xref: /linux/arch/sh/kernel/cpu/init.c (revision a17627ef8833ac30622a7b39b7be390e1b174405)
1 /*
2  * arch/sh/kernel/cpu/init.c
3  *
4  * CPU init code
5  *
6  * Copyright (C) 2002 - 2007  Paul Mundt
7  * Copyright (C) 2003  Richard Curnow
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <asm/mmu_context.h>
17 #include <asm/processor.h>
18 #include <asm/uaccess.h>
19 #include <asm/page.h>
20 #include <asm/system.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cache.h>
23 #include <asm/io.h>
24 
25 extern void detect_cpu_and_cache_system(void);
26 
27 /*
28  * Generic wrapper for command line arguments to disable on-chip
29  * peripherals (nofpu, nodsp, and so forth).
30  */
31 #define onchip_setup(x)				\
32 static int x##_disabled __initdata = 0;		\
33 						\
34 static int __init x##_setup(char *opts)		\
35 {						\
36 	x##_disabled = 1;			\
37 	return 1;				\
38 }						\
39 __setup("no" __stringify(x), x##_setup);
40 
41 onchip_setup(fpu);
42 onchip_setup(dsp);
43 
44 #ifdef CONFIG_SPECULATIVE_EXECUTION
45 #define CPUOPM		0xff2f0000
46 #define CPUOPM_RABD	(1 << 5)
47 
48 static void __init speculative_execution_init(void)
49 {
50 	/* Clear RABD */
51 	ctrl_outl(ctrl_inl(CPUOPM) & ~CPUOPM_RABD, CPUOPM);
52 
53 	/* Flush the update */
54 	(void)ctrl_inl(CPUOPM);
55 	ctrl_barrier();
56 }
57 #else
58 #define speculative_execution_init()	do { } while (0)
59 #endif
60 
61 /*
62  * Generic first-level cache init
63  */
64 static void __init cache_init(void)
65 {
66 	unsigned long ccr, flags;
67 
68 	/* First setup the rest of the I-cache info */
69 	current_cpu_data.icache.entry_mask = current_cpu_data.icache.way_incr -
70 				      current_cpu_data.icache.linesz;
71 
72 	current_cpu_data.icache.way_size = current_cpu_data.icache.sets *
73 				    current_cpu_data.icache.linesz;
74 
75 	/* And the D-cache too */
76 	current_cpu_data.dcache.entry_mask = current_cpu_data.dcache.way_incr -
77 				      current_cpu_data.dcache.linesz;
78 
79 	current_cpu_data.dcache.way_size = current_cpu_data.dcache.sets *
80 				    current_cpu_data.dcache.linesz;
81 
82 	jump_to_P2();
83 	ccr = ctrl_inl(CCR);
84 
85 	/*
86 	 * At this point we don't know whether the cache is enabled or not - a
87 	 * bootloader may have enabled it.  There are at least 2 things that
88 	 * could be dirty in the cache at this point:
89 	 * 1. kernel command line set up by boot loader
90 	 * 2. spilled registers from the prolog of this function
91 	 * => before re-initialising the cache, we must do a purge of the whole
92 	 * cache out to memory for safety.  As long as nothing is spilled
93 	 * during the loop to lines that have already been done, this is safe.
94 	 * - RPC
95 	 */
96 	if (ccr & CCR_CACHE_ENABLE) {
97 		unsigned long ways, waysize, addrstart;
98 
99 		waysize = current_cpu_data.dcache.sets;
100 
101 #ifdef CCR_CACHE_ORA
102 		/*
103 		 * If the OC is already in RAM mode, we only have
104 		 * half of the entries to flush..
105 		 */
106 		if (ccr & CCR_CACHE_ORA)
107 			waysize >>= 1;
108 #endif
109 
110 		waysize <<= current_cpu_data.dcache.entry_shift;
111 
112 #ifdef CCR_CACHE_EMODE
113 		/* If EMODE is not set, we only have 1 way to flush. */
114 		if (!(ccr & CCR_CACHE_EMODE))
115 			ways = 1;
116 		else
117 #endif
118 			ways = current_cpu_data.dcache.ways;
119 
120 		addrstart = CACHE_OC_ADDRESS_ARRAY;
121 		do {
122 			unsigned long addr;
123 
124 			for (addr = addrstart;
125 			     addr < addrstart + waysize;
126 			     addr += current_cpu_data.dcache.linesz)
127 				ctrl_outl(0, addr);
128 
129 			addrstart += current_cpu_data.dcache.way_incr;
130 		} while (--ways);
131 	}
132 
133 	/*
134 	 * Default CCR values .. enable the caches
135 	 * and invalidate them immediately..
136 	 */
137 	flags = CCR_CACHE_ENABLE | CCR_CACHE_INVALIDATE;
138 
139 #ifdef CCR_CACHE_EMODE
140 	/* Force EMODE if possible */
141 	if (current_cpu_data.dcache.ways > 1)
142 		flags |= CCR_CACHE_EMODE;
143 	else
144 		flags &= ~CCR_CACHE_EMODE;
145 #endif
146 
147 #ifdef CONFIG_SH_WRITETHROUGH
148 	/* Turn on Write-through caching */
149 	flags |= CCR_CACHE_WT;
150 #else
151 	/* .. or default to Write-back */
152 	flags |= CCR_CACHE_CB;
153 #endif
154 
155 #ifdef CONFIG_SH_OCRAM
156 	/* Turn on OCRAM -- halve the OC */
157 	flags |= CCR_CACHE_ORA;
158 	current_cpu_data.dcache.sets >>= 1;
159 
160 	current_cpu_data.dcache.way_size = current_cpu_data.dcache.sets *
161 				    current_cpu_data.dcache.linesz;
162 #endif
163 
164 	ctrl_outl(flags, CCR);
165 	back_to_P1();
166 }
167 
168 #ifdef CONFIG_SH_DSP
169 static void __init release_dsp(void)
170 {
171 	unsigned long sr;
172 
173 	/* Clear SR.DSP bit */
174 	__asm__ __volatile__ (
175 		"stc\tsr, %0\n\t"
176 		"and\t%1, %0\n\t"
177 		"ldc\t%0, sr\n\t"
178 		: "=&r" (sr)
179 		: "r" (~SR_DSP)
180 	);
181 }
182 
183 static void __init dsp_init(void)
184 {
185 	unsigned long sr;
186 
187 	/*
188 	 * Set the SR.DSP bit, wait for one instruction, and then read
189 	 * back the SR value.
190 	 */
191 	__asm__ __volatile__ (
192 		"stc\tsr, %0\n\t"
193 		"or\t%1, %0\n\t"
194 		"ldc\t%0, sr\n\t"
195 		"nop\n\t"
196 		"stc\tsr, %0\n\t"
197 		: "=&r" (sr)
198 		: "r" (SR_DSP)
199 	);
200 
201 	/* If the DSP bit is still set, this CPU has a DSP */
202 	if (sr & SR_DSP)
203 		current_cpu_data.flags |= CPU_HAS_DSP;
204 
205 	/* Now that we've determined the DSP status, clear the DSP bit. */
206 	release_dsp();
207 }
208 #endif /* CONFIG_SH_DSP */
209 
210 /**
211  * sh_cpu_init
212  *
213  * This is our initial entry point for each CPU, and is invoked on the boot
214  * CPU prior to calling start_kernel(). For SMP, a combination of this and
215  * start_secondary() will bring up each processor to a ready state prior
216  * to hand forking the idle loop.
217  *
218  * We do all of the basic processor init here, including setting up the
219  * caches, FPU, DSP, kicking the UBC, etc. By the time start_kernel() is
220  * hit (and subsequently platform_setup()) things like determining the
221  * CPU subtype and initial configuration will all be done.
222  *
223  * Each processor family is still responsible for doing its own probing
224  * and cache configuration in detect_cpu_and_cache_system().
225  */
226 asmlinkage void __init sh_cpu_init(void)
227 {
228 	/* First, probe the CPU */
229 	detect_cpu_and_cache_system();
230 
231 	if (current_cpu_data.type == CPU_SH_NONE)
232 		panic("Unknown CPU");
233 
234 	/* Init the cache */
235 	cache_init();
236 
237 	shm_align_mask = max_t(unsigned long,
238 			       current_cpu_data.dcache.way_size - 1,
239 			       PAGE_SIZE - 1);
240 
241 	/* Disable the FPU */
242 	if (fpu_disabled) {
243 		printk("FPU Disabled\n");
244 		current_cpu_data.flags &= ~CPU_HAS_FPU;
245 		disable_fpu();
246 	}
247 
248 	/* FPU initialization */
249 	if ((current_cpu_data.flags & CPU_HAS_FPU)) {
250 		clear_thread_flag(TIF_USEDFPU);
251 		clear_used_math();
252 	}
253 
254 	/*
255 	 * Initialize the per-CPU ASID cache very early, since the
256 	 * TLB flushing routines depend on this being setup.
257 	 */
258 	current_cpu_data.asid_cache = NO_CONTEXT;
259 
260 #ifdef CONFIG_SH_DSP
261 	/* Probe for DSP */
262 	dsp_init();
263 
264 	/* Disable the DSP */
265 	if (dsp_disabled) {
266 		printk("DSP Disabled\n");
267 		current_cpu_data.flags &= ~CPU_HAS_DSP;
268 		release_dsp();
269 	}
270 #endif
271 
272 #ifdef CONFIG_UBC_WAKEUP
273 	/*
274 	 * Some brain-damaged loaders decided it would be a good idea to put
275 	 * the UBC to sleep. This causes some issues when it comes to things
276 	 * like PTRACE_SINGLESTEP or doing hardware watchpoints in GDB.  So ..
277 	 * we wake it up and hope that all is well.
278 	 */
279 	ubc_wakeup();
280 #endif
281 
282 	speculative_execution_init();
283 }
284