1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __ASM_SH_IO_H 3 #define __ASM_SH_IO_H 4 5 /* 6 * Convention: 7 * read{b,w,l,q}/write{b,w,l,q} are for PCI, 8 * while in{b,w,l}/out{b,w,l} are for ISA 9 * 10 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p 11 * and 'string' versions: ins{b,w,l}/outs{b,w,l} 12 * 13 * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers 14 * automatically, there are also __raw versions, which do not. 15 */ 16 #include <linux/errno.h> 17 #include <asm/cache.h> 18 #include <asm/addrspace.h> 19 #include <asm/machvec.h> 20 #include <asm/pgtable.h> 21 #include <asm-generic/iomap.h> 22 23 #ifdef __KERNEL__ 24 #define __IO_PREFIX generic 25 #include <asm/io_generic.h> 26 #include <asm/io_trapped.h> 27 #include <asm-generic/pci_iomap.h> 28 #include <mach/mangle-port.h> 29 30 #define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v)) 31 #define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v)) 32 #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v)) 33 #define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v)) 34 35 #define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a)) 36 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a)) 37 #define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a)) 38 #define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a)) 39 40 #define readb_relaxed(c) ({ u8 __v = ioswabb(__raw_readb(c)); __v; }) 41 #define readw_relaxed(c) ({ u16 __v = ioswabw(__raw_readw(c)); __v; }) 42 #define readl_relaxed(c) ({ u32 __v = ioswabl(__raw_readl(c)); __v; }) 43 #define readq_relaxed(c) ({ u64 __v = ioswabq(__raw_readq(c)); __v; }) 44 45 #define writeb_relaxed(v,c) ((void)__raw_writeb((__force u8)ioswabb(v),c)) 46 #define writew_relaxed(v,c) ((void)__raw_writew((__force u16)ioswabw(v),c)) 47 #define writel_relaxed(v,c) ((void)__raw_writel((__force u32)ioswabl(v),c)) 48 #define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)ioswabq(v),c)) 49 50 #define readb(a) ({ u8 r_ = readb_relaxed(a); rmb(); r_; }) 51 #define readw(a) ({ u16 r_ = readw_relaxed(a); rmb(); r_; }) 52 #define readl(a) ({ u32 r_ = readl_relaxed(a); rmb(); r_; }) 53 #define readq(a) ({ u64 r_ = readq_relaxed(a); rmb(); r_; }) 54 55 #define writeb(v,a) ({ wmb(); writeb_relaxed((v),(a)); }) 56 #define writew(v,a) ({ wmb(); writew_relaxed((v),(a)); }) 57 #define writel(v,a) ({ wmb(); writel_relaxed((v),(a)); }) 58 #define writeq(v,a) ({ wmb(); writeq_relaxed((v),(a)); }) 59 60 #define readsb(p,d,l) __raw_readsb(p,d,l) 61 #define readsw(p,d,l) __raw_readsw(p,d,l) 62 #define readsl(p,d,l) __raw_readsl(p,d,l) 63 64 #define writesb(p,d,l) __raw_writesb(p,d,l) 65 #define writesw(p,d,l) __raw_writesw(p,d,l) 66 #define writesl(p,d,l) __raw_writesl(p,d,l) 67 68 #define __BUILD_UNCACHED_IO(bwlq, type) \ 69 static inline type read##bwlq##_uncached(unsigned long addr) \ 70 { \ 71 type ret; \ 72 jump_to_uncached(); \ 73 ret = __raw_read##bwlq(addr); \ 74 back_to_cached(); \ 75 return ret; \ 76 } \ 77 \ 78 static inline void write##bwlq##_uncached(type v, unsigned long addr) \ 79 { \ 80 jump_to_uncached(); \ 81 __raw_write##bwlq(v, addr); \ 82 back_to_cached(); \ 83 } 84 85 __BUILD_UNCACHED_IO(b, u8) 86 __BUILD_UNCACHED_IO(w, u16) 87 __BUILD_UNCACHED_IO(l, u32) 88 __BUILD_UNCACHED_IO(q, u64) 89 90 #define __BUILD_MEMORY_STRING(pfx, bwlq, type) \ 91 \ 92 static inline void \ 93 pfx##writes##bwlq(volatile void __iomem *mem, const void *addr, \ 94 unsigned int count) \ 95 { \ 96 const volatile type *__addr = addr; \ 97 \ 98 while (count--) { \ 99 __raw_write##bwlq(*__addr, mem); \ 100 __addr++; \ 101 } \ 102 } \ 103 \ 104 static inline void pfx##reads##bwlq(volatile void __iomem *mem, \ 105 void *addr, unsigned int count) \ 106 { \ 107 volatile type *__addr = addr; \ 108 \ 109 while (count--) { \ 110 *__addr = __raw_read##bwlq(mem); \ 111 __addr++; \ 112 } \ 113 } 114 115 __BUILD_MEMORY_STRING(__raw_, b, u8) 116 __BUILD_MEMORY_STRING(__raw_, w, u16) 117 118 #ifdef CONFIG_SUPERH32 119 void __raw_writesl(void __iomem *addr, const void *data, int longlen); 120 void __raw_readsl(const void __iomem *addr, void *data, int longlen); 121 #else 122 __BUILD_MEMORY_STRING(__raw_, l, u32) 123 #endif 124 125 __BUILD_MEMORY_STRING(__raw_, q, u64) 126 127 #ifdef CONFIG_HAS_IOPORT_MAP 128 129 /* 130 * Slowdown I/O port space accesses for antique hardware. 131 */ 132 #undef CONF_SLOWDOWN_IO 133 134 /* 135 * On SuperH I/O ports are memory mapped, so we access them using normal 136 * load/store instructions. sh_io_port_base is the virtual address to 137 * which all ports are being mapped. 138 */ 139 extern unsigned long sh_io_port_base; 140 141 static inline void __set_io_port_base(unsigned long pbase) 142 { 143 *(unsigned long *)&sh_io_port_base = pbase; 144 barrier(); 145 } 146 147 #ifdef CONFIG_GENERIC_IOMAP 148 #define __ioport_map ioport_map 149 #else 150 extern void __iomem *__ioport_map(unsigned long addr, unsigned int size); 151 #endif 152 153 #ifdef CONF_SLOWDOWN_IO 154 #define SLOW_DOWN_IO __raw_readw(sh_io_port_base) 155 #else 156 #define SLOW_DOWN_IO 157 #endif 158 159 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \ 160 \ 161 static inline void pfx##out##bwlq##p(type val, unsigned long port) \ 162 { \ 163 volatile type *__addr; \ 164 \ 165 __addr = __ioport_map(port, sizeof(type)); \ 166 *__addr = val; \ 167 slow; \ 168 } \ 169 \ 170 static inline type pfx##in##bwlq##p(unsigned long port) \ 171 { \ 172 volatile type *__addr; \ 173 type __val; \ 174 \ 175 __addr = __ioport_map(port, sizeof(type)); \ 176 __val = *__addr; \ 177 slow; \ 178 \ 179 return __val; \ 180 } 181 182 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ 183 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \ 184 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO) 185 186 #define BUILDIO_IOPORT(bwlq, type) \ 187 __BUILD_IOPORT_PFX(, bwlq, type) 188 189 BUILDIO_IOPORT(b, u8) 190 BUILDIO_IOPORT(w, u16) 191 BUILDIO_IOPORT(l, u32) 192 BUILDIO_IOPORT(q, u64) 193 194 #define __BUILD_IOPORT_STRING(bwlq, type) \ 195 \ 196 static inline void outs##bwlq(unsigned long port, const void *addr, \ 197 unsigned int count) \ 198 { \ 199 const volatile type *__addr = addr; \ 200 \ 201 while (count--) { \ 202 out##bwlq(*__addr, port); \ 203 __addr++; \ 204 } \ 205 } \ 206 \ 207 static inline void ins##bwlq(unsigned long port, void *addr, \ 208 unsigned int count) \ 209 { \ 210 volatile type *__addr = addr; \ 211 \ 212 while (count--) { \ 213 *__addr = in##bwlq(port); \ 214 __addr++; \ 215 } \ 216 } 217 218 __BUILD_IOPORT_STRING(b, u8) 219 __BUILD_IOPORT_STRING(w, u16) 220 __BUILD_IOPORT_STRING(l, u32) 221 __BUILD_IOPORT_STRING(q, u64) 222 223 #else /* !CONFIG_HAS_IOPORT_MAP */ 224 225 #include <asm/io_noioport.h> 226 227 #endif 228 229 230 #define IO_SPACE_LIMIT 0xffffffff 231 232 /* We really want to try and get these to memcpy etc */ 233 void memcpy_fromio(void *, const volatile void __iomem *, unsigned long); 234 void memcpy_toio(volatile void __iomem *, const void *, unsigned long); 235 void memset_io(volatile void __iomem *, int, unsigned long); 236 237 /* Quad-word real-mode I/O, don't ask.. */ 238 unsigned long long peek_real_address_q(unsigned long long addr); 239 unsigned long long poke_real_address_q(unsigned long long addr, 240 unsigned long long val); 241 242 #if !defined(CONFIG_MMU) 243 #define virt_to_phys(address) ((unsigned long)(address)) 244 #define phys_to_virt(address) ((void *)(address)) 245 #else 246 #define virt_to_phys(address) (__pa(address)) 247 #define phys_to_virt(address) (__va(address)) 248 #endif 249 250 /* 251 * On 32-bit SH, we traditionally have the whole physical address space 252 * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do 253 * not need to do anything but place the address in the proper segment. 254 * This is true for P1 and P2 addresses, as well as some P3 ones. 255 * However, most of the P3 addresses and newer cores using extended 256 * addressing need to map through page tables, so the ioremap() 257 * implementation becomes a bit more complicated. 258 * 259 * See arch/sh/mm/ioremap.c for additional notes on this. 260 * 261 * We cheat a bit and always return uncachable areas until we've fixed 262 * the drivers to handle caching properly. 263 * 264 * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply 265 * doesn't exist, so everything must go through page tables. 266 */ 267 #ifdef CONFIG_MMU 268 void __iomem *__ioremap_caller(phys_addr_t offset, unsigned long size, 269 pgprot_t prot, void *caller); 270 void __iounmap(void __iomem *addr); 271 272 static inline void __iomem * 273 __ioremap(phys_addr_t offset, unsigned long size, pgprot_t prot) 274 { 275 return __ioremap_caller(offset, size, prot, __builtin_return_address(0)); 276 } 277 278 static inline void __iomem * 279 __ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot) 280 { 281 #ifdef CONFIG_29BIT 282 phys_addr_t last_addr = offset + size - 1; 283 284 /* 285 * For P1 and P2 space this is trivial, as everything is already 286 * mapped. Uncached access for P1 addresses are done through P2. 287 * In the P3 case or for addresses outside of the 29-bit space, 288 * mapping must be done by the PMB or by using page tables. 289 */ 290 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { 291 u64 flags = pgprot_val(prot); 292 293 /* 294 * Anything using the legacy PTEA space attributes needs 295 * to be kicked down to page table mappings. 296 */ 297 if (unlikely(flags & _PAGE_PCC_MASK)) 298 return NULL; 299 if (unlikely(flags & _PAGE_CACHABLE)) 300 return (void __iomem *)P1SEGADDR(offset); 301 302 return (void __iomem *)P2SEGADDR(offset); 303 } 304 305 /* P4 above the store queues are always mapped. */ 306 if (unlikely(offset >= P3_ADDR_MAX)) 307 return (void __iomem *)P4SEGADDR(offset); 308 #endif 309 310 return NULL; 311 } 312 313 static inline void __iomem * 314 __ioremap_mode(phys_addr_t offset, unsigned long size, pgprot_t prot) 315 { 316 void __iomem *ret; 317 318 ret = __ioremap_trapped(offset, size); 319 if (ret) 320 return ret; 321 322 ret = __ioremap_29bit(offset, size, prot); 323 if (ret) 324 return ret; 325 326 return __ioremap(offset, size, prot); 327 } 328 #else 329 #define __ioremap(offset, size, prot) ((void __iomem *)(offset)) 330 #define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset)) 331 #define __iounmap(addr) do { } while (0) 332 #endif /* CONFIG_MMU */ 333 334 static inline void __iomem *ioremap(phys_addr_t offset, unsigned long size) 335 { 336 return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE); 337 } 338 339 static inline void __iomem * 340 ioremap_cache(phys_addr_t offset, unsigned long size) 341 { 342 return __ioremap_mode(offset, size, PAGE_KERNEL); 343 } 344 #define ioremap_cache ioremap_cache 345 346 #ifdef CONFIG_HAVE_IOREMAP_PROT 347 static inline void __iomem * 348 ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long flags) 349 { 350 return __ioremap_mode(offset, size, __pgprot(flags)); 351 } 352 #endif 353 354 #ifdef CONFIG_IOREMAP_FIXED 355 extern void __iomem *ioremap_fixed(phys_addr_t, unsigned long, pgprot_t); 356 extern int iounmap_fixed(void __iomem *); 357 extern void ioremap_fixed_init(void); 358 #else 359 static inline void __iomem * 360 ioremap_fixed(phys_addr_t phys_addr, unsigned long size, pgprot_t prot) 361 { 362 BUG(); 363 return NULL; 364 } 365 366 static inline void ioremap_fixed_init(void) { } 367 static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; } 368 #endif 369 370 #define ioremap_nocache ioremap 371 #define ioremap_uc ioremap 372 #define iounmap __iounmap 373 374 /* 375 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 376 * access 377 */ 378 #define xlate_dev_mem_ptr(p) __va(p) 379 380 /* 381 * Convert a virtual cached pointer to an uncached pointer 382 */ 383 #define xlate_dev_kmem_ptr(p) p 384 385 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE 386 int valid_phys_addr_range(phys_addr_t addr, size_t size); 387 int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); 388 389 #endif /* __KERNEL__ */ 390 391 #endif /* __ASM_SH_IO_H */ 392