xref: /linux/arch/sh/kernel/dwarf.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * This is an implementation of a DWARF unwinder. Its main purpose is
9  * for generating stacktrace information. Based on the DWARF 3
10  * specification from http://www.dwarfstd.org.
11  *
12  * TODO:
13  *	- DWARF64 doesn't work.
14  *	- Registers with DWARF_VAL_OFFSET rules aren't handled properly.
15  */
16 
17 /* #define DEBUG */
18 #include <linux/kernel.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/mempool.h>
22 #include <linux/mm.h>
23 #include <asm/dwarf.h>
24 #include <asm/unwinder.h>
25 #include <asm/sections.h>
26 #include <asm/unaligned.h>
27 #include <asm/stacktrace.h>
28 
29 /* Reserve enough memory for two stack frames */
30 #define DWARF_FRAME_MIN_REQ	2
31 /* ... with 4 registers per frame. */
32 #define DWARF_REG_MIN_REQ	(DWARF_FRAME_MIN_REQ * 4)
33 
34 static struct kmem_cache *dwarf_frame_cachep;
35 static mempool_t *dwarf_frame_pool;
36 
37 static struct kmem_cache *dwarf_reg_cachep;
38 static mempool_t *dwarf_reg_pool;
39 
40 static LIST_HEAD(dwarf_cie_list);
41 static DEFINE_SPINLOCK(dwarf_cie_lock);
42 
43 static LIST_HEAD(dwarf_fde_list);
44 static DEFINE_SPINLOCK(dwarf_fde_lock);
45 
46 static struct dwarf_cie *cached_cie;
47 
48 /**
49  *	dwarf_frame_alloc_reg - allocate memory for a DWARF register
50  *	@frame: the DWARF frame whose list of registers we insert on
51  *	@reg_num: the register number
52  *
53  *	Allocate space for, and initialise, a dwarf reg from
54  *	dwarf_reg_pool and insert it onto the (unsorted) linked-list of
55  *	dwarf registers for @frame.
56  *
57  *	Return the initialised DWARF reg.
58  */
59 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
60 					       unsigned int reg_num)
61 {
62 	struct dwarf_reg *reg;
63 
64 	reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
65 	if (!reg) {
66 		printk(KERN_WARNING "Unable to allocate a DWARF register\n");
67 		/*
68 		 * Let's just bomb hard here, we have no way to
69 		 * gracefully recover.
70 		 */
71 		UNWINDER_BUG();
72 	}
73 
74 	reg->number = reg_num;
75 	reg->addr = 0;
76 	reg->flags = 0;
77 
78 	list_add(&reg->link, &frame->reg_list);
79 
80 	return reg;
81 }
82 
83 static void dwarf_frame_free_regs(struct dwarf_frame *frame)
84 {
85 	struct dwarf_reg *reg, *n;
86 
87 	list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
88 		list_del(&reg->link);
89 		mempool_free(reg, dwarf_reg_pool);
90 	}
91 }
92 
93 /**
94  *	dwarf_frame_reg - return a DWARF register
95  *	@frame: the DWARF frame to search in for @reg_num
96  *	@reg_num: the register number to search for
97  *
98  *	Lookup and return the dwarf reg @reg_num for this frame. Return
99  *	NULL if @reg_num is an register invalid number.
100  */
101 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
102 					 unsigned int reg_num)
103 {
104 	struct dwarf_reg *reg;
105 
106 	list_for_each_entry(reg, &frame->reg_list, link) {
107 		if (reg->number == reg_num)
108 			return reg;
109 	}
110 
111 	return NULL;
112 }
113 
114 /**
115  *	dwarf_read_addr - read dwarf data
116  *	@src: source address of data
117  *	@dst: destination address to store the data to
118  *
119  *	Read 'n' bytes from @src, where 'n' is the size of an address on
120  *	the native machine. We return the number of bytes read, which
121  *	should always be 'n'. We also have to be careful when reading
122  *	from @src and writing to @dst, because they can be arbitrarily
123  *	aligned. Return 'n' - the number of bytes read.
124  */
125 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
126 {
127 	u32 val = get_unaligned(src);
128 	put_unaligned(val, dst);
129 	return sizeof(unsigned long *);
130 }
131 
132 /**
133  *	dwarf_read_uleb128 - read unsigned LEB128 data
134  *	@addr: the address where the ULEB128 data is stored
135  *	@ret: address to store the result
136  *
137  *	Decode an unsigned LEB128 encoded datum. The algorithm is taken
138  *	from Appendix C of the DWARF 3 spec. For information on the
139  *	encodings refer to section "7.6 - Variable Length Data". Return
140  *	the number of bytes read.
141  */
142 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
143 {
144 	unsigned int result;
145 	unsigned char byte;
146 	int shift, count;
147 
148 	result = 0;
149 	shift = 0;
150 	count = 0;
151 
152 	while (1) {
153 		byte = __raw_readb(addr);
154 		addr++;
155 		count++;
156 
157 		result |= (byte & 0x7f) << shift;
158 		shift += 7;
159 
160 		if (!(byte & 0x80))
161 			break;
162 	}
163 
164 	*ret = result;
165 
166 	return count;
167 }
168 
169 /**
170  *	dwarf_read_leb128 - read signed LEB128 data
171  *	@addr: the address of the LEB128 encoded data
172  *	@ret: address to store the result
173  *
174  *	Decode signed LEB128 data. The algorithm is taken from Appendix
175  *	C of the DWARF 3 spec. Return the number of bytes read.
176  */
177 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
178 {
179 	unsigned char byte;
180 	int result, shift;
181 	int num_bits;
182 	int count;
183 
184 	result = 0;
185 	shift = 0;
186 	count = 0;
187 
188 	while (1) {
189 		byte = __raw_readb(addr);
190 		addr++;
191 		result |= (byte & 0x7f) << shift;
192 		shift += 7;
193 		count++;
194 
195 		if (!(byte & 0x80))
196 			break;
197 	}
198 
199 	/* The number of bits in a signed integer. */
200 	num_bits = 8 * sizeof(result);
201 
202 	if ((shift < num_bits) && (byte & 0x40))
203 		result |= (-1 << shift);
204 
205 	*ret = result;
206 
207 	return count;
208 }
209 
210 /**
211  *	dwarf_read_encoded_value - return the decoded value at @addr
212  *	@addr: the address of the encoded value
213  *	@val: where to write the decoded value
214  *	@encoding: the encoding with which we can decode @addr
215  *
216  *	GCC emits encoded address in the .eh_frame FDE entries. Decode
217  *	the value at @addr using @encoding. The decoded value is written
218  *	to @val and the number of bytes read is returned.
219  */
220 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
221 				    char encoding)
222 {
223 	unsigned long decoded_addr = 0;
224 	int count = 0;
225 
226 	switch (encoding & 0x70) {
227 	case DW_EH_PE_absptr:
228 		break;
229 	case DW_EH_PE_pcrel:
230 		decoded_addr = (unsigned long)addr;
231 		break;
232 	default:
233 		pr_debug("encoding=0x%x\n", (encoding & 0x70));
234 		UNWINDER_BUG();
235 	}
236 
237 	if ((encoding & 0x07) == 0x00)
238 		encoding |= DW_EH_PE_udata4;
239 
240 	switch (encoding & 0x0f) {
241 	case DW_EH_PE_sdata4:
242 	case DW_EH_PE_udata4:
243 		count += 4;
244 		decoded_addr += get_unaligned((u32 *)addr);
245 		__raw_writel(decoded_addr, val);
246 		break;
247 	default:
248 		pr_debug("encoding=0x%x\n", encoding);
249 		UNWINDER_BUG();
250 	}
251 
252 	return count;
253 }
254 
255 /**
256  *	dwarf_entry_len - return the length of an FDE or CIE
257  *	@addr: the address of the entry
258  *	@len: the length of the entry
259  *
260  *	Read the initial_length field of the entry and store the size of
261  *	the entry in @len. We return the number of bytes read. Return a
262  *	count of 0 on error.
263  */
264 static inline int dwarf_entry_len(char *addr, unsigned long *len)
265 {
266 	u32 initial_len;
267 	int count;
268 
269 	initial_len = get_unaligned((u32 *)addr);
270 	count = 4;
271 
272 	/*
273 	 * An initial length field value in the range DW_LEN_EXT_LO -
274 	 * DW_LEN_EXT_HI indicates an extension, and should not be
275 	 * interpreted as a length. The only extension that we currently
276 	 * understand is the use of DWARF64 addresses.
277 	 */
278 	if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
279 		/*
280 		 * The 64-bit length field immediately follows the
281 		 * compulsory 32-bit length field.
282 		 */
283 		if (initial_len == DW_EXT_DWARF64) {
284 			*len = get_unaligned((u64 *)addr + 4);
285 			count = 12;
286 		} else {
287 			printk(KERN_WARNING "Unknown DWARF extension\n");
288 			count = 0;
289 		}
290 	} else
291 		*len = initial_len;
292 
293 	return count;
294 }
295 
296 /**
297  *	dwarf_lookup_cie - locate the cie
298  *	@cie_ptr: pointer to help with lookup
299  */
300 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
301 {
302 	struct dwarf_cie *cie;
303 	unsigned long flags;
304 
305 	spin_lock_irqsave(&dwarf_cie_lock, flags);
306 
307 	/*
308 	 * We've cached the last CIE we looked up because chances are
309 	 * that the FDE wants this CIE.
310 	 */
311 	if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
312 		cie = cached_cie;
313 		goto out;
314 	}
315 
316 	list_for_each_entry(cie, &dwarf_cie_list, link) {
317 		if (cie->cie_pointer == cie_ptr) {
318 			cached_cie = cie;
319 			break;
320 		}
321 	}
322 
323 	/* Couldn't find the entry in the list. */
324 	if (&cie->link == &dwarf_cie_list)
325 		cie = NULL;
326 out:
327 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
328 	return cie;
329 }
330 
331 /**
332  *	dwarf_lookup_fde - locate the FDE that covers pc
333  *	@pc: the program counter
334  */
335 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
336 {
337 	struct dwarf_fde *fde;
338 	unsigned long flags;
339 
340 	spin_lock_irqsave(&dwarf_fde_lock, flags);
341 
342 	list_for_each_entry(fde, &dwarf_fde_list, link) {
343 		unsigned long start, end;
344 
345 		start = fde->initial_location;
346 		end = fde->initial_location + fde->address_range;
347 
348 		if (pc >= start && pc < end)
349 			break;
350 	}
351 
352 	/* Couldn't find the entry in the list. */
353 	if (&fde->link == &dwarf_fde_list)
354 		fde = NULL;
355 
356 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
357 
358 	return fde;
359 }
360 
361 /**
362  *	dwarf_cfa_execute_insns - execute instructions to calculate a CFA
363  *	@insn_start: address of the first instruction
364  *	@insn_end: address of the last instruction
365  *	@cie: the CIE for this function
366  *	@fde: the FDE for this function
367  *	@frame: the instructions calculate the CFA for this frame
368  *	@pc: the program counter of the address we're interested in
369  *
370  *	Execute the Call Frame instruction sequence starting at
371  *	@insn_start and ending at @insn_end. The instructions describe
372  *	how to calculate the Canonical Frame Address of a stackframe.
373  *	Store the results in @frame.
374  */
375 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
376 				   unsigned char *insn_end,
377 				   struct dwarf_cie *cie,
378 				   struct dwarf_fde *fde,
379 				   struct dwarf_frame *frame,
380 				   unsigned long pc)
381 {
382 	unsigned char insn;
383 	unsigned char *current_insn;
384 	unsigned int count, delta, reg, expr_len, offset;
385 	struct dwarf_reg *regp;
386 
387 	current_insn = insn_start;
388 
389 	while (current_insn < insn_end && frame->pc <= pc) {
390 		insn = __raw_readb(current_insn++);
391 
392 		/*
393 		 * Firstly, handle the opcodes that embed their operands
394 		 * in the instructions.
395 		 */
396 		switch (DW_CFA_opcode(insn)) {
397 		case DW_CFA_advance_loc:
398 			delta = DW_CFA_operand(insn);
399 			delta *= cie->code_alignment_factor;
400 			frame->pc += delta;
401 			continue;
402 			/* NOTREACHED */
403 		case DW_CFA_offset:
404 			reg = DW_CFA_operand(insn);
405 			count = dwarf_read_uleb128(current_insn, &offset);
406 			current_insn += count;
407 			offset *= cie->data_alignment_factor;
408 			regp = dwarf_frame_alloc_reg(frame, reg);
409 			regp->addr = offset;
410 			regp->flags |= DWARF_REG_OFFSET;
411 			continue;
412 			/* NOTREACHED */
413 		case DW_CFA_restore:
414 			reg = DW_CFA_operand(insn);
415 			continue;
416 			/* NOTREACHED */
417 		}
418 
419 		/*
420 		 * Secondly, handle the opcodes that don't embed their
421 		 * operands in the instruction.
422 		 */
423 		switch (insn) {
424 		case DW_CFA_nop:
425 			continue;
426 		case DW_CFA_advance_loc1:
427 			delta = *current_insn++;
428 			frame->pc += delta * cie->code_alignment_factor;
429 			break;
430 		case DW_CFA_advance_loc2:
431 			delta = get_unaligned((u16 *)current_insn);
432 			current_insn += 2;
433 			frame->pc += delta * cie->code_alignment_factor;
434 			break;
435 		case DW_CFA_advance_loc4:
436 			delta = get_unaligned((u32 *)current_insn);
437 			current_insn += 4;
438 			frame->pc += delta * cie->code_alignment_factor;
439 			break;
440 		case DW_CFA_offset_extended:
441 			count = dwarf_read_uleb128(current_insn, &reg);
442 			current_insn += count;
443 			count = dwarf_read_uleb128(current_insn, &offset);
444 			current_insn += count;
445 			offset *= cie->data_alignment_factor;
446 			break;
447 		case DW_CFA_restore_extended:
448 			count = dwarf_read_uleb128(current_insn, &reg);
449 			current_insn += count;
450 			break;
451 		case DW_CFA_undefined:
452 			count = dwarf_read_uleb128(current_insn, &reg);
453 			current_insn += count;
454 			regp = dwarf_frame_alloc_reg(frame, reg);
455 			regp->flags |= DWARF_UNDEFINED;
456 			break;
457 		case DW_CFA_def_cfa:
458 			count = dwarf_read_uleb128(current_insn,
459 						   &frame->cfa_register);
460 			current_insn += count;
461 			count = dwarf_read_uleb128(current_insn,
462 						   &frame->cfa_offset);
463 			current_insn += count;
464 
465 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
466 			break;
467 		case DW_CFA_def_cfa_register:
468 			count = dwarf_read_uleb128(current_insn,
469 						   &frame->cfa_register);
470 			current_insn += count;
471 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
472 			break;
473 		case DW_CFA_def_cfa_offset:
474 			count = dwarf_read_uleb128(current_insn, &offset);
475 			current_insn += count;
476 			frame->cfa_offset = offset;
477 			break;
478 		case DW_CFA_def_cfa_expression:
479 			count = dwarf_read_uleb128(current_insn, &expr_len);
480 			current_insn += count;
481 
482 			frame->cfa_expr = current_insn;
483 			frame->cfa_expr_len = expr_len;
484 			current_insn += expr_len;
485 
486 			frame->flags |= DWARF_FRAME_CFA_REG_EXP;
487 			break;
488 		case DW_CFA_offset_extended_sf:
489 			count = dwarf_read_uleb128(current_insn, &reg);
490 			current_insn += count;
491 			count = dwarf_read_leb128(current_insn, &offset);
492 			current_insn += count;
493 			offset *= cie->data_alignment_factor;
494 			regp = dwarf_frame_alloc_reg(frame, reg);
495 			regp->flags |= DWARF_REG_OFFSET;
496 			regp->addr = offset;
497 			break;
498 		case DW_CFA_val_offset:
499 			count = dwarf_read_uleb128(current_insn, &reg);
500 			current_insn += count;
501 			count = dwarf_read_leb128(current_insn, &offset);
502 			offset *= cie->data_alignment_factor;
503 			regp = dwarf_frame_alloc_reg(frame, reg);
504 			regp->flags |= DWARF_VAL_OFFSET;
505 			regp->addr = offset;
506 			break;
507 		case DW_CFA_GNU_args_size:
508 			count = dwarf_read_uleb128(current_insn, &offset);
509 			current_insn += count;
510 			break;
511 		case DW_CFA_GNU_negative_offset_extended:
512 			count = dwarf_read_uleb128(current_insn, &reg);
513 			current_insn += count;
514 			count = dwarf_read_uleb128(current_insn, &offset);
515 			offset *= cie->data_alignment_factor;
516 
517 			regp = dwarf_frame_alloc_reg(frame, reg);
518 			regp->flags |= DWARF_REG_OFFSET;
519 			regp->addr = -offset;
520 			break;
521 		default:
522 			pr_debug("unhandled DWARF instruction 0x%x\n", insn);
523 			UNWINDER_BUG();
524 			break;
525 		}
526 	}
527 
528 	return 0;
529 }
530 
531 /**
532  *	dwarf_free_frame - free the memory allocated for @frame
533  *	@frame: the frame to free
534  */
535 void dwarf_free_frame(struct dwarf_frame *frame)
536 {
537 	dwarf_frame_free_regs(frame);
538 	mempool_free(frame, dwarf_frame_pool);
539 }
540 
541 /**
542  *	dwarf_unwind_stack - unwind the stack
543  *
544  *	@pc: address of the function to unwind
545  *	@prev: struct dwarf_frame of the previous stackframe on the callstack
546  *
547  *	Return a struct dwarf_frame representing the most recent frame
548  *	on the callstack. Each of the lower (older) stack frames are
549  *	linked via the "prev" member.
550  */
551 struct dwarf_frame * dwarf_unwind_stack(unsigned long pc,
552 					struct dwarf_frame *prev)
553 {
554 	struct dwarf_frame *frame;
555 	struct dwarf_cie *cie;
556 	struct dwarf_fde *fde;
557 	struct dwarf_reg *reg;
558 	unsigned long addr;
559 
560 	/*
561 	 * If we're starting at the top of the stack we need get the
562 	 * contents of a physical register to get the CFA in order to
563 	 * begin the virtual unwinding of the stack.
564 	 *
565 	 * NOTE: the return address is guaranteed to be setup by the
566 	 * time this function makes its first function call.
567 	 */
568 	if (!pc && !prev)
569 		pc = (unsigned long)current_text_addr();
570 
571 	frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
572 	if (!frame) {
573 		printk(KERN_ERR "Unable to allocate a dwarf frame\n");
574 		UNWINDER_BUG();
575 	}
576 
577 	INIT_LIST_HEAD(&frame->reg_list);
578 	frame->flags = 0;
579 	frame->prev = prev;
580 	frame->return_addr = 0;
581 
582 	fde = dwarf_lookup_fde(pc);
583 	if (!fde) {
584 		/*
585 		 * This is our normal exit path. There are two reasons
586 		 * why we might exit here,
587 		 *
588 		 *	a) pc has no asscociated DWARF frame info and so
589 		 *	we don't know how to unwind this frame. This is
590 		 *	usually the case when we're trying to unwind a
591 		 *	frame that was called from some assembly code
592 		 *	that has no DWARF info, e.g. syscalls.
593 		 *
594 		 *	b) the DEBUG info for pc is bogus. There's
595 		 *	really no way to distinguish this case from the
596 		 *	case above, which sucks because we could print a
597 		 *	warning here.
598 		 */
599 		goto bail;
600 	}
601 
602 	cie = dwarf_lookup_cie(fde->cie_pointer);
603 
604 	frame->pc = fde->initial_location;
605 
606 	/* CIE initial instructions */
607 	dwarf_cfa_execute_insns(cie->initial_instructions,
608 				cie->instructions_end, cie, fde,
609 				frame, pc);
610 
611 	/* FDE instructions */
612 	dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
613 				fde, frame, pc);
614 
615 	/* Calculate the CFA */
616 	switch (frame->flags) {
617 	case DWARF_FRAME_CFA_REG_OFFSET:
618 		if (prev) {
619 			reg = dwarf_frame_reg(prev, frame->cfa_register);
620 			UNWINDER_BUG_ON(!reg);
621 			UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
622 
623 			addr = prev->cfa + reg->addr;
624 			frame->cfa = __raw_readl(addr);
625 
626 		} else {
627 			/*
628 			 * Again, we're starting from the top of the
629 			 * stack. We need to physically read
630 			 * the contents of a register in order to get
631 			 * the Canonical Frame Address for this
632 			 * function.
633 			 */
634 			frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
635 		}
636 
637 		frame->cfa += frame->cfa_offset;
638 		break;
639 	default:
640 		UNWINDER_BUG();
641 	}
642 
643 	reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
644 
645 	/*
646 	 * If we haven't seen the return address register or the return
647 	 * address column is undefined then we must assume that this is
648 	 * the end of the callstack.
649 	 */
650 	if (!reg || reg->flags == DWARF_UNDEFINED)
651 		goto bail;
652 
653 	UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
654 
655 	addr = frame->cfa + reg->addr;
656 	frame->return_addr = __raw_readl(addr);
657 
658 	return frame;
659 
660 bail:
661 	dwarf_free_frame(frame);
662 	return NULL;
663 }
664 
665 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
666 			   unsigned char *end, struct module *mod)
667 {
668 	struct dwarf_cie *cie;
669 	unsigned long flags;
670 	int count;
671 
672 	cie = kzalloc(sizeof(*cie), GFP_KERNEL);
673 	if (!cie)
674 		return -ENOMEM;
675 
676 	cie->length = len;
677 
678 	/*
679 	 * Record the offset into the .eh_frame section
680 	 * for this CIE. It allows this CIE to be
681 	 * quickly and easily looked up from the
682 	 * corresponding FDE.
683 	 */
684 	cie->cie_pointer = (unsigned long)entry;
685 
686 	cie->version = *(char *)p++;
687 	UNWINDER_BUG_ON(cie->version != 1);
688 
689 	cie->augmentation = p;
690 	p += strlen(cie->augmentation) + 1;
691 
692 	count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
693 	p += count;
694 
695 	count = dwarf_read_leb128(p, &cie->data_alignment_factor);
696 	p += count;
697 
698 	/*
699 	 * Which column in the rule table contains the
700 	 * return address?
701 	 */
702 	if (cie->version == 1) {
703 		cie->return_address_reg = __raw_readb(p);
704 		p++;
705 	} else {
706 		count = dwarf_read_uleb128(p, &cie->return_address_reg);
707 		p += count;
708 	}
709 
710 	if (cie->augmentation[0] == 'z') {
711 		unsigned int length, count;
712 		cie->flags |= DWARF_CIE_Z_AUGMENTATION;
713 
714 		count = dwarf_read_uleb128(p, &length);
715 		p += count;
716 
717 		UNWINDER_BUG_ON((unsigned char *)p > end);
718 
719 		cie->initial_instructions = p + length;
720 		cie->augmentation++;
721 	}
722 
723 	while (*cie->augmentation) {
724 		/*
725 		 * "L" indicates a byte showing how the
726 		 * LSDA pointer is encoded. Skip it.
727 		 */
728 		if (*cie->augmentation == 'L') {
729 			p++;
730 			cie->augmentation++;
731 		} else if (*cie->augmentation == 'R') {
732 			/*
733 			 * "R" indicates a byte showing
734 			 * how FDE addresses are
735 			 * encoded.
736 			 */
737 			cie->encoding = *(char *)p++;
738 			cie->augmentation++;
739 		} else if (*cie->augmentation == 'P') {
740 			/*
741 			 * "R" indicates a personality
742 			 * routine in the CIE
743 			 * augmentation.
744 			 */
745 			UNWINDER_BUG();
746 		} else if (*cie->augmentation == 'S') {
747 			UNWINDER_BUG();
748 		} else {
749 			/*
750 			 * Unknown augmentation. Assume
751 			 * 'z' augmentation.
752 			 */
753 			p = cie->initial_instructions;
754 			UNWINDER_BUG_ON(!p);
755 			break;
756 		}
757 	}
758 
759 	cie->initial_instructions = p;
760 	cie->instructions_end = end;
761 
762 	cie->mod = mod;
763 
764 	/* Add to list */
765 	spin_lock_irqsave(&dwarf_cie_lock, flags);
766 	list_add_tail(&cie->link, &dwarf_cie_list);
767 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
768 
769 	return 0;
770 }
771 
772 static int dwarf_parse_fde(void *entry, u32 entry_type,
773 			   void *start, unsigned long len,
774 			   unsigned char *end, struct module *mod)
775 {
776 	struct dwarf_fde *fde;
777 	struct dwarf_cie *cie;
778 	unsigned long flags;
779 	int count;
780 	void *p = start;
781 
782 	fde = kzalloc(sizeof(*fde), GFP_KERNEL);
783 	if (!fde)
784 		return -ENOMEM;
785 
786 	fde->length = len;
787 
788 	/*
789 	 * In a .eh_frame section the CIE pointer is the
790 	 * delta between the address within the FDE
791 	 */
792 	fde->cie_pointer = (unsigned long)(p - entry_type - 4);
793 
794 	cie = dwarf_lookup_cie(fde->cie_pointer);
795 	fde->cie = cie;
796 
797 	if (cie->encoding)
798 		count = dwarf_read_encoded_value(p, &fde->initial_location,
799 						 cie->encoding);
800 	else
801 		count = dwarf_read_addr(p, &fde->initial_location);
802 
803 	p += count;
804 
805 	if (cie->encoding)
806 		count = dwarf_read_encoded_value(p, &fde->address_range,
807 						 cie->encoding & 0x0f);
808 	else
809 		count = dwarf_read_addr(p, &fde->address_range);
810 
811 	p += count;
812 
813 	if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
814 		unsigned int length;
815 		count = dwarf_read_uleb128(p, &length);
816 		p += count + length;
817 	}
818 
819 	/* Call frame instructions. */
820 	fde->instructions = p;
821 	fde->end = end;
822 
823 	fde->mod = mod;
824 
825 	/* Add to list. */
826 	spin_lock_irqsave(&dwarf_fde_lock, flags);
827 	list_add_tail(&fde->link, &dwarf_fde_list);
828 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
829 
830 	return 0;
831 }
832 
833 static void dwarf_unwinder_dump(struct task_struct *task,
834 				struct pt_regs *regs,
835 				unsigned long *sp,
836 				const struct stacktrace_ops *ops,
837 				void *data)
838 {
839 	struct dwarf_frame *frame, *_frame;
840 	unsigned long return_addr;
841 
842 	_frame = NULL;
843 	return_addr = 0;
844 
845 	while (1) {
846 		frame = dwarf_unwind_stack(return_addr, _frame);
847 
848 		if (_frame)
849 			dwarf_free_frame(_frame);
850 
851 		_frame = frame;
852 
853 		if (!frame || !frame->return_addr)
854 			break;
855 
856 		return_addr = frame->return_addr;
857 		ops->address(data, return_addr, 1);
858 	}
859 
860 	if (frame)
861 		dwarf_free_frame(frame);
862 }
863 
864 static struct unwinder dwarf_unwinder = {
865 	.name = "dwarf-unwinder",
866 	.dump = dwarf_unwinder_dump,
867 	.rating = 150,
868 };
869 
870 static void dwarf_unwinder_cleanup(void)
871 {
872 	struct dwarf_cie *cie;
873 	struct dwarf_fde *fde;
874 
875 	/*
876 	 * Deallocate all the memory allocated for the DWARF unwinder.
877 	 * Traverse all the FDE/CIE lists and remove and free all the
878 	 * memory associated with those data structures.
879 	 */
880 	list_for_each_entry(cie, &dwarf_cie_list, link)
881 		kfree(cie);
882 
883 	list_for_each_entry(fde, &dwarf_fde_list, link)
884 		kfree(fde);
885 
886 	kmem_cache_destroy(dwarf_reg_cachep);
887 	kmem_cache_destroy(dwarf_frame_cachep);
888 }
889 
890 /**
891  *	dwarf_parse_section - parse DWARF section
892  *	@eh_frame_start: start address of the .eh_frame section
893  *	@eh_frame_end: end address of the .eh_frame section
894  *	@mod: the kernel module containing the .eh_frame section
895  *
896  *	Parse the information in a .eh_frame section.
897  */
898 int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
899 			struct module *mod)
900 {
901 	u32 entry_type;
902 	void *p, *entry;
903 	int count, err = 0;
904 	unsigned long len;
905 	unsigned int c_entries, f_entries;
906 	unsigned char *end;
907 
908 	c_entries = 0;
909 	f_entries = 0;
910 	entry = eh_frame_start;
911 
912 	while ((char *)entry < eh_frame_end) {
913 		p = entry;
914 
915 		count = dwarf_entry_len(p, &len);
916 		if (count == 0) {
917 			/*
918 			 * We read a bogus length field value. There is
919 			 * nothing we can do here apart from disabling
920 			 * the DWARF unwinder. We can't even skip this
921 			 * entry and move to the next one because 'len'
922 			 * tells us where our next entry is.
923 			 */
924 			err = -EINVAL;
925 			goto out;
926 		} else
927 			p += count;
928 
929 		/* initial length does not include itself */
930 		end = p + len;
931 
932 		entry_type = get_unaligned((u32 *)p);
933 		p += 4;
934 
935 		if (entry_type == DW_EH_FRAME_CIE) {
936 			err = dwarf_parse_cie(entry, p, len, end, mod);
937 			if (err < 0)
938 				goto out;
939 			else
940 				c_entries++;
941 		} else {
942 			err = dwarf_parse_fde(entry, entry_type, p, len,
943 					      end, mod);
944 			if (err < 0)
945 				goto out;
946 			else
947 				f_entries++;
948 		}
949 
950 		entry = (char *)entry + len + 4;
951 	}
952 
953 	printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
954 	       c_entries, f_entries);
955 
956 	return 0;
957 
958 out:
959 	return err;
960 }
961 
962 /**
963  *	dwarf_module_unload - remove FDE/CIEs associated with @mod
964  *	@mod: the module that is being unloaded
965  *
966  *	Remove any FDEs and CIEs from the global lists that came from
967  *	@mod's .eh_frame section because @mod is being unloaded.
968  */
969 void dwarf_module_unload(struct module *mod)
970 {
971 	struct dwarf_fde *fde;
972 	struct dwarf_cie *cie;
973 	unsigned long flags;
974 
975 	spin_lock_irqsave(&dwarf_cie_lock, flags);
976 
977 again_cie:
978 	list_for_each_entry(cie, &dwarf_cie_list, link) {
979 		if (cie->mod == mod)
980 			break;
981 	}
982 
983 	if (&cie->link != &dwarf_cie_list) {
984 		list_del(&cie->link);
985 		kfree(cie);
986 		goto again_cie;
987 	}
988 
989 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
990 
991 	spin_lock_irqsave(&dwarf_fde_lock, flags);
992 
993 again_fde:
994 	list_for_each_entry(fde, &dwarf_fde_list, link) {
995 		if (fde->mod == mod)
996 			break;
997 	}
998 
999 	if (&fde->link != &dwarf_fde_list) {
1000 		list_del(&fde->link);
1001 		kfree(fde);
1002 		goto again_fde;
1003 	}
1004 
1005 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
1006 }
1007 
1008 /**
1009  *	dwarf_unwinder_init - initialise the dwarf unwinder
1010  *
1011  *	Build the data structures describing the .dwarf_frame section to
1012  *	make it easier to lookup CIE and FDE entries. Because the
1013  *	.eh_frame section is packed as tightly as possible it is not
1014  *	easy to lookup the FDE for a given PC, so we build a list of FDE
1015  *	and CIE entries that make it easier.
1016  */
1017 static int __init dwarf_unwinder_init(void)
1018 {
1019 	int err;
1020 	INIT_LIST_HEAD(&dwarf_cie_list);
1021 	INIT_LIST_HEAD(&dwarf_fde_list);
1022 
1023 	dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
1024 			sizeof(struct dwarf_frame), 0,
1025 			SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1026 
1027 	dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
1028 			sizeof(struct dwarf_reg), 0,
1029 			SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1030 
1031 	dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
1032 					  mempool_alloc_slab,
1033 					  mempool_free_slab,
1034 					  dwarf_frame_cachep);
1035 
1036 	dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
1037 					 mempool_alloc_slab,
1038 					 mempool_free_slab,
1039 					 dwarf_reg_cachep);
1040 
1041 	err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
1042 	if (err)
1043 		goto out;
1044 
1045 	err = unwinder_register(&dwarf_unwinder);
1046 	if (err)
1047 		goto out;
1048 
1049 	return 0;
1050 
1051 out:
1052 	printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
1053 	dwarf_unwinder_cleanup();
1054 	return -EINVAL;
1055 }
1056 early_initcall(dwarf_unwinder_init);
1057