1 /* 2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org> 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * This is an implementation of a DWARF unwinder. Its main purpose is 9 * for generating stacktrace information. Based on the DWARF 3 10 * specification from http://www.dwarfstd.org. 11 * 12 * TODO: 13 * - DWARF64 doesn't work. 14 * - Registers with DWARF_VAL_OFFSET rules aren't handled properly. 15 */ 16 17 /* #define DEBUG */ 18 #include <linux/kernel.h> 19 #include <linux/io.h> 20 #include <linux/list.h> 21 #include <linux/mempool.h> 22 #include <linux/mm.h> 23 #include <asm/dwarf.h> 24 #include <asm/unwinder.h> 25 #include <asm/sections.h> 26 #include <asm/unaligned.h> 27 #include <asm/stacktrace.h> 28 29 /* Reserve enough memory for two stack frames */ 30 #define DWARF_FRAME_MIN_REQ 2 31 /* ... with 4 registers per frame. */ 32 #define DWARF_REG_MIN_REQ (DWARF_FRAME_MIN_REQ * 4) 33 34 static struct kmem_cache *dwarf_frame_cachep; 35 static mempool_t *dwarf_frame_pool; 36 37 static struct kmem_cache *dwarf_reg_cachep; 38 static mempool_t *dwarf_reg_pool; 39 40 static LIST_HEAD(dwarf_cie_list); 41 static DEFINE_SPINLOCK(dwarf_cie_lock); 42 43 static LIST_HEAD(dwarf_fde_list); 44 static DEFINE_SPINLOCK(dwarf_fde_lock); 45 46 static struct dwarf_cie *cached_cie; 47 48 /** 49 * dwarf_frame_alloc_reg - allocate memory for a DWARF register 50 * @frame: the DWARF frame whose list of registers we insert on 51 * @reg_num: the register number 52 * 53 * Allocate space for, and initialise, a dwarf reg from 54 * dwarf_reg_pool and insert it onto the (unsorted) linked-list of 55 * dwarf registers for @frame. 56 * 57 * Return the initialised DWARF reg. 58 */ 59 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame, 60 unsigned int reg_num) 61 { 62 struct dwarf_reg *reg; 63 64 reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC); 65 if (!reg) { 66 printk(KERN_WARNING "Unable to allocate a DWARF register\n"); 67 /* 68 * Let's just bomb hard here, we have no way to 69 * gracefully recover. 70 */ 71 UNWINDER_BUG(); 72 } 73 74 reg->number = reg_num; 75 reg->addr = 0; 76 reg->flags = 0; 77 78 list_add(®->link, &frame->reg_list); 79 80 return reg; 81 } 82 83 static void dwarf_frame_free_regs(struct dwarf_frame *frame) 84 { 85 struct dwarf_reg *reg, *n; 86 87 list_for_each_entry_safe(reg, n, &frame->reg_list, link) { 88 list_del(®->link); 89 mempool_free(reg, dwarf_reg_pool); 90 } 91 } 92 93 /** 94 * dwarf_frame_reg - return a DWARF register 95 * @frame: the DWARF frame to search in for @reg_num 96 * @reg_num: the register number to search for 97 * 98 * Lookup and return the dwarf reg @reg_num for this frame. Return 99 * NULL if @reg_num is an register invalid number. 100 */ 101 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame, 102 unsigned int reg_num) 103 { 104 struct dwarf_reg *reg; 105 106 list_for_each_entry(reg, &frame->reg_list, link) { 107 if (reg->number == reg_num) 108 return reg; 109 } 110 111 return NULL; 112 } 113 114 /** 115 * dwarf_read_addr - read dwarf data 116 * @src: source address of data 117 * @dst: destination address to store the data to 118 * 119 * Read 'n' bytes from @src, where 'n' is the size of an address on 120 * the native machine. We return the number of bytes read, which 121 * should always be 'n'. We also have to be careful when reading 122 * from @src and writing to @dst, because they can be arbitrarily 123 * aligned. Return 'n' - the number of bytes read. 124 */ 125 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst) 126 { 127 u32 val = get_unaligned(src); 128 put_unaligned(val, dst); 129 return sizeof(unsigned long *); 130 } 131 132 /** 133 * dwarf_read_uleb128 - read unsigned LEB128 data 134 * @addr: the address where the ULEB128 data is stored 135 * @ret: address to store the result 136 * 137 * Decode an unsigned LEB128 encoded datum. The algorithm is taken 138 * from Appendix C of the DWARF 3 spec. For information on the 139 * encodings refer to section "7.6 - Variable Length Data". Return 140 * the number of bytes read. 141 */ 142 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret) 143 { 144 unsigned int result; 145 unsigned char byte; 146 int shift, count; 147 148 result = 0; 149 shift = 0; 150 count = 0; 151 152 while (1) { 153 byte = __raw_readb(addr); 154 addr++; 155 count++; 156 157 result |= (byte & 0x7f) << shift; 158 shift += 7; 159 160 if (!(byte & 0x80)) 161 break; 162 } 163 164 *ret = result; 165 166 return count; 167 } 168 169 /** 170 * dwarf_read_leb128 - read signed LEB128 data 171 * @addr: the address of the LEB128 encoded data 172 * @ret: address to store the result 173 * 174 * Decode signed LEB128 data. The algorithm is taken from Appendix 175 * C of the DWARF 3 spec. Return the number of bytes read. 176 */ 177 static inline unsigned long dwarf_read_leb128(char *addr, int *ret) 178 { 179 unsigned char byte; 180 int result, shift; 181 int num_bits; 182 int count; 183 184 result = 0; 185 shift = 0; 186 count = 0; 187 188 while (1) { 189 byte = __raw_readb(addr); 190 addr++; 191 result |= (byte & 0x7f) << shift; 192 shift += 7; 193 count++; 194 195 if (!(byte & 0x80)) 196 break; 197 } 198 199 /* The number of bits in a signed integer. */ 200 num_bits = 8 * sizeof(result); 201 202 if ((shift < num_bits) && (byte & 0x40)) 203 result |= (-1 << shift); 204 205 *ret = result; 206 207 return count; 208 } 209 210 /** 211 * dwarf_read_encoded_value - return the decoded value at @addr 212 * @addr: the address of the encoded value 213 * @val: where to write the decoded value 214 * @encoding: the encoding with which we can decode @addr 215 * 216 * GCC emits encoded address in the .eh_frame FDE entries. Decode 217 * the value at @addr using @encoding. The decoded value is written 218 * to @val and the number of bytes read is returned. 219 */ 220 static int dwarf_read_encoded_value(char *addr, unsigned long *val, 221 char encoding) 222 { 223 unsigned long decoded_addr = 0; 224 int count = 0; 225 226 switch (encoding & 0x70) { 227 case DW_EH_PE_absptr: 228 break; 229 case DW_EH_PE_pcrel: 230 decoded_addr = (unsigned long)addr; 231 break; 232 default: 233 pr_debug("encoding=0x%x\n", (encoding & 0x70)); 234 UNWINDER_BUG(); 235 } 236 237 if ((encoding & 0x07) == 0x00) 238 encoding |= DW_EH_PE_udata4; 239 240 switch (encoding & 0x0f) { 241 case DW_EH_PE_sdata4: 242 case DW_EH_PE_udata4: 243 count += 4; 244 decoded_addr += get_unaligned((u32 *)addr); 245 __raw_writel(decoded_addr, val); 246 break; 247 default: 248 pr_debug("encoding=0x%x\n", encoding); 249 UNWINDER_BUG(); 250 } 251 252 return count; 253 } 254 255 /** 256 * dwarf_entry_len - return the length of an FDE or CIE 257 * @addr: the address of the entry 258 * @len: the length of the entry 259 * 260 * Read the initial_length field of the entry and store the size of 261 * the entry in @len. We return the number of bytes read. Return a 262 * count of 0 on error. 263 */ 264 static inline int dwarf_entry_len(char *addr, unsigned long *len) 265 { 266 u32 initial_len; 267 int count; 268 269 initial_len = get_unaligned((u32 *)addr); 270 count = 4; 271 272 /* 273 * An initial length field value in the range DW_LEN_EXT_LO - 274 * DW_LEN_EXT_HI indicates an extension, and should not be 275 * interpreted as a length. The only extension that we currently 276 * understand is the use of DWARF64 addresses. 277 */ 278 if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) { 279 /* 280 * The 64-bit length field immediately follows the 281 * compulsory 32-bit length field. 282 */ 283 if (initial_len == DW_EXT_DWARF64) { 284 *len = get_unaligned((u64 *)addr + 4); 285 count = 12; 286 } else { 287 printk(KERN_WARNING "Unknown DWARF extension\n"); 288 count = 0; 289 } 290 } else 291 *len = initial_len; 292 293 return count; 294 } 295 296 /** 297 * dwarf_lookup_cie - locate the cie 298 * @cie_ptr: pointer to help with lookup 299 */ 300 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr) 301 { 302 struct dwarf_cie *cie; 303 unsigned long flags; 304 305 spin_lock_irqsave(&dwarf_cie_lock, flags); 306 307 /* 308 * We've cached the last CIE we looked up because chances are 309 * that the FDE wants this CIE. 310 */ 311 if (cached_cie && cached_cie->cie_pointer == cie_ptr) { 312 cie = cached_cie; 313 goto out; 314 } 315 316 list_for_each_entry(cie, &dwarf_cie_list, link) { 317 if (cie->cie_pointer == cie_ptr) { 318 cached_cie = cie; 319 break; 320 } 321 } 322 323 /* Couldn't find the entry in the list. */ 324 if (&cie->link == &dwarf_cie_list) 325 cie = NULL; 326 out: 327 spin_unlock_irqrestore(&dwarf_cie_lock, flags); 328 return cie; 329 } 330 331 /** 332 * dwarf_lookup_fde - locate the FDE that covers pc 333 * @pc: the program counter 334 */ 335 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc) 336 { 337 struct dwarf_fde *fde; 338 unsigned long flags; 339 340 spin_lock_irqsave(&dwarf_fde_lock, flags); 341 342 list_for_each_entry(fde, &dwarf_fde_list, link) { 343 unsigned long start, end; 344 345 start = fde->initial_location; 346 end = fde->initial_location + fde->address_range; 347 348 if (pc >= start && pc < end) 349 break; 350 } 351 352 /* Couldn't find the entry in the list. */ 353 if (&fde->link == &dwarf_fde_list) 354 fde = NULL; 355 356 spin_unlock_irqrestore(&dwarf_fde_lock, flags); 357 358 return fde; 359 } 360 361 /** 362 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA 363 * @insn_start: address of the first instruction 364 * @insn_end: address of the last instruction 365 * @cie: the CIE for this function 366 * @fde: the FDE for this function 367 * @frame: the instructions calculate the CFA for this frame 368 * @pc: the program counter of the address we're interested in 369 * 370 * Execute the Call Frame instruction sequence starting at 371 * @insn_start and ending at @insn_end. The instructions describe 372 * how to calculate the Canonical Frame Address of a stackframe. 373 * Store the results in @frame. 374 */ 375 static int dwarf_cfa_execute_insns(unsigned char *insn_start, 376 unsigned char *insn_end, 377 struct dwarf_cie *cie, 378 struct dwarf_fde *fde, 379 struct dwarf_frame *frame, 380 unsigned long pc) 381 { 382 unsigned char insn; 383 unsigned char *current_insn; 384 unsigned int count, delta, reg, expr_len, offset; 385 struct dwarf_reg *regp; 386 387 current_insn = insn_start; 388 389 while (current_insn < insn_end && frame->pc <= pc) { 390 insn = __raw_readb(current_insn++); 391 392 /* 393 * Firstly, handle the opcodes that embed their operands 394 * in the instructions. 395 */ 396 switch (DW_CFA_opcode(insn)) { 397 case DW_CFA_advance_loc: 398 delta = DW_CFA_operand(insn); 399 delta *= cie->code_alignment_factor; 400 frame->pc += delta; 401 continue; 402 /* NOTREACHED */ 403 case DW_CFA_offset: 404 reg = DW_CFA_operand(insn); 405 count = dwarf_read_uleb128(current_insn, &offset); 406 current_insn += count; 407 offset *= cie->data_alignment_factor; 408 regp = dwarf_frame_alloc_reg(frame, reg); 409 regp->addr = offset; 410 regp->flags |= DWARF_REG_OFFSET; 411 continue; 412 /* NOTREACHED */ 413 case DW_CFA_restore: 414 reg = DW_CFA_operand(insn); 415 continue; 416 /* NOTREACHED */ 417 } 418 419 /* 420 * Secondly, handle the opcodes that don't embed their 421 * operands in the instruction. 422 */ 423 switch (insn) { 424 case DW_CFA_nop: 425 continue; 426 case DW_CFA_advance_loc1: 427 delta = *current_insn++; 428 frame->pc += delta * cie->code_alignment_factor; 429 break; 430 case DW_CFA_advance_loc2: 431 delta = get_unaligned((u16 *)current_insn); 432 current_insn += 2; 433 frame->pc += delta * cie->code_alignment_factor; 434 break; 435 case DW_CFA_advance_loc4: 436 delta = get_unaligned((u32 *)current_insn); 437 current_insn += 4; 438 frame->pc += delta * cie->code_alignment_factor; 439 break; 440 case DW_CFA_offset_extended: 441 count = dwarf_read_uleb128(current_insn, ®); 442 current_insn += count; 443 count = dwarf_read_uleb128(current_insn, &offset); 444 current_insn += count; 445 offset *= cie->data_alignment_factor; 446 break; 447 case DW_CFA_restore_extended: 448 count = dwarf_read_uleb128(current_insn, ®); 449 current_insn += count; 450 break; 451 case DW_CFA_undefined: 452 count = dwarf_read_uleb128(current_insn, ®); 453 current_insn += count; 454 regp = dwarf_frame_alloc_reg(frame, reg); 455 regp->flags |= DWARF_UNDEFINED; 456 break; 457 case DW_CFA_def_cfa: 458 count = dwarf_read_uleb128(current_insn, 459 &frame->cfa_register); 460 current_insn += count; 461 count = dwarf_read_uleb128(current_insn, 462 &frame->cfa_offset); 463 current_insn += count; 464 465 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET; 466 break; 467 case DW_CFA_def_cfa_register: 468 count = dwarf_read_uleb128(current_insn, 469 &frame->cfa_register); 470 current_insn += count; 471 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET; 472 break; 473 case DW_CFA_def_cfa_offset: 474 count = dwarf_read_uleb128(current_insn, &offset); 475 current_insn += count; 476 frame->cfa_offset = offset; 477 break; 478 case DW_CFA_def_cfa_expression: 479 count = dwarf_read_uleb128(current_insn, &expr_len); 480 current_insn += count; 481 482 frame->cfa_expr = current_insn; 483 frame->cfa_expr_len = expr_len; 484 current_insn += expr_len; 485 486 frame->flags |= DWARF_FRAME_CFA_REG_EXP; 487 break; 488 case DW_CFA_offset_extended_sf: 489 count = dwarf_read_uleb128(current_insn, ®); 490 current_insn += count; 491 count = dwarf_read_leb128(current_insn, &offset); 492 current_insn += count; 493 offset *= cie->data_alignment_factor; 494 regp = dwarf_frame_alloc_reg(frame, reg); 495 regp->flags |= DWARF_REG_OFFSET; 496 regp->addr = offset; 497 break; 498 case DW_CFA_val_offset: 499 count = dwarf_read_uleb128(current_insn, ®); 500 current_insn += count; 501 count = dwarf_read_leb128(current_insn, &offset); 502 offset *= cie->data_alignment_factor; 503 regp = dwarf_frame_alloc_reg(frame, reg); 504 regp->flags |= DWARF_VAL_OFFSET; 505 regp->addr = offset; 506 break; 507 case DW_CFA_GNU_args_size: 508 count = dwarf_read_uleb128(current_insn, &offset); 509 current_insn += count; 510 break; 511 case DW_CFA_GNU_negative_offset_extended: 512 count = dwarf_read_uleb128(current_insn, ®); 513 current_insn += count; 514 count = dwarf_read_uleb128(current_insn, &offset); 515 offset *= cie->data_alignment_factor; 516 517 regp = dwarf_frame_alloc_reg(frame, reg); 518 regp->flags |= DWARF_REG_OFFSET; 519 regp->addr = -offset; 520 break; 521 default: 522 pr_debug("unhandled DWARF instruction 0x%x\n", insn); 523 UNWINDER_BUG(); 524 break; 525 } 526 } 527 528 return 0; 529 } 530 531 /** 532 * dwarf_free_frame - free the memory allocated for @frame 533 * @frame: the frame to free 534 */ 535 void dwarf_free_frame(struct dwarf_frame *frame) 536 { 537 dwarf_frame_free_regs(frame); 538 mempool_free(frame, dwarf_frame_pool); 539 } 540 541 /** 542 * dwarf_unwind_stack - unwind the stack 543 * 544 * @pc: address of the function to unwind 545 * @prev: struct dwarf_frame of the previous stackframe on the callstack 546 * 547 * Return a struct dwarf_frame representing the most recent frame 548 * on the callstack. Each of the lower (older) stack frames are 549 * linked via the "prev" member. 550 */ 551 struct dwarf_frame * dwarf_unwind_stack(unsigned long pc, 552 struct dwarf_frame *prev) 553 { 554 struct dwarf_frame *frame; 555 struct dwarf_cie *cie; 556 struct dwarf_fde *fde; 557 struct dwarf_reg *reg; 558 unsigned long addr; 559 560 /* 561 * If we're starting at the top of the stack we need get the 562 * contents of a physical register to get the CFA in order to 563 * begin the virtual unwinding of the stack. 564 * 565 * NOTE: the return address is guaranteed to be setup by the 566 * time this function makes its first function call. 567 */ 568 if (!pc && !prev) 569 pc = (unsigned long)current_text_addr(); 570 571 frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC); 572 if (!frame) { 573 printk(KERN_ERR "Unable to allocate a dwarf frame\n"); 574 UNWINDER_BUG(); 575 } 576 577 INIT_LIST_HEAD(&frame->reg_list); 578 frame->flags = 0; 579 frame->prev = prev; 580 frame->return_addr = 0; 581 582 fde = dwarf_lookup_fde(pc); 583 if (!fde) { 584 /* 585 * This is our normal exit path. There are two reasons 586 * why we might exit here, 587 * 588 * a) pc has no asscociated DWARF frame info and so 589 * we don't know how to unwind this frame. This is 590 * usually the case when we're trying to unwind a 591 * frame that was called from some assembly code 592 * that has no DWARF info, e.g. syscalls. 593 * 594 * b) the DEBUG info for pc is bogus. There's 595 * really no way to distinguish this case from the 596 * case above, which sucks because we could print a 597 * warning here. 598 */ 599 goto bail; 600 } 601 602 cie = dwarf_lookup_cie(fde->cie_pointer); 603 604 frame->pc = fde->initial_location; 605 606 /* CIE initial instructions */ 607 dwarf_cfa_execute_insns(cie->initial_instructions, 608 cie->instructions_end, cie, fde, 609 frame, pc); 610 611 /* FDE instructions */ 612 dwarf_cfa_execute_insns(fde->instructions, fde->end, cie, 613 fde, frame, pc); 614 615 /* Calculate the CFA */ 616 switch (frame->flags) { 617 case DWARF_FRAME_CFA_REG_OFFSET: 618 if (prev) { 619 reg = dwarf_frame_reg(prev, frame->cfa_register); 620 UNWINDER_BUG_ON(!reg); 621 UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET); 622 623 addr = prev->cfa + reg->addr; 624 frame->cfa = __raw_readl(addr); 625 626 } else { 627 /* 628 * Again, we're starting from the top of the 629 * stack. We need to physically read 630 * the contents of a register in order to get 631 * the Canonical Frame Address for this 632 * function. 633 */ 634 frame->cfa = dwarf_read_arch_reg(frame->cfa_register); 635 } 636 637 frame->cfa += frame->cfa_offset; 638 break; 639 default: 640 UNWINDER_BUG(); 641 } 642 643 reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG); 644 645 /* 646 * If we haven't seen the return address register or the return 647 * address column is undefined then we must assume that this is 648 * the end of the callstack. 649 */ 650 if (!reg || reg->flags == DWARF_UNDEFINED) 651 goto bail; 652 653 UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET); 654 655 addr = frame->cfa + reg->addr; 656 frame->return_addr = __raw_readl(addr); 657 658 return frame; 659 660 bail: 661 dwarf_free_frame(frame); 662 return NULL; 663 } 664 665 static int dwarf_parse_cie(void *entry, void *p, unsigned long len, 666 unsigned char *end, struct module *mod) 667 { 668 struct dwarf_cie *cie; 669 unsigned long flags; 670 int count; 671 672 cie = kzalloc(sizeof(*cie), GFP_KERNEL); 673 if (!cie) 674 return -ENOMEM; 675 676 cie->length = len; 677 678 /* 679 * Record the offset into the .eh_frame section 680 * for this CIE. It allows this CIE to be 681 * quickly and easily looked up from the 682 * corresponding FDE. 683 */ 684 cie->cie_pointer = (unsigned long)entry; 685 686 cie->version = *(char *)p++; 687 UNWINDER_BUG_ON(cie->version != 1); 688 689 cie->augmentation = p; 690 p += strlen(cie->augmentation) + 1; 691 692 count = dwarf_read_uleb128(p, &cie->code_alignment_factor); 693 p += count; 694 695 count = dwarf_read_leb128(p, &cie->data_alignment_factor); 696 p += count; 697 698 /* 699 * Which column in the rule table contains the 700 * return address? 701 */ 702 if (cie->version == 1) { 703 cie->return_address_reg = __raw_readb(p); 704 p++; 705 } else { 706 count = dwarf_read_uleb128(p, &cie->return_address_reg); 707 p += count; 708 } 709 710 if (cie->augmentation[0] == 'z') { 711 unsigned int length, count; 712 cie->flags |= DWARF_CIE_Z_AUGMENTATION; 713 714 count = dwarf_read_uleb128(p, &length); 715 p += count; 716 717 UNWINDER_BUG_ON((unsigned char *)p > end); 718 719 cie->initial_instructions = p + length; 720 cie->augmentation++; 721 } 722 723 while (*cie->augmentation) { 724 /* 725 * "L" indicates a byte showing how the 726 * LSDA pointer is encoded. Skip it. 727 */ 728 if (*cie->augmentation == 'L') { 729 p++; 730 cie->augmentation++; 731 } else if (*cie->augmentation == 'R') { 732 /* 733 * "R" indicates a byte showing 734 * how FDE addresses are 735 * encoded. 736 */ 737 cie->encoding = *(char *)p++; 738 cie->augmentation++; 739 } else if (*cie->augmentation == 'P') { 740 /* 741 * "R" indicates a personality 742 * routine in the CIE 743 * augmentation. 744 */ 745 UNWINDER_BUG(); 746 } else if (*cie->augmentation == 'S') { 747 UNWINDER_BUG(); 748 } else { 749 /* 750 * Unknown augmentation. Assume 751 * 'z' augmentation. 752 */ 753 p = cie->initial_instructions; 754 UNWINDER_BUG_ON(!p); 755 break; 756 } 757 } 758 759 cie->initial_instructions = p; 760 cie->instructions_end = end; 761 762 cie->mod = mod; 763 764 /* Add to list */ 765 spin_lock_irqsave(&dwarf_cie_lock, flags); 766 list_add_tail(&cie->link, &dwarf_cie_list); 767 spin_unlock_irqrestore(&dwarf_cie_lock, flags); 768 769 return 0; 770 } 771 772 static int dwarf_parse_fde(void *entry, u32 entry_type, 773 void *start, unsigned long len, 774 unsigned char *end, struct module *mod) 775 { 776 struct dwarf_fde *fde; 777 struct dwarf_cie *cie; 778 unsigned long flags; 779 int count; 780 void *p = start; 781 782 fde = kzalloc(sizeof(*fde), GFP_KERNEL); 783 if (!fde) 784 return -ENOMEM; 785 786 fde->length = len; 787 788 /* 789 * In a .eh_frame section the CIE pointer is the 790 * delta between the address within the FDE 791 */ 792 fde->cie_pointer = (unsigned long)(p - entry_type - 4); 793 794 cie = dwarf_lookup_cie(fde->cie_pointer); 795 fde->cie = cie; 796 797 if (cie->encoding) 798 count = dwarf_read_encoded_value(p, &fde->initial_location, 799 cie->encoding); 800 else 801 count = dwarf_read_addr(p, &fde->initial_location); 802 803 p += count; 804 805 if (cie->encoding) 806 count = dwarf_read_encoded_value(p, &fde->address_range, 807 cie->encoding & 0x0f); 808 else 809 count = dwarf_read_addr(p, &fde->address_range); 810 811 p += count; 812 813 if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) { 814 unsigned int length; 815 count = dwarf_read_uleb128(p, &length); 816 p += count + length; 817 } 818 819 /* Call frame instructions. */ 820 fde->instructions = p; 821 fde->end = end; 822 823 fde->mod = mod; 824 825 /* Add to list. */ 826 spin_lock_irqsave(&dwarf_fde_lock, flags); 827 list_add_tail(&fde->link, &dwarf_fde_list); 828 spin_unlock_irqrestore(&dwarf_fde_lock, flags); 829 830 return 0; 831 } 832 833 static void dwarf_unwinder_dump(struct task_struct *task, 834 struct pt_regs *regs, 835 unsigned long *sp, 836 const struct stacktrace_ops *ops, 837 void *data) 838 { 839 struct dwarf_frame *frame, *_frame; 840 unsigned long return_addr; 841 842 _frame = NULL; 843 return_addr = 0; 844 845 while (1) { 846 frame = dwarf_unwind_stack(return_addr, _frame); 847 848 if (_frame) 849 dwarf_free_frame(_frame); 850 851 _frame = frame; 852 853 if (!frame || !frame->return_addr) 854 break; 855 856 return_addr = frame->return_addr; 857 ops->address(data, return_addr, 1); 858 } 859 860 if (frame) 861 dwarf_free_frame(frame); 862 } 863 864 static struct unwinder dwarf_unwinder = { 865 .name = "dwarf-unwinder", 866 .dump = dwarf_unwinder_dump, 867 .rating = 150, 868 }; 869 870 static void dwarf_unwinder_cleanup(void) 871 { 872 struct dwarf_cie *cie; 873 struct dwarf_fde *fde; 874 875 /* 876 * Deallocate all the memory allocated for the DWARF unwinder. 877 * Traverse all the FDE/CIE lists and remove and free all the 878 * memory associated with those data structures. 879 */ 880 list_for_each_entry(cie, &dwarf_cie_list, link) 881 kfree(cie); 882 883 list_for_each_entry(fde, &dwarf_fde_list, link) 884 kfree(fde); 885 886 kmem_cache_destroy(dwarf_reg_cachep); 887 kmem_cache_destroy(dwarf_frame_cachep); 888 } 889 890 /** 891 * dwarf_parse_section - parse DWARF section 892 * @eh_frame_start: start address of the .eh_frame section 893 * @eh_frame_end: end address of the .eh_frame section 894 * @mod: the kernel module containing the .eh_frame section 895 * 896 * Parse the information in a .eh_frame section. 897 */ 898 int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end, 899 struct module *mod) 900 { 901 u32 entry_type; 902 void *p, *entry; 903 int count, err = 0; 904 unsigned long len; 905 unsigned int c_entries, f_entries; 906 unsigned char *end; 907 908 c_entries = 0; 909 f_entries = 0; 910 entry = eh_frame_start; 911 912 while ((char *)entry < eh_frame_end) { 913 p = entry; 914 915 count = dwarf_entry_len(p, &len); 916 if (count == 0) { 917 /* 918 * We read a bogus length field value. There is 919 * nothing we can do here apart from disabling 920 * the DWARF unwinder. We can't even skip this 921 * entry and move to the next one because 'len' 922 * tells us where our next entry is. 923 */ 924 err = -EINVAL; 925 goto out; 926 } else 927 p += count; 928 929 /* initial length does not include itself */ 930 end = p + len; 931 932 entry_type = get_unaligned((u32 *)p); 933 p += 4; 934 935 if (entry_type == DW_EH_FRAME_CIE) { 936 err = dwarf_parse_cie(entry, p, len, end, mod); 937 if (err < 0) 938 goto out; 939 else 940 c_entries++; 941 } else { 942 err = dwarf_parse_fde(entry, entry_type, p, len, 943 end, mod); 944 if (err < 0) 945 goto out; 946 else 947 f_entries++; 948 } 949 950 entry = (char *)entry + len + 4; 951 } 952 953 printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n", 954 c_entries, f_entries); 955 956 return 0; 957 958 out: 959 return err; 960 } 961 962 /** 963 * dwarf_module_unload - remove FDE/CIEs associated with @mod 964 * @mod: the module that is being unloaded 965 * 966 * Remove any FDEs and CIEs from the global lists that came from 967 * @mod's .eh_frame section because @mod is being unloaded. 968 */ 969 void dwarf_module_unload(struct module *mod) 970 { 971 struct dwarf_fde *fde; 972 struct dwarf_cie *cie; 973 unsigned long flags; 974 975 spin_lock_irqsave(&dwarf_cie_lock, flags); 976 977 again_cie: 978 list_for_each_entry(cie, &dwarf_cie_list, link) { 979 if (cie->mod == mod) 980 break; 981 } 982 983 if (&cie->link != &dwarf_cie_list) { 984 list_del(&cie->link); 985 kfree(cie); 986 goto again_cie; 987 } 988 989 spin_unlock_irqrestore(&dwarf_cie_lock, flags); 990 991 spin_lock_irqsave(&dwarf_fde_lock, flags); 992 993 again_fde: 994 list_for_each_entry(fde, &dwarf_fde_list, link) { 995 if (fde->mod == mod) 996 break; 997 } 998 999 if (&fde->link != &dwarf_fde_list) { 1000 list_del(&fde->link); 1001 kfree(fde); 1002 goto again_fde; 1003 } 1004 1005 spin_unlock_irqrestore(&dwarf_fde_lock, flags); 1006 } 1007 1008 /** 1009 * dwarf_unwinder_init - initialise the dwarf unwinder 1010 * 1011 * Build the data structures describing the .dwarf_frame section to 1012 * make it easier to lookup CIE and FDE entries. Because the 1013 * .eh_frame section is packed as tightly as possible it is not 1014 * easy to lookup the FDE for a given PC, so we build a list of FDE 1015 * and CIE entries that make it easier. 1016 */ 1017 static int __init dwarf_unwinder_init(void) 1018 { 1019 int err; 1020 INIT_LIST_HEAD(&dwarf_cie_list); 1021 INIT_LIST_HEAD(&dwarf_fde_list); 1022 1023 dwarf_frame_cachep = kmem_cache_create("dwarf_frames", 1024 sizeof(struct dwarf_frame), 0, 1025 SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL); 1026 1027 dwarf_reg_cachep = kmem_cache_create("dwarf_regs", 1028 sizeof(struct dwarf_reg), 0, 1029 SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL); 1030 1031 dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ, 1032 mempool_alloc_slab, 1033 mempool_free_slab, 1034 dwarf_frame_cachep); 1035 1036 dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ, 1037 mempool_alloc_slab, 1038 mempool_free_slab, 1039 dwarf_reg_cachep); 1040 1041 err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL); 1042 if (err) 1043 goto out; 1044 1045 err = unwinder_register(&dwarf_unwinder); 1046 if (err) 1047 goto out; 1048 1049 return 0; 1050 1051 out: 1052 printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err); 1053 dwarf_unwinder_cleanup(); 1054 return -EINVAL; 1055 } 1056 early_initcall(dwarf_unwinder_init); 1057