
562 
563 	frame->pc = fde->initial_location;
564 
565 	/* CIE initial instructions */
566 	dwarf_cfa_execute_insns(cie->initial_instructions,
567 				cie->instructions_end, cie, fde,
568 				frame, pc, false);
569 
570 	/* FDE instructions */
571 	dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
572 				fde, frame, pc, define_ra);
573 
574 	/* Calculate the CFA */
575 	switch (frame->flags) {
576 	case DWARF_FRAME_CFA_REG_OFFSET:
577 		if (prev) {
578 			BUG_ON(!prev->regs[frame->cfa_register].flags);
579 
580 			addr = prev->cfa;
581 			addr += prev->regs[frame->cfa_register].addr;
582 			frame->cfa = __raw_readl(addr);
583 
584 		} else {
585 			/*
586 			 * Again, this is the first invocation of this
587 			 * recurisve function. We need to physically
588 			 * read the contents of a register in order to
589 			 * get the Canonical Frame Address for this
590 			 * function.
591 			 */
592 			frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
593 		}
594 
595 		frame->cfa += frame->cfa_offset;
596 		break;
597 	default:
598 		BUG();
599 	}
600 
601 	/* If we haven't seen the return address reg, we're screwed. */
602 	BUG_ON(!frame->regs[DWARF_ARCH_RA_REG].flags);
603 
604 	for (i = 0; i <= frame->num_regs; i++) {
605 		struct dwarf_reg *reg = &frame->regs[i];
606 
607 		if (!reg->flags)
608 			continue;
609 
610 		offset = reg->addr;
611 		offset += frame->cfa;
612 	}
613 
614 	addr = frame->cfa + frame->regs[DWARF_ARCH_RA_REG].addr;
615 	frame->return_addr = __raw_readl(addr);
616 
617 	frame->next = dwarf_unwind_stack(frame->return_addr, frame);
618 	return frame;
619 }
620 
621 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
622 			   unsigned char *end)
623 {
624 	struct dwarf_cie *cie;
625 	unsigned long flags;
626 	int count;
627 
628 	cie = kzalloc(sizeof(*cie), GFP_KERNEL);
629 	if (!cie)
630 		return -ENOMEM;
631 
632 	cie->length = len;
633 
634 	/*
635 	 * Record the offset into the .eh_frame section
636 	 * for this CIE. It allows this CIE to be
637 	 * quickly and easily looked up from the
638 	 * corresponding FDE.
639 	 */
640 	cie->cie_pointer = (unsigned long)entry;
641 
642 	cie->version = *(char *)p++;
643 	BUG_ON(cie->version != 1);
644 
645 	cie->augmentation = p;
646 	p += strlen(cie->augmentation) + 1;
647 
648 	count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
649 	p += count;
650 
651 	count = dwarf_read_leb128(p, &cie->data_alignment_factor);
652 	p += count;
653 
654 	/*
655 	 * Which column in the rule table contains the
656 	 * return address?
657 	 */
658 	if (cie->version == 1) {
659 		cie->return_address_reg = __raw_readb(p);
660 		p++;
661 	} else {
662 		count = dwarf_read_uleb128(p, &cie->return_address_reg);
663 		p += count;
664 	}
665 
666 	if (cie->augmentation[0] == 'z') {
667 		unsigned int length, count;
668 		cie->flags |= DWARF_CIE_Z_AUGMENTATION;
669 
670 		count = dwarf_read_uleb128(p, &length);
671 		p += count;
672 
673 		BUG_ON((unsigned char *)p > end);
674 
675 		cie->initial_instructions = p + length;
676 		cie->augmentation++;
677 	}
678 
679 	while (*cie->augmentation) {
680 		/*
681 		 * "L" indicates a byte showing how the
682 		 * LSDA pointer is encoded. Skip it.
683 		 */
684 		if (*cie->augmentation == 'L') {
685 			p++;
686 			cie->augmentation++;
687 		} else if (*cie->augmentation == 'R') {
688 			/*
689 			 * "R" indicates a byte showing
690 			 * how FDE addresses are
691 			 * encoded.
692 			 */
693 			cie->encoding = *(char *)p++;
694 			cie->augmentation++;
695 		} else if (*cie->augmentation == 'P') {
696 			/*
697 			 * "R" indicates a personality
698 			 * routine in the CIE
699 			 * augmentation.
700 			 */
701 			BUG();
702 		} else if (*cie->augmentation == 'S') {
703 			BUG();
704 		} else {
705 			/*
706 			 * Unknown augmentation. Assume
707 			 * 'z' augmentation.
708 			 */
709 			p = cie->initial_instructions;
710 			BUG_ON(!p);
711 			break;
712 		}
713 	}
714 
715 	cie->initial_instructions = p;
716 	cie->instructions_end = end;
717 
718 	/* Add to list */
719 	spin_lock_irqsave(&dwarf_cie_lock, flags);
720 	list_add_tail(&cie->link, &dwarf_cie_list);
721 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
722 
723 	return 0;
724 }
725 
726 static int dwarf_parse_fde(void *entry, u32 entry_type,
727 			   void *start, unsigned long len)
728 {
729 	struct dwarf_fde *fde;
730 	struct dwarf_cie *cie;
731 	unsigned long flags;
732 	int count;
733 	void *p = start;
734 
735 	fde = kzalloc(sizeof(*fde), GFP_KERNEL);
736 	if (!fde)
737 		return -ENOMEM;
738 
739 	fde->length = len;
740 
741 	/*
742 	 * In a .eh_frame section the CIE pointer is the
743 	 * delta between the address within the FDE
744 	 */
745 	fde->cie_pointer = (unsigned long)(p - entry_type - 4);
746 
747 	cie = dwarf_lookup_cie(fde->cie_pointer);
748 	fde->cie = cie;
749 
750 	if (cie->encoding)
751 		count = dwarf_read_encoded_value(p, &fde->initial_location,
752 						 cie->encoding);
753 	else
754 		count = dwarf_read_addr(p, &fde->initial_location);
755 
756 	p += count;
757 
758 	if (cie->encoding)
759 		count = dwarf_read_encoded_value(p, &fde->address_range,
760 						 cie->encoding & 0x0f);
761 	else
762 		count = dwarf_read_addr(p, &fde->address_range);
763 
764 	p += count;
765 
766 	if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
767 		unsigned int length;
768 		count = dwarf_read_uleb128(p, &length);
769 		p += count + length;
770 	}
771 
772 	/* Call frame instructions. */
773 	fde->instructions = p;
774 	fde->end = start + len;
775 
776 	/* Add to list. */
777 	spin_lock_irqsave(&dwarf_fde_lock, flags);
778 	list_add_tail(&fde->link, &dwarf_fde_list);
779 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
780 
781 	return 0;
782 }
783 
784 static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
785 				unsigned long *sp,
786 				const struct stacktrace_ops *ops, void *data)
787 {
788 	struct dwarf_frame *frame;
789 
790 	frame = dwarf_unwind_stack(0, NULL);
791 
792 	while (frame && frame->return_addr) {
793 		ops->address(data, frame->return_addr, 1);
794 		frame = frame->next;
795 	}
796 }
797 
798 static struct unwinder dwarf_unwinder = {
799 	.name = "dwarf-unwinder",
800 	.dump = dwarf_unwinder_dump,
801 	.rating = 150,
802 };
803 
804 static void dwarf_unwinder_cleanup(void)
805 {
806 	struct dwarf_cie *cie, *m;
807 	struct dwarf_fde *fde, *n;
808 	unsigned long flags;
809 
810 	/*
811 	 * Deallocate all the memory allocated for the DWARF unwinder.
812 	 * Traverse all the FDE/CIE lists and remove and free all the
813 	 * memory associated with those data structures.
814 	 */
815 	spin_lock_irqsave(&dwarf_cie_lock, flags);
816 	list_for_each_entry_safe(cie, m, &dwarf_cie_list, link)
817 		kfree(cie);
818 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
819 
820 	spin_lock_irqsave(&dwarf_fde_lock, flags);
821 	list_for_each_entry_safe(fde, n, &dwarf_fde_list, link)
822 		kfree(fde);
823 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
824 }
825 
826 /**
827  *	dwarf_unwinder_init - initialise the dwarf unwinder
828  *
829  *	Build the data structures describing the .dwarf_frame section to
830  *	make it easier to lookup CIE and FDE entries. Because the
831  *	.eh_frame section is packed as tightly as possible it is not
832  *	easy to lookup the FDE for a given PC, so we build a list of FDE
833  *	and CIE entries that make it easier.
834  */
835 void dwarf_unwinder_init(void)
836 {
837 	u32 entry_type;
838 	void *p, *entry;
839 	int count, err;
840 	unsigned long len;
841 	unsigned int c_entries, f_entries;
842 	unsigned char *end;
843 	INIT_LIST_HEAD(&dwarf_cie_list);
844 	INIT_LIST_HEAD(&dwarf_fde_list);
845 
846 	c_entries = 0;
847 	f_entries = 0;
848 	entry = &__start_eh_frame;
849 
850 	while ((char *)entry < __stop_eh_frame) {
851 		p = entry;
852 
853 		count = dwarf_entry_len(p, &len);
854 		if (count == 0) {
855 			/*
856 			 * We read a bogus length field value. There is
857 			 * nothing we can do here apart from disabling
858 			 * the DWARF unwinder. We can't even skip this
859 			 * entry and move to the next one because 'len'
860 			 * tells us where our next entry is.
861 			 */
862 			goto out;
863 		} else
864 			p += count;
865 
866 		/* initial length does not include itself */
867 		end = p + len;
868 
869 		entry_type = get_unaligned((u32 *)p);
870 		p += 4;
871 
872 		if (entry_type == DW_EH_FRAME_CIE) {
873 			err = dwarf_parse_cie(entry, p, len, end);
874 			if (err < 0)
875 				goto out;
876 			else
877 				c_entries++;
878 		} else {
879 			err = dwarf_parse_fde(entry, entry_type, p, len);
880 			if (err < 0)
881 				goto out;
882 			else
883 				f_entries++;
884 		}
885 
886 		entry = (char *)entry + len + 4;
887 	}
888 
889 	printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
890 	       c_entries, f_entries);
891 
892 	err = unwinder_register(&dwarf_unwinder);
893 	if (err)
894 		goto out;
895 
896 	return;
897 
898 out:
899 	printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
900 	dwarf_unwinder_cleanup();
901 }
902