xref: /linux/arch/sh/kernel/dwarf.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * This is an implementation of a DWARF unwinder. Its main purpose is
9  * for generating stacktrace information. Based on the DWARF 3
10  * specification from http://www.dwarfstd.org.
11  *
12  * TODO:
13  *	- DWARF64 doesn't work.
14  *	- Registers with DWARF_VAL_OFFSET rules aren't handled properly.
15  */
16 
17 /* #define DEBUG */
18 #include <linux/kernel.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/mempool.h>
22 #include <linux/mm.h>
23 #include <linux/elf.h>
24 #include <linux/ftrace.h>
25 #include <linux/slab.h>
26 #include <asm/dwarf.h>
27 #include <asm/unwinder.h>
28 #include <asm/sections.h>
29 #include <asm/unaligned.h>
30 #include <asm/stacktrace.h>
31 
32 /* Reserve enough memory for two stack frames */
33 #define DWARF_FRAME_MIN_REQ	2
34 /* ... with 4 registers per frame. */
35 #define DWARF_REG_MIN_REQ	(DWARF_FRAME_MIN_REQ * 4)
36 
37 static struct kmem_cache *dwarf_frame_cachep;
38 static mempool_t *dwarf_frame_pool;
39 
40 static struct kmem_cache *dwarf_reg_cachep;
41 static mempool_t *dwarf_reg_pool;
42 
43 static struct rb_root cie_root;
44 static DEFINE_SPINLOCK(dwarf_cie_lock);
45 
46 static struct rb_root fde_root;
47 static DEFINE_SPINLOCK(dwarf_fde_lock);
48 
49 static struct dwarf_cie *cached_cie;
50 
51 /**
52  *	dwarf_frame_alloc_reg - allocate memory for a DWARF register
53  *	@frame: the DWARF frame whose list of registers we insert on
54  *	@reg_num: the register number
55  *
56  *	Allocate space for, and initialise, a dwarf reg from
57  *	dwarf_reg_pool and insert it onto the (unsorted) linked-list of
58  *	dwarf registers for @frame.
59  *
60  *	Return the initialised DWARF reg.
61  */
62 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
63 					       unsigned int reg_num)
64 {
65 	struct dwarf_reg *reg;
66 
67 	reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
68 	if (!reg) {
69 		printk(KERN_WARNING "Unable to allocate a DWARF register\n");
70 		/*
71 		 * Let's just bomb hard here, we have no way to
72 		 * gracefully recover.
73 		 */
74 		UNWINDER_BUG();
75 	}
76 
77 	reg->number = reg_num;
78 	reg->addr = 0;
79 	reg->flags = 0;
80 
81 	list_add(&reg->link, &frame->reg_list);
82 
83 	return reg;
84 }
85 
86 static void dwarf_frame_free_regs(struct dwarf_frame *frame)
87 {
88 	struct dwarf_reg *reg, *n;
89 
90 	list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
91 		list_del(&reg->link);
92 		mempool_free(reg, dwarf_reg_pool);
93 	}
94 }
95 
96 /**
97  *	dwarf_frame_reg - return a DWARF register
98  *	@frame: the DWARF frame to search in for @reg_num
99  *	@reg_num: the register number to search for
100  *
101  *	Lookup and return the dwarf reg @reg_num for this frame. Return
102  *	NULL if @reg_num is an register invalid number.
103  */
104 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
105 					 unsigned int reg_num)
106 {
107 	struct dwarf_reg *reg;
108 
109 	list_for_each_entry(reg, &frame->reg_list, link) {
110 		if (reg->number == reg_num)
111 			return reg;
112 	}
113 
114 	return NULL;
115 }
116 
117 /**
118  *	dwarf_read_addr - read dwarf data
119  *	@src: source address of data
120  *	@dst: destination address to store the data to
121  *
122  *	Read 'n' bytes from @src, where 'n' is the size of an address on
123  *	the native machine. We return the number of bytes read, which
124  *	should always be 'n'. We also have to be careful when reading
125  *	from @src and writing to @dst, because they can be arbitrarily
126  *	aligned. Return 'n' - the number of bytes read.
127  */
128 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
129 {
130 	u32 val = get_unaligned(src);
131 	put_unaligned(val, dst);
132 	return sizeof(unsigned long *);
133 }
134 
135 /**
136  *	dwarf_read_uleb128 - read unsigned LEB128 data
137  *	@addr: the address where the ULEB128 data is stored
138  *	@ret: address to store the result
139  *
140  *	Decode an unsigned LEB128 encoded datum. The algorithm is taken
141  *	from Appendix C of the DWARF 3 spec. For information on the
142  *	encodings refer to section "7.6 - Variable Length Data". Return
143  *	the number of bytes read.
144  */
145 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
146 {
147 	unsigned int result;
148 	unsigned char byte;
149 	int shift, count;
150 
151 	result = 0;
152 	shift = 0;
153 	count = 0;
154 
155 	while (1) {
156 		byte = __raw_readb(addr);
157 		addr++;
158 		count++;
159 
160 		result |= (byte & 0x7f) << shift;
161 		shift += 7;
162 
163 		if (!(byte & 0x80))
164 			break;
165 	}
166 
167 	*ret = result;
168 
169 	return count;
170 }
171 
172 /**
173  *	dwarf_read_leb128 - read signed LEB128 data
174  *	@addr: the address of the LEB128 encoded data
175  *	@ret: address to store the result
176  *
177  *	Decode signed LEB128 data. The algorithm is taken from Appendix
178  *	C of the DWARF 3 spec. Return the number of bytes read.
179  */
180 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
181 {
182 	unsigned char byte;
183 	int result, shift;
184 	int num_bits;
185 	int count;
186 
187 	result = 0;
188 	shift = 0;
189 	count = 0;
190 
191 	while (1) {
192 		byte = __raw_readb(addr);
193 		addr++;
194 		result |= (byte & 0x7f) << shift;
195 		shift += 7;
196 		count++;
197 
198 		if (!(byte & 0x80))
199 			break;
200 	}
201 
202 	/* The number of bits in a signed integer. */
203 	num_bits = 8 * sizeof(result);
204 
205 	if ((shift < num_bits) && (byte & 0x40))
206 		result |= (-1 << shift);
207 
208 	*ret = result;
209 
210 	return count;
211 }
212 
213 /**
214  *	dwarf_read_encoded_value - return the decoded value at @addr
215  *	@addr: the address of the encoded value
216  *	@val: where to write the decoded value
217  *	@encoding: the encoding with which we can decode @addr
218  *
219  *	GCC emits encoded address in the .eh_frame FDE entries. Decode
220  *	the value at @addr using @encoding. The decoded value is written
221  *	to @val and the number of bytes read is returned.
222  */
223 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
224 				    char encoding)
225 {
226 	unsigned long decoded_addr = 0;
227 	int count = 0;
228 
229 	switch (encoding & 0x70) {
230 	case DW_EH_PE_absptr:
231 		break;
232 	case DW_EH_PE_pcrel:
233 		decoded_addr = (unsigned long)addr;
234 		break;
235 	default:
236 		pr_debug("encoding=0x%x\n", (encoding & 0x70));
237 		UNWINDER_BUG();
238 	}
239 
240 	if ((encoding & 0x07) == 0x00)
241 		encoding |= DW_EH_PE_udata4;
242 
243 	switch (encoding & 0x0f) {
244 	case DW_EH_PE_sdata4:
245 	case DW_EH_PE_udata4:
246 		count += 4;
247 		decoded_addr += get_unaligned((u32 *)addr);
248 		__raw_writel(decoded_addr, val);
249 		break;
250 	default:
251 		pr_debug("encoding=0x%x\n", encoding);
252 		UNWINDER_BUG();
253 	}
254 
255 	return count;
256 }
257 
258 /**
259  *	dwarf_entry_len - return the length of an FDE or CIE
260  *	@addr: the address of the entry
261  *	@len: the length of the entry
262  *
263  *	Read the initial_length field of the entry and store the size of
264  *	the entry in @len. We return the number of bytes read. Return a
265  *	count of 0 on error.
266  */
267 static inline int dwarf_entry_len(char *addr, unsigned long *len)
268 {
269 	u32 initial_len;
270 	int count;
271 
272 	initial_len = get_unaligned((u32 *)addr);
273 	count = 4;
274 
275 	/*
276 	 * An initial length field value in the range DW_LEN_EXT_LO -
277 	 * DW_LEN_EXT_HI indicates an extension, and should not be
278 	 * interpreted as a length. The only extension that we currently
279 	 * understand is the use of DWARF64 addresses.
280 	 */
281 	if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
282 		/*
283 		 * The 64-bit length field immediately follows the
284 		 * compulsory 32-bit length field.
285 		 */
286 		if (initial_len == DW_EXT_DWARF64) {
287 			*len = get_unaligned((u64 *)addr + 4);
288 			count = 12;
289 		} else {
290 			printk(KERN_WARNING "Unknown DWARF extension\n");
291 			count = 0;
292 		}
293 	} else
294 		*len = initial_len;
295 
296 	return count;
297 }
298 
299 /**
300  *	dwarf_lookup_cie - locate the cie
301  *	@cie_ptr: pointer to help with lookup
302  */
303 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
304 {
305 	struct rb_node **rb_node = &cie_root.rb_node;
306 	struct dwarf_cie *cie = NULL;
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&dwarf_cie_lock, flags);
310 
311 	/*
312 	 * We've cached the last CIE we looked up because chances are
313 	 * that the FDE wants this CIE.
314 	 */
315 	if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
316 		cie = cached_cie;
317 		goto out;
318 	}
319 
320 	while (*rb_node) {
321 		struct dwarf_cie *cie_tmp;
322 
323 		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
324 		BUG_ON(!cie_tmp);
325 
326 		if (cie_ptr == cie_tmp->cie_pointer) {
327 			cie = cie_tmp;
328 			cached_cie = cie_tmp;
329 			goto out;
330 		} else {
331 			if (cie_ptr < cie_tmp->cie_pointer)
332 				rb_node = &(*rb_node)->rb_left;
333 			else
334 				rb_node = &(*rb_node)->rb_right;
335 		}
336 	}
337 
338 out:
339 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
340 	return cie;
341 }
342 
343 /**
344  *	dwarf_lookup_fde - locate the FDE that covers pc
345  *	@pc: the program counter
346  */
347 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
348 {
349 	struct rb_node **rb_node = &fde_root.rb_node;
350 	struct dwarf_fde *fde = NULL;
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(&dwarf_fde_lock, flags);
354 
355 	while (*rb_node) {
356 		struct dwarf_fde *fde_tmp;
357 		unsigned long tmp_start, tmp_end;
358 
359 		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
360 		BUG_ON(!fde_tmp);
361 
362 		tmp_start = fde_tmp->initial_location;
363 		tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
364 
365 		if (pc < tmp_start) {
366 			rb_node = &(*rb_node)->rb_left;
367 		} else {
368 			if (pc < tmp_end) {
369 				fde = fde_tmp;
370 				goto out;
371 			} else
372 				rb_node = &(*rb_node)->rb_right;
373 		}
374 	}
375 
376 out:
377 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
378 
379 	return fde;
380 }
381 
382 /**
383  *	dwarf_cfa_execute_insns - execute instructions to calculate a CFA
384  *	@insn_start: address of the first instruction
385  *	@insn_end: address of the last instruction
386  *	@cie: the CIE for this function
387  *	@fde: the FDE for this function
388  *	@frame: the instructions calculate the CFA for this frame
389  *	@pc: the program counter of the address we're interested in
390  *
391  *	Execute the Call Frame instruction sequence starting at
392  *	@insn_start and ending at @insn_end. The instructions describe
393  *	how to calculate the Canonical Frame Address of a stackframe.
394  *	Store the results in @frame.
395  */
396 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
397 				   unsigned char *insn_end,
398 				   struct dwarf_cie *cie,
399 				   struct dwarf_fde *fde,
400 				   struct dwarf_frame *frame,
401 				   unsigned long pc)
402 {
403 	unsigned char insn;
404 	unsigned char *current_insn;
405 	unsigned int count, delta, reg, expr_len, offset;
406 	struct dwarf_reg *regp;
407 
408 	current_insn = insn_start;
409 
410 	while (current_insn < insn_end && frame->pc <= pc) {
411 		insn = __raw_readb(current_insn++);
412 
413 		/*
414 		 * Firstly, handle the opcodes that embed their operands
415 		 * in the instructions.
416 		 */
417 		switch (DW_CFA_opcode(insn)) {
418 		case DW_CFA_advance_loc:
419 			delta = DW_CFA_operand(insn);
420 			delta *= cie->code_alignment_factor;
421 			frame->pc += delta;
422 			continue;
423 			/* NOTREACHED */
424 		case DW_CFA_offset:
425 			reg = DW_CFA_operand(insn);
426 			count = dwarf_read_uleb128(current_insn, &offset);
427 			current_insn += count;
428 			offset *= cie->data_alignment_factor;
429 			regp = dwarf_frame_alloc_reg(frame, reg);
430 			regp->addr = offset;
431 			regp->flags |= DWARF_REG_OFFSET;
432 			continue;
433 			/* NOTREACHED */
434 		case DW_CFA_restore:
435 			reg = DW_CFA_operand(insn);
436 			continue;
437 			/* NOTREACHED */
438 		}
439 
440 		/*
441 		 * Secondly, handle the opcodes that don't embed their
442 		 * operands in the instruction.
443 		 */
444 		switch (insn) {
445 		case DW_CFA_nop:
446 			continue;
447 		case DW_CFA_advance_loc1:
448 			delta = *current_insn++;
449 			frame->pc += delta * cie->code_alignment_factor;
450 			break;
451 		case DW_CFA_advance_loc2:
452 			delta = get_unaligned((u16 *)current_insn);
453 			current_insn += 2;
454 			frame->pc += delta * cie->code_alignment_factor;
455 			break;
456 		case DW_CFA_advance_loc4:
457 			delta = get_unaligned((u32 *)current_insn);
458 			current_insn += 4;
459 			frame->pc += delta * cie->code_alignment_factor;
460 			break;
461 		case DW_CFA_offset_extended:
462 			count = dwarf_read_uleb128(current_insn, &reg);
463 			current_insn += count;
464 			count = dwarf_read_uleb128(current_insn, &offset);
465 			current_insn += count;
466 			offset *= cie->data_alignment_factor;
467 			break;
468 		case DW_CFA_restore_extended:
469 			count = dwarf_read_uleb128(current_insn, &reg);
470 			current_insn += count;
471 			break;
472 		case DW_CFA_undefined:
473 			count = dwarf_read_uleb128(current_insn, &reg);
474 			current_insn += count;
475 			regp = dwarf_frame_alloc_reg(frame, reg);
476 			regp->flags |= DWARF_UNDEFINED;
477 			break;
478 		case DW_CFA_def_cfa:
479 			count = dwarf_read_uleb128(current_insn,
480 						   &frame->cfa_register);
481 			current_insn += count;
482 			count = dwarf_read_uleb128(current_insn,
483 						   &frame->cfa_offset);
484 			current_insn += count;
485 
486 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
487 			break;
488 		case DW_CFA_def_cfa_register:
489 			count = dwarf_read_uleb128(current_insn,
490 						   &frame->cfa_register);
491 			current_insn += count;
492 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
493 			break;
494 		case DW_CFA_def_cfa_offset:
495 			count = dwarf_read_uleb128(current_insn, &offset);
496 			current_insn += count;
497 			frame->cfa_offset = offset;
498 			break;
499 		case DW_CFA_def_cfa_expression:
500 			count = dwarf_read_uleb128(current_insn, &expr_len);
501 			current_insn += count;
502 
503 			frame->cfa_expr = current_insn;
504 			frame->cfa_expr_len = expr_len;
505 			current_insn += expr_len;
506 
507 			frame->flags |= DWARF_FRAME_CFA_REG_EXP;
508 			break;
509 		case DW_CFA_offset_extended_sf:
510 			count = dwarf_read_uleb128(current_insn, &reg);
511 			current_insn += count;
512 			count = dwarf_read_leb128(current_insn, &offset);
513 			current_insn += count;
514 			offset *= cie->data_alignment_factor;
515 			regp = dwarf_frame_alloc_reg(frame, reg);
516 			regp->flags |= DWARF_REG_OFFSET;
517 			regp->addr = offset;
518 			break;
519 		case DW_CFA_val_offset:
520 			count = dwarf_read_uleb128(current_insn, &reg);
521 			current_insn += count;
522 			count = dwarf_read_leb128(current_insn, &offset);
523 			offset *= cie->data_alignment_factor;
524 			regp = dwarf_frame_alloc_reg(frame, reg);
525 			regp->flags |= DWARF_VAL_OFFSET;
526 			regp->addr = offset;
527 			break;
528 		case DW_CFA_GNU_args_size:
529 			count = dwarf_read_uleb128(current_insn, &offset);
530 			current_insn += count;
531 			break;
532 		case DW_CFA_GNU_negative_offset_extended:
533 			count = dwarf_read_uleb128(current_insn, &reg);
534 			current_insn += count;
535 			count = dwarf_read_uleb128(current_insn, &offset);
536 			offset *= cie->data_alignment_factor;
537 
538 			regp = dwarf_frame_alloc_reg(frame, reg);
539 			regp->flags |= DWARF_REG_OFFSET;
540 			regp->addr = -offset;
541 			break;
542 		default:
543 			pr_debug("unhandled DWARF instruction 0x%x\n", insn);
544 			UNWINDER_BUG();
545 			break;
546 		}
547 	}
548 
549 	return 0;
550 }
551 
552 /**
553  *	dwarf_free_frame - free the memory allocated for @frame
554  *	@frame: the frame to free
555  */
556 void dwarf_free_frame(struct dwarf_frame *frame)
557 {
558 	dwarf_frame_free_regs(frame);
559 	mempool_free(frame, dwarf_frame_pool);
560 }
561 
562 extern void ret_from_irq(void);
563 
564 /**
565  *	dwarf_unwind_stack - unwind the stack
566  *
567  *	@pc: address of the function to unwind
568  *	@prev: struct dwarf_frame of the previous stackframe on the callstack
569  *
570  *	Return a struct dwarf_frame representing the most recent frame
571  *	on the callstack. Each of the lower (older) stack frames are
572  *	linked via the "prev" member.
573  */
574 struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
575 				       struct dwarf_frame *prev)
576 {
577 	struct dwarf_frame *frame;
578 	struct dwarf_cie *cie;
579 	struct dwarf_fde *fde;
580 	struct dwarf_reg *reg;
581 	unsigned long addr;
582 
583 	/*
584 	 * If we're starting at the top of the stack we need get the
585 	 * contents of a physical register to get the CFA in order to
586 	 * begin the virtual unwinding of the stack.
587 	 *
588 	 * NOTE: the return address is guaranteed to be setup by the
589 	 * time this function makes its first function call.
590 	 */
591 	if (!pc || !prev)
592 		pc = (unsigned long)current_text_addr();
593 
594 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
595 	/*
596 	 * If our stack has been patched by the function graph tracer
597 	 * then we might see the address of return_to_handler() where we
598 	 * expected to find the real return address.
599 	 */
600 	if (pc == (unsigned long)&return_to_handler) {
601 		int index = current->curr_ret_stack;
602 
603 		/*
604 		 * We currently have no way of tracking how many
605 		 * return_to_handler()'s we've seen. If there is more
606 		 * than one patched return address on our stack,
607 		 * complain loudly.
608 		 */
609 		WARN_ON(index > 0);
610 
611 		pc = current->ret_stack[index].ret;
612 	}
613 #endif
614 
615 	frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
616 	if (!frame) {
617 		printk(KERN_ERR "Unable to allocate a dwarf frame\n");
618 		UNWINDER_BUG();
619 	}
620 
621 	INIT_LIST_HEAD(&frame->reg_list);
622 	frame->flags = 0;
623 	frame->prev = prev;
624 	frame->return_addr = 0;
625 
626 	fde = dwarf_lookup_fde(pc);
627 	if (!fde) {
628 		/*
629 		 * This is our normal exit path. There are two reasons
630 		 * why we might exit here,
631 		 *
632 		 *	a) pc has no asscociated DWARF frame info and so
633 		 *	we don't know how to unwind this frame. This is
634 		 *	usually the case when we're trying to unwind a
635 		 *	frame that was called from some assembly code
636 		 *	that has no DWARF info, e.g. syscalls.
637 		 *
638 		 *	b) the DEBUG info for pc is bogus. There's
639 		 *	really no way to distinguish this case from the
640 		 *	case above, which sucks because we could print a
641 		 *	warning here.
642 		 */
643 		goto bail;
644 	}
645 
646 	cie = dwarf_lookup_cie(fde->cie_pointer);
647 
648 	frame->pc = fde->initial_location;
649 
650 	/* CIE initial instructions */
651 	dwarf_cfa_execute_insns(cie->initial_instructions,
652 				cie->instructions_end, cie, fde,
653 				frame, pc);
654 
655 	/* FDE instructions */
656 	dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
657 				fde, frame, pc);
658 
659 	/* Calculate the CFA */
660 	switch (frame->flags) {
661 	case DWARF_FRAME_CFA_REG_OFFSET:
662 		if (prev) {
663 			reg = dwarf_frame_reg(prev, frame->cfa_register);
664 			UNWINDER_BUG_ON(!reg);
665 			UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
666 
667 			addr = prev->cfa + reg->addr;
668 			frame->cfa = __raw_readl(addr);
669 
670 		} else {
671 			/*
672 			 * Again, we're starting from the top of the
673 			 * stack. We need to physically read
674 			 * the contents of a register in order to get
675 			 * the Canonical Frame Address for this
676 			 * function.
677 			 */
678 			frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
679 		}
680 
681 		frame->cfa += frame->cfa_offset;
682 		break;
683 	default:
684 		UNWINDER_BUG();
685 	}
686 
687 	reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
688 
689 	/*
690 	 * If we haven't seen the return address register or the return
691 	 * address column is undefined then we must assume that this is
692 	 * the end of the callstack.
693 	 */
694 	if (!reg || reg->flags == DWARF_UNDEFINED)
695 		goto bail;
696 
697 	UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
698 
699 	addr = frame->cfa + reg->addr;
700 	frame->return_addr = __raw_readl(addr);
701 
702 	/*
703 	 * Ah, the joys of unwinding through interrupts.
704 	 *
705 	 * Interrupts are tricky - the DWARF info needs to be _really_
706 	 * accurate and unfortunately I'm seeing a lot of bogus DWARF
707 	 * info. For example, I've seen interrupts occur in epilogues
708 	 * just after the frame pointer (r14) had been restored. The
709 	 * problem was that the DWARF info claimed that the CFA could be
710 	 * reached by using the value of the frame pointer before it was
711 	 * restored.
712 	 *
713 	 * So until the compiler can be trusted to produce reliable
714 	 * DWARF info when it really matters, let's stop unwinding once
715 	 * we've calculated the function that was interrupted.
716 	 */
717 	if (prev && prev->pc == (unsigned long)ret_from_irq)
718 		frame->return_addr = 0;
719 
720 	return frame;
721 
722 bail:
723 	dwarf_free_frame(frame);
724 	return NULL;
725 }
726 
727 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
728 			   unsigned char *end, struct module *mod)
729 {
730 	struct rb_node **rb_node = &cie_root.rb_node;
731 	struct rb_node *parent = *rb_node;
732 	struct dwarf_cie *cie;
733 	unsigned long flags;
734 	int count;
735 
736 	cie = kzalloc(sizeof(*cie), GFP_KERNEL);
737 	if (!cie)
738 		return -ENOMEM;
739 
740 	cie->length = len;
741 
742 	/*
743 	 * Record the offset into the .eh_frame section
744 	 * for this CIE. It allows this CIE to be
745 	 * quickly and easily looked up from the
746 	 * corresponding FDE.
747 	 */
748 	cie->cie_pointer = (unsigned long)entry;
749 
750 	cie->version = *(char *)p++;
751 	UNWINDER_BUG_ON(cie->version != 1);
752 
753 	cie->augmentation = p;
754 	p += strlen(cie->augmentation) + 1;
755 
756 	count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
757 	p += count;
758 
759 	count = dwarf_read_leb128(p, &cie->data_alignment_factor);
760 	p += count;
761 
762 	/*
763 	 * Which column in the rule table contains the
764 	 * return address?
765 	 */
766 	if (cie->version == 1) {
767 		cie->return_address_reg = __raw_readb(p);
768 		p++;
769 	} else {
770 		count = dwarf_read_uleb128(p, &cie->return_address_reg);
771 		p += count;
772 	}
773 
774 	if (cie->augmentation[0] == 'z') {
775 		unsigned int length, count;
776 		cie->flags |= DWARF_CIE_Z_AUGMENTATION;
777 
778 		count = dwarf_read_uleb128(p, &length);
779 		p += count;
780 
781 		UNWINDER_BUG_ON((unsigned char *)p > end);
782 
783 		cie->initial_instructions = p + length;
784 		cie->augmentation++;
785 	}
786 
787 	while (*cie->augmentation) {
788 		/*
789 		 * "L" indicates a byte showing how the
790 		 * LSDA pointer is encoded. Skip it.
791 		 */
792 		if (*cie->augmentation == 'L') {
793 			p++;
794 			cie->augmentation++;
795 		} else if (*cie->augmentation == 'R') {
796 			/*
797 			 * "R" indicates a byte showing
798 			 * how FDE addresses are
799 			 * encoded.
800 			 */
801 			cie->encoding = *(char *)p++;
802 			cie->augmentation++;
803 		} else if (*cie->augmentation == 'P') {
804 			/*
805 			 * "R" indicates a personality
806 			 * routine in the CIE
807 			 * augmentation.
808 			 */
809 			UNWINDER_BUG();
810 		} else if (*cie->augmentation == 'S') {
811 			UNWINDER_BUG();
812 		} else {
813 			/*
814 			 * Unknown augmentation. Assume
815 			 * 'z' augmentation.
816 			 */
817 			p = cie->initial_instructions;
818 			UNWINDER_BUG_ON(!p);
819 			break;
820 		}
821 	}
822 
823 	cie->initial_instructions = p;
824 	cie->instructions_end = end;
825 
826 	/* Add to list */
827 	spin_lock_irqsave(&dwarf_cie_lock, flags);
828 
829 	while (*rb_node) {
830 		struct dwarf_cie *cie_tmp;
831 
832 		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
833 
834 		parent = *rb_node;
835 
836 		if (cie->cie_pointer < cie_tmp->cie_pointer)
837 			rb_node = &parent->rb_left;
838 		else if (cie->cie_pointer >= cie_tmp->cie_pointer)
839 			rb_node = &parent->rb_right;
840 		else
841 			WARN_ON(1);
842 	}
843 
844 	rb_link_node(&cie->node, parent, rb_node);
845 	rb_insert_color(&cie->node, &cie_root);
846 
847 	if (mod != NULL)
848 		list_add_tail(&cie->link, &mod->arch.cie_list);
849 
850 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
851 
852 	return 0;
853 }
854 
855 static int dwarf_parse_fde(void *entry, u32 entry_type,
856 			   void *start, unsigned long len,
857 			   unsigned char *end, struct module *mod)
858 {
859 	struct rb_node **rb_node = &fde_root.rb_node;
860 	struct rb_node *parent = *rb_node;
861 	struct dwarf_fde *fde;
862 	struct dwarf_cie *cie;
863 	unsigned long flags;
864 	int count;
865 	void *p = start;
866 
867 	fde = kzalloc(sizeof(*fde), GFP_KERNEL);
868 	if (!fde)
869 		return -ENOMEM;
870 
871 	fde->length = len;
872 
873 	/*
874 	 * In a .eh_frame section the CIE pointer is the
875 	 * delta between the address within the FDE
876 	 */
877 	fde->cie_pointer = (unsigned long)(p - entry_type - 4);
878 
879 	cie = dwarf_lookup_cie(fde->cie_pointer);
880 	fde->cie = cie;
881 
882 	if (cie->encoding)
883 		count = dwarf_read_encoded_value(p, &fde->initial_location,
884 						 cie->encoding);
885 	else
886 		count = dwarf_read_addr(p, &fde->initial_location);
887 
888 	p += count;
889 
890 	if (cie->encoding)
891 		count = dwarf_read_encoded_value(p, &fde->address_range,
892 						 cie->encoding & 0x0f);
893 	else
894 		count = dwarf_read_addr(p, &fde->address_range);
895 
896 	p += count;
897 
898 	if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
899 		unsigned int length;
900 		count = dwarf_read_uleb128(p, &length);
901 		p += count + length;
902 	}
903 
904 	/* Call frame instructions. */
905 	fde->instructions = p;
906 	fde->end = end;
907 
908 	/* Add to list. */
909 	spin_lock_irqsave(&dwarf_fde_lock, flags);
910 
911 	while (*rb_node) {
912 		struct dwarf_fde *fde_tmp;
913 		unsigned long tmp_start, tmp_end;
914 		unsigned long start, end;
915 
916 		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
917 
918 		start = fde->initial_location;
919 		end = fde->initial_location + fde->address_range;
920 
921 		tmp_start = fde_tmp->initial_location;
922 		tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
923 
924 		parent = *rb_node;
925 
926 		if (start < tmp_start)
927 			rb_node = &parent->rb_left;
928 		else if (start >= tmp_end)
929 			rb_node = &parent->rb_right;
930 		else
931 			WARN_ON(1);
932 	}
933 
934 	rb_link_node(&fde->node, parent, rb_node);
935 	rb_insert_color(&fde->node, &fde_root);
936 
937 	if (mod != NULL)
938 		list_add_tail(&fde->link, &mod->arch.fde_list);
939 
940 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
941 
942 	return 0;
943 }
944 
945 static void dwarf_unwinder_dump(struct task_struct *task,
946 				struct pt_regs *regs,
947 				unsigned long *sp,
948 				const struct stacktrace_ops *ops,
949 				void *data)
950 {
951 	struct dwarf_frame *frame, *_frame;
952 	unsigned long return_addr;
953 
954 	_frame = NULL;
955 	return_addr = 0;
956 
957 	while (1) {
958 		frame = dwarf_unwind_stack(return_addr, _frame);
959 
960 		if (_frame)
961 			dwarf_free_frame(_frame);
962 
963 		_frame = frame;
964 
965 		if (!frame || !frame->return_addr)
966 			break;
967 
968 		return_addr = frame->return_addr;
969 		ops->address(data, return_addr, 1);
970 	}
971 
972 	if (frame)
973 		dwarf_free_frame(frame);
974 }
975 
976 static struct unwinder dwarf_unwinder = {
977 	.name = "dwarf-unwinder",
978 	.dump = dwarf_unwinder_dump,
979 	.rating = 150,
980 };
981 
982 static void dwarf_unwinder_cleanup(void)
983 {
984 	struct rb_node **fde_rb_node = &fde_root.rb_node;
985 	struct rb_node **cie_rb_node = &cie_root.rb_node;
986 
987 	/*
988 	 * Deallocate all the memory allocated for the DWARF unwinder.
989 	 * Traverse all the FDE/CIE lists and remove and free all the
990 	 * memory associated with those data structures.
991 	 */
992 	while (*fde_rb_node) {
993 		struct dwarf_fde *fde;
994 
995 		fde = rb_entry(*fde_rb_node, struct dwarf_fde, node);
996 		rb_erase(*fde_rb_node, &fde_root);
997 		kfree(fde);
998 	}
999 
1000 	while (*cie_rb_node) {
1001 		struct dwarf_cie *cie;
1002 
1003 		cie = rb_entry(*cie_rb_node, struct dwarf_cie, node);
1004 		rb_erase(*cie_rb_node, &cie_root);
1005 		kfree(cie);
1006 	}
1007 
1008 	kmem_cache_destroy(dwarf_reg_cachep);
1009 	kmem_cache_destroy(dwarf_frame_cachep);
1010 }
1011 
1012 /**
1013  *	dwarf_parse_section - parse DWARF section
1014  *	@eh_frame_start: start address of the .eh_frame section
1015  *	@eh_frame_end: end address of the .eh_frame section
1016  *	@mod: the kernel module containing the .eh_frame section
1017  *
1018  *	Parse the information in a .eh_frame section.
1019  */
1020 static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
1021 			       struct module *mod)
1022 {
1023 	u32 entry_type;
1024 	void *p, *entry;
1025 	int count, err = 0;
1026 	unsigned long len = 0;
1027 	unsigned int c_entries, f_entries;
1028 	unsigned char *end;
1029 
1030 	c_entries = 0;
1031 	f_entries = 0;
1032 	entry = eh_frame_start;
1033 
1034 	while ((char *)entry < eh_frame_end) {
1035 		p = entry;
1036 
1037 		count = dwarf_entry_len(p, &len);
1038 		if (count == 0) {
1039 			/*
1040 			 * We read a bogus length field value. There is
1041 			 * nothing we can do here apart from disabling
1042 			 * the DWARF unwinder. We can't even skip this
1043 			 * entry and move to the next one because 'len'
1044 			 * tells us where our next entry is.
1045 			 */
1046 			err = -EINVAL;
1047 			goto out;
1048 		} else
1049 			p += count;
1050 
1051 		/* initial length does not include itself */
1052 		end = p + len;
1053 
1054 		entry_type = get_unaligned((u32 *)p);
1055 		p += 4;
1056 
1057 		if (entry_type == DW_EH_FRAME_CIE) {
1058 			err = dwarf_parse_cie(entry, p, len, end, mod);
1059 			if (err < 0)
1060 				goto out;
1061 			else
1062 				c_entries++;
1063 		} else {
1064 			err = dwarf_parse_fde(entry, entry_type, p, len,
1065 					      end, mod);
1066 			if (err < 0)
1067 				goto out;
1068 			else
1069 				f_entries++;
1070 		}
1071 
1072 		entry = (char *)entry + len + 4;
1073 	}
1074 
1075 	printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
1076 	       c_entries, f_entries);
1077 
1078 	return 0;
1079 
1080 out:
1081 	return err;
1082 }
1083 
1084 #ifdef CONFIG_MODULES
1085 int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
1086 			  struct module *me)
1087 {
1088 	unsigned int i, err;
1089 	unsigned long start, end;
1090 	char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
1091 
1092 	start = end = 0;
1093 
1094 	for (i = 1; i < hdr->e_shnum; i++) {
1095 		/* Alloc bit cleared means "ignore it." */
1096 		if ((sechdrs[i].sh_flags & SHF_ALLOC)
1097 		    && !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) {
1098 			start = sechdrs[i].sh_addr;
1099 			end = start + sechdrs[i].sh_size;
1100 			break;
1101 		}
1102 	}
1103 
1104 	/* Did we find the .eh_frame section? */
1105 	if (i != hdr->e_shnum) {
1106 		INIT_LIST_HEAD(&me->arch.cie_list);
1107 		INIT_LIST_HEAD(&me->arch.fde_list);
1108 		err = dwarf_parse_section((char *)start, (char *)end, me);
1109 		if (err) {
1110 			printk(KERN_WARNING "%s: failed to parse DWARF info\n",
1111 			       me->name);
1112 			return err;
1113 		}
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 /**
1120  *	module_dwarf_cleanup - remove FDE/CIEs associated with @mod
1121  *	@mod: the module that is being unloaded
1122  *
1123  *	Remove any FDEs and CIEs from the global lists that came from
1124  *	@mod's .eh_frame section because @mod is being unloaded.
1125  */
1126 void module_dwarf_cleanup(struct module *mod)
1127 {
1128 	struct dwarf_fde *fde, *ftmp;
1129 	struct dwarf_cie *cie, *ctmp;
1130 	unsigned long flags;
1131 
1132 	spin_lock_irqsave(&dwarf_cie_lock, flags);
1133 
1134 	list_for_each_entry_safe(cie, ctmp, &mod->arch.cie_list, link) {
1135 		list_del(&cie->link);
1136 		rb_erase(&cie->node, &cie_root);
1137 		kfree(cie);
1138 	}
1139 
1140 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
1141 
1142 	spin_lock_irqsave(&dwarf_fde_lock, flags);
1143 
1144 	list_for_each_entry_safe(fde, ftmp, &mod->arch.fde_list, link) {
1145 		list_del(&fde->link);
1146 		rb_erase(&fde->node, &fde_root);
1147 		kfree(fde);
1148 	}
1149 
1150 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
1151 }
1152 #endif /* CONFIG_MODULES */
1153 
1154 /**
1155  *	dwarf_unwinder_init - initialise the dwarf unwinder
1156  *
1157  *	Build the data structures describing the .dwarf_frame section to
1158  *	make it easier to lookup CIE and FDE entries. Because the
1159  *	.eh_frame section is packed as tightly as possible it is not
1160  *	easy to lookup the FDE for a given PC, so we build a list of FDE
1161  *	and CIE entries that make it easier.
1162  */
1163 static int __init dwarf_unwinder_init(void)
1164 {
1165 	int err;
1166 
1167 	dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
1168 			sizeof(struct dwarf_frame), 0,
1169 			SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1170 
1171 	dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
1172 			sizeof(struct dwarf_reg), 0,
1173 			SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1174 
1175 	dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
1176 					  mempool_alloc_slab,
1177 					  mempool_free_slab,
1178 					  dwarf_frame_cachep);
1179 
1180 	dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
1181 					 mempool_alloc_slab,
1182 					 mempool_free_slab,
1183 					 dwarf_reg_cachep);
1184 
1185 	err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
1186 	if (err)
1187 		goto out;
1188 
1189 	err = unwinder_register(&dwarf_unwinder);
1190 	if (err)
1191 		goto out;
1192 
1193 	return 0;
1194 
1195 out:
1196 	printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
1197 	dwarf_unwinder_cleanup();
1198 	return -EINVAL;
1199 }
1200 early_initcall(dwarf_unwinder_init);
1201