xref: /linux/arch/sh/kernel/cpu/init.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sh/kernel/cpu/init.c
4  *
5  * CPU init code
6  *
7  * Copyright (C) 2002 - 2009  Paul Mundt
8  * Copyright (C) 2003  Richard Curnow
9  */
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/log2.h>
14 #include <asm/mmu_context.h>
15 #include <asm/processor.h>
16 #include <linux/uaccess.h>
17 #include <asm/page.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cache.h>
20 #include <asm/elf.h>
21 #include <asm/io.h>
22 #include <asm/smp.h>
23 #include <asm/sh_bios.h>
24 #include <asm/setup.h>
25 
26 #ifdef CONFIG_SH_FPU
27 #define cpu_has_fpu	1
28 #else
29 #define cpu_has_fpu	0
30 #endif
31 
32 #ifdef CONFIG_SH_DSP
33 #define cpu_has_dsp	1
34 #else
35 #define cpu_has_dsp	0
36 #endif
37 
38 /*
39  * Generic wrapper for command line arguments to disable on-chip
40  * peripherals (nofpu, nodsp, and so forth).
41  */
42 #define onchip_setup(x)					\
43 static int x##_disabled = !cpu_has_##x;			\
44 							\
45 static int x##_setup(char *opts)			\
46 {							\
47 	x##_disabled = 1;				\
48 	return 1;					\
49 }							\
50 __setup("no" __stringify(x), x##_setup);
51 
52 onchip_setup(fpu);
53 onchip_setup(dsp);
54 
55 #ifdef CONFIG_SPECULATIVE_EXECUTION
56 #define CPUOPM		0xff2f0000
57 #define CPUOPM_RABD	(1 << 5)
58 
59 static void speculative_execution_init(void)
60 {
61 	/* Clear RABD */
62 	__raw_writel(__raw_readl(CPUOPM) & ~CPUOPM_RABD, CPUOPM);
63 
64 	/* Flush the update */
65 	(void)__raw_readl(CPUOPM);
66 	ctrl_barrier();
67 }
68 #else
69 #define speculative_execution_init()	do { } while (0)
70 #endif
71 
72 #ifdef CONFIG_CPU_SH4A
73 #define EXPMASK			0xff2f0004
74 #define EXPMASK_RTEDS		(1 << 0)
75 #define EXPMASK_BRDSSLP		(1 << 1)
76 #define EXPMASK_MMCAW		(1 << 4)
77 
78 static void expmask_init(void)
79 {
80 	unsigned long expmask = __raw_readl(EXPMASK);
81 
82 	/*
83 	 * Future proofing.
84 	 *
85 	 * Disable support for slottable sleep instruction, non-nop
86 	 * instructions in the rte delay slot, and associative writes to
87 	 * the memory-mapped cache array.
88 	 */
89 	expmask &= ~(EXPMASK_RTEDS | EXPMASK_BRDSSLP | EXPMASK_MMCAW);
90 
91 	__raw_writel(expmask, EXPMASK);
92 	ctrl_barrier();
93 }
94 #else
95 #define expmask_init()	do { } while (0)
96 #endif
97 
98 /* 2nd-level cache init */
99 void __attribute__ ((weak)) l2_cache_init(void)
100 {
101 }
102 
103 /*
104  * Generic first-level cache init
105  */
106 #if !defined(CONFIG_CPU_J2)
107 static void cache_init(void)
108 {
109 	unsigned long ccr, flags;
110 
111 	jump_to_uncached();
112 	ccr = __raw_readl(SH_CCR);
113 
114 	/*
115 	 * At this point we don't know whether the cache is enabled or not - a
116 	 * bootloader may have enabled it.  There are at least 2 things that
117 	 * could be dirty in the cache at this point:
118 	 * 1. kernel command line set up by boot loader
119 	 * 2. spilled registers from the prolog of this function
120 	 * => before re-initialising the cache, we must do a purge of the whole
121 	 * cache out to memory for safety.  As long as nothing is spilled
122 	 * during the loop to lines that have already been done, this is safe.
123 	 * - RPC
124 	 */
125 	if (ccr & CCR_CACHE_ENABLE) {
126 		unsigned long ways, waysize, addrstart;
127 
128 		waysize = current_cpu_data.dcache.sets;
129 
130 #ifdef CCR_CACHE_ORA
131 		/*
132 		 * If the OC is already in RAM mode, we only have
133 		 * half of the entries to flush..
134 		 */
135 		if (ccr & CCR_CACHE_ORA)
136 			waysize >>= 1;
137 #endif
138 
139 		waysize <<= current_cpu_data.dcache.entry_shift;
140 
141 #ifdef CCR_CACHE_EMODE
142 		/* If EMODE is not set, we only have 1 way to flush. */
143 		if (!(ccr & CCR_CACHE_EMODE))
144 			ways = 1;
145 		else
146 #endif
147 			ways = current_cpu_data.dcache.ways;
148 
149 		addrstart = CACHE_OC_ADDRESS_ARRAY;
150 		do {
151 			unsigned long addr;
152 
153 			for (addr = addrstart;
154 			     addr < addrstart + waysize;
155 			     addr += current_cpu_data.dcache.linesz)
156 				__raw_writel(0, addr);
157 
158 			addrstart += current_cpu_data.dcache.way_incr;
159 		} while (--ways);
160 	}
161 
162 	/*
163 	 * Default CCR values .. enable the caches
164 	 * and invalidate them immediately..
165 	 */
166 	flags = CCR_CACHE_ENABLE | CCR_CACHE_INVALIDATE;
167 
168 #ifdef CCR_CACHE_EMODE
169 	/* Force EMODE if possible */
170 	if (current_cpu_data.dcache.ways > 1)
171 		flags |= CCR_CACHE_EMODE;
172 	else
173 		flags &= ~CCR_CACHE_EMODE;
174 #endif
175 
176 #if defined(CONFIG_CACHE_WRITETHROUGH)
177 	/* Write-through */
178 	flags |= CCR_CACHE_WT;
179 #elif defined(CONFIG_CACHE_WRITEBACK)
180 	/* Write-back */
181 	flags |= CCR_CACHE_CB;
182 #else
183 	/* Off */
184 	flags &= ~CCR_CACHE_ENABLE;
185 #endif
186 
187 	l2_cache_init();
188 
189 	__raw_writel(flags, SH_CCR);
190 	back_to_cached();
191 }
192 #else
193 #define cache_init()	do { } while (0)
194 #endif
195 
196 #define CSHAPE(totalsize, linesize, assoc) \
197 	((totalsize & ~0xff) | (linesize << 4) | assoc)
198 
199 #define CACHE_DESC_SHAPE(desc)	\
200 	CSHAPE((desc).way_size * (desc).ways, ilog2((desc).linesz), (desc).ways)
201 
202 static void detect_cache_shape(void)
203 {
204 	l1d_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.dcache);
205 
206 	if (current_cpu_data.dcache.flags & SH_CACHE_COMBINED)
207 		l1i_cache_shape = l1d_cache_shape;
208 	else
209 		l1i_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.icache);
210 
211 	if (current_cpu_data.flags & CPU_HAS_L2_CACHE)
212 		l2_cache_shape = CACHE_DESC_SHAPE(current_cpu_data.scache);
213 	else
214 		l2_cache_shape = -1; /* No S-cache */
215 }
216 
217 static void fpu_init(void)
218 {
219 	/* Disable the FPU */
220 	if (fpu_disabled && (current_cpu_data.flags & CPU_HAS_FPU)) {
221 		printk("FPU Disabled\n");
222 		current_cpu_data.flags &= ~CPU_HAS_FPU;
223 	}
224 
225 	disable_fpu();
226 	clear_used_math();
227 }
228 
229 #ifdef CONFIG_SH_DSP
230 static void release_dsp(void)
231 {
232 	unsigned long sr;
233 
234 	/* Clear SR.DSP bit */
235 	__asm__ __volatile__ (
236 		"stc\tsr, %0\n\t"
237 		"and\t%1, %0\n\t"
238 		"ldc\t%0, sr\n\t"
239 		: "=&r" (sr)
240 		: "r" (~SR_DSP)
241 	);
242 }
243 
244 static void dsp_init(void)
245 {
246 	unsigned long sr;
247 
248 	/*
249 	 * Set the SR.DSP bit, wait for one instruction, and then read
250 	 * back the SR value.
251 	 */
252 	__asm__ __volatile__ (
253 		"stc\tsr, %0\n\t"
254 		"or\t%1, %0\n\t"
255 		"ldc\t%0, sr\n\t"
256 		"nop\n\t"
257 		"stc\tsr, %0\n\t"
258 		: "=&r" (sr)
259 		: "r" (SR_DSP)
260 	);
261 
262 	/* If the DSP bit is still set, this CPU has a DSP */
263 	if (sr & SR_DSP)
264 		current_cpu_data.flags |= CPU_HAS_DSP;
265 
266 	/* Disable the DSP */
267 	if (dsp_disabled && (current_cpu_data.flags & CPU_HAS_DSP)) {
268 		printk("DSP Disabled\n");
269 		current_cpu_data.flags &= ~CPU_HAS_DSP;
270 	}
271 
272 	/* Now that we've determined the DSP status, clear the DSP bit. */
273 	release_dsp();
274 }
275 #else
276 static inline void dsp_init(void) { }
277 #endif /* CONFIG_SH_DSP */
278 
279 /**
280  * cpu_init
281  *
282  * This is our initial entry point for each CPU, and is invoked on the
283  * boot CPU prior to calling start_kernel(). For SMP, a combination of
284  * this and start_secondary() will bring up each processor to a ready
285  * state prior to hand forking the idle loop.
286  *
287  * We do all of the basic processor init here, including setting up
288  * the caches, FPU, DSP, etc. By the time start_kernel() is hit (and
289  * subsequently platform_setup()) things like determining the CPU
290  * subtype and initial configuration will all be done.
291  *
292  * Each processor family is still responsible for doing its own probing
293  * and cache configuration in cpu_probe().
294  */
295 asmlinkage void cpu_init(void)
296 {
297 	current_thread_info()->cpu = hard_smp_processor_id();
298 
299 	/* First, probe the CPU */
300 	cpu_probe();
301 
302 	if (current_cpu_data.type == CPU_SH_NONE)
303 		panic("Unknown CPU");
304 
305 	/* First setup the rest of the I-cache info */
306 	current_cpu_data.icache.entry_mask = current_cpu_data.icache.way_incr -
307 				      current_cpu_data.icache.linesz;
308 
309 	current_cpu_data.icache.way_size = current_cpu_data.icache.sets *
310 				    current_cpu_data.icache.linesz;
311 
312 	/* And the D-cache too */
313 	current_cpu_data.dcache.entry_mask = current_cpu_data.dcache.way_incr -
314 				      current_cpu_data.dcache.linesz;
315 
316 	current_cpu_data.dcache.way_size = current_cpu_data.dcache.sets *
317 				    current_cpu_data.dcache.linesz;
318 
319 	/* Init the cache */
320 	cache_init();
321 
322 	if (raw_smp_processor_id() == 0) {
323 #ifdef CONFIG_MMU
324 		shm_align_mask = max_t(unsigned long,
325 				       current_cpu_data.dcache.way_size - 1,
326 				       PAGE_SIZE - 1);
327 #else
328 		shm_align_mask = PAGE_SIZE - 1;
329 #endif
330 
331 		/* Boot CPU sets the cache shape */
332 		detect_cache_shape();
333 	}
334 
335 	fpu_init();
336 	dsp_init();
337 
338 	/*
339 	 * Initialize the per-CPU ASID cache very early, since the
340 	 * TLB flushing routines depend on this being setup.
341 	 */
342 	current_cpu_data.asid_cache = NO_CONTEXT;
343 
344 	current_cpu_data.phys_bits = __in_29bit_mode() ? 29 : 32;
345 
346 	speculative_execution_init();
347 	expmask_init();
348 
349 	/* Do the rest of the boot processor setup */
350 	if (raw_smp_processor_id() == 0) {
351 		/* Save off the BIOS VBR, if there is one */
352 		sh_bios_vbr_init();
353 
354 		/*
355 		 * Setup VBR for boot CPU. Secondary CPUs do this through
356 		 * start_secondary().
357 		 */
358 		per_cpu_trap_init();
359 
360 		/*
361 		 * Boot processor to setup the FP and extended state
362 		 * context info.
363 		 */
364 		init_thread_xstate();
365 	}
366 }
367