1 #ifndef __ASM_SH_IO_H 2 #define __ASM_SH_IO_H 3 /* 4 * Convention: 5 * read{b,w,l,q}/write{b,w,l,q} are for PCI, 6 * while in{b,w,l}/out{b,w,l} are for ISA 7 * 8 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p 9 * and 'string' versions: ins{b,w,l}/outs{b,w,l} 10 * 11 * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers 12 * automatically, there are also __raw versions, which do not. 13 * 14 * Historically, we have also had ctrl_in{b,w,l,q}/ctrl_out{b,w,l,q} for 15 * SuperH specific I/O (raw I/O to on-chip CPU peripherals). In practice 16 * these have the same semantics as the __raw variants, and as such, all 17 * new code should be using the __raw versions. 18 * 19 * All ISA I/O routines are wrapped through the machine vector. If a 20 * board does not provide overrides, a generic set that are copied in 21 * from the default machine vector are used instead. These are largely 22 * for old compat code for I/O offseting to SuperIOs, all of which are 23 * better handled through the machvec ioport mapping routines these days. 24 */ 25 #include <asm/cache.h> 26 #include <asm/system.h> 27 #include <asm/addrspace.h> 28 #include <asm/machvec.h> 29 #include <asm/pgtable.h> 30 #include <asm-generic/iomap.h> 31 32 #ifdef __KERNEL__ 33 /* 34 * Depending on which platform we are running on, we need different 35 * I/O functions. 36 */ 37 #define __IO_PREFIX generic 38 #include <asm/io_generic.h> 39 #include <asm/io_trapped.h> 40 41 #define inb(p) sh_mv.mv_inb((p)) 42 #define inw(p) sh_mv.mv_inw((p)) 43 #define inl(p) sh_mv.mv_inl((p)) 44 #define outb(x,p) sh_mv.mv_outb((x),(p)) 45 #define outw(x,p) sh_mv.mv_outw((x),(p)) 46 #define outl(x,p) sh_mv.mv_outl((x),(p)) 47 48 #define inb_p(p) sh_mv.mv_inb_p((p)) 49 #define inw_p(p) sh_mv.mv_inw_p((p)) 50 #define inl_p(p) sh_mv.mv_inl_p((p)) 51 #define outb_p(x,p) sh_mv.mv_outb_p((x),(p)) 52 #define outw_p(x,p) sh_mv.mv_outw_p((x),(p)) 53 #define outl_p(x,p) sh_mv.mv_outl_p((x),(p)) 54 55 #define insb(p,b,c) sh_mv.mv_insb((p), (b), (c)) 56 #define insw(p,b,c) sh_mv.mv_insw((p), (b), (c)) 57 #define insl(p,b,c) sh_mv.mv_insl((p), (b), (c)) 58 #define outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c)) 59 #define outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c)) 60 #define outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c)) 61 62 #define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v)) 63 #define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v)) 64 #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v)) 65 #define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v)) 66 67 #define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a)) 68 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a)) 69 #define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a)) 70 #define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a)) 71 72 #define readb(a) ({ u8 r_ = __raw_readb(a); mb(); r_; }) 73 #define readw(a) ({ u16 r_ = __raw_readw(a); mb(); r_; }) 74 #define readl(a) ({ u32 r_ = __raw_readl(a); mb(); r_; }) 75 #define readq(a) ({ u64 r_ = __raw_readq(a); mb(); r_; }) 76 77 #define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); }) 78 #define writew(v,a) ({ __raw_writew((v),(a)); mb(); }) 79 #define writel(v,a) ({ __raw_writel((v),(a)); mb(); }) 80 #define writeq(v,a) ({ __raw_writeq((v),(a)); mb(); }) 81 82 /* SuperH on-chip I/O functions */ 83 #define ctrl_inb __raw_readb 84 #define ctrl_inw __raw_readw 85 #define ctrl_inl __raw_readl 86 #define ctrl_inq __raw_readq 87 88 #define ctrl_outb __raw_writeb 89 #define ctrl_outw __raw_writew 90 #define ctrl_outl __raw_writel 91 #define ctrl_outq __raw_writeq 92 93 static inline void ctrl_delay(void) 94 { 95 #ifdef P2SEG 96 __raw_readw(P2SEG); 97 #endif 98 } 99 100 #define __BUILD_MEMORY_STRING(bwlq, type) \ 101 \ 102 static inline void __raw_writes##bwlq(volatile void __iomem *mem, \ 103 const void *addr, unsigned int count) \ 104 { \ 105 const volatile type *__addr = addr; \ 106 \ 107 while (count--) { \ 108 __raw_write##bwlq(*__addr, mem); \ 109 __addr++; \ 110 } \ 111 } \ 112 \ 113 static inline void __raw_reads##bwlq(volatile void __iomem *mem, \ 114 void *addr, unsigned int count) \ 115 { \ 116 volatile type *__addr = addr; \ 117 \ 118 while (count--) { \ 119 *__addr = __raw_read##bwlq(mem); \ 120 __addr++; \ 121 } \ 122 } 123 124 __BUILD_MEMORY_STRING(b, u8) 125 __BUILD_MEMORY_STRING(w, u16) 126 __BUILD_MEMORY_STRING(q, u64) 127 128 void __raw_writesl(void __iomem *addr, const void *data, int longlen); 129 void __raw_readsl(const void __iomem *addr, void *data, int longlen); 130 131 #define writesb __raw_writesb 132 #define writesw __raw_writesw 133 #define writesl __raw_writesl 134 135 #define readsb __raw_readsb 136 #define readsw __raw_readsw 137 #define readsl __raw_readsl 138 139 #define readb_relaxed(a) readb(a) 140 #define readw_relaxed(a) readw(a) 141 #define readl_relaxed(a) readl(a) 142 #define readq_relaxed(a) readq(a) 143 144 /* Simple MMIO */ 145 #define ioread8(a) __raw_readb(a) 146 #define ioread16(a) __raw_readw(a) 147 #define ioread16be(a) be16_to_cpu(__raw_readw((a))) 148 #define ioread32(a) __raw_readl(a) 149 #define ioread32be(a) be32_to_cpu(__raw_readl((a))) 150 151 #define iowrite8(v,a) __raw_writeb((v),(a)) 152 #define iowrite16(v,a) __raw_writew((v),(a)) 153 #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a)) 154 #define iowrite32(v,a) __raw_writel((v),(a)) 155 #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a)) 156 157 #define ioread8_rep(a, d, c) __raw_readsb((a), (d), (c)) 158 #define ioread16_rep(a, d, c) __raw_readsw((a), (d), (c)) 159 #define ioread32_rep(a, d, c) __raw_readsl((a), (d), (c)) 160 161 #define iowrite8_rep(a, s, c) __raw_writesb((a), (s), (c)) 162 #define iowrite16_rep(a, s, c) __raw_writesw((a), (s), (c)) 163 #define iowrite32_rep(a, s, c) __raw_writesl((a), (s), (c)) 164 165 /* synco on SH-4A, otherwise a nop */ 166 #define mmiowb() wmb() 167 168 #define IO_SPACE_LIMIT 0xffffffff 169 170 extern unsigned long generic_io_base; 171 172 /* 173 * This function provides a method for the generic case where a 174 * board-specific ioport_map simply needs to return the port + some 175 * arbitrary port base. 176 * 177 * We use this at board setup time to implicitly set the port base, and 178 * as a result, we can use the generic ioport_map. 179 */ 180 static inline void __set_io_port_base(unsigned long pbase) 181 { 182 generic_io_base = pbase; 183 } 184 185 #define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n)) 186 187 /* We really want to try and get these to memcpy etc */ 188 void memcpy_fromio(void *, const volatile void __iomem *, unsigned long); 189 void memcpy_toio(volatile void __iomem *, const void *, unsigned long); 190 void memset_io(volatile void __iomem *, int, unsigned long); 191 192 /* Quad-word real-mode I/O, don't ask.. */ 193 unsigned long long peek_real_address_q(unsigned long long addr); 194 unsigned long long poke_real_address_q(unsigned long long addr, 195 unsigned long long val); 196 197 #if !defined(CONFIG_MMU) 198 #define virt_to_phys(address) ((unsigned long)(address)) 199 #define phys_to_virt(address) ((void *)(address)) 200 #else 201 #define virt_to_phys(address) (__pa(address)) 202 #define phys_to_virt(address) (__va(address)) 203 #endif 204 205 /* 206 * On 32-bit SH, we traditionally have the whole physical address space 207 * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do 208 * not need to do anything but place the address in the proper segment. 209 * This is true for P1 and P2 addresses, as well as some P3 ones. 210 * However, most of the P3 addresses and newer cores using extended 211 * addressing need to map through page tables, so the ioremap() 212 * implementation becomes a bit more complicated. 213 * 214 * See arch/sh/mm/ioremap.c for additional notes on this. 215 * 216 * We cheat a bit and always return uncachable areas until we've fixed 217 * the drivers to handle caching properly. 218 * 219 * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply 220 * doesn't exist, so everything must go through page tables. 221 */ 222 #ifdef CONFIG_MMU 223 void __iomem *__ioremap(unsigned long offset, unsigned long size, 224 unsigned long flags); 225 void __iounmap(void __iomem *addr); 226 227 /* arch/sh/mm/ioremap_64.c */ 228 unsigned long onchip_remap(unsigned long addr, unsigned long size, 229 const char *name); 230 extern void onchip_unmap(unsigned long vaddr); 231 #else 232 #define __ioremap(offset, size, flags) ((void __iomem *)(offset)) 233 #define __iounmap(addr) do { } while (0) 234 #define onchip_remap(addr, size, name) (addr) 235 #define onchip_unmap(addr) do { } while (0) 236 #endif /* CONFIG_MMU */ 237 238 static inline void __iomem * 239 __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags) 240 { 241 #if defined(CONFIG_SUPERH32) && !defined(CONFIG_PMB_FIXED) 242 unsigned long last_addr = offset + size - 1; 243 #endif 244 void __iomem *ret; 245 246 ret = __ioremap_trapped(offset, size); 247 if (ret) 248 return ret; 249 250 #if defined(CONFIG_SUPERH32) && !defined(CONFIG_PMB_FIXED) 251 /* 252 * For P1 and P2 space this is trivial, as everything is already 253 * mapped. Uncached access for P1 addresses are done through P2. 254 * In the P3 case or for addresses outside of the 29-bit space, 255 * mapping must be done by the PMB or by using page tables. 256 */ 257 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { 258 if (unlikely(flags & _PAGE_CACHABLE)) 259 return (void __iomem *)P1SEGADDR(offset); 260 261 return (void __iomem *)P2SEGADDR(offset); 262 } 263 264 /* P4 above the store queues are always mapped. */ 265 if (unlikely(offset >= P3_ADDR_MAX)) 266 return (void __iomem *)P4SEGADDR(offset); 267 #endif 268 269 return __ioremap(offset, size, flags); 270 } 271 272 #define ioremap(offset, size) \ 273 __ioremap_mode((offset), (size), 0) 274 #define ioremap_nocache(offset, size) \ 275 __ioremap_mode((offset), (size), 0) 276 #define ioremap_cache(offset, size) \ 277 __ioremap_mode((offset), (size), _PAGE_CACHABLE) 278 #define p3_ioremap(offset, size, flags) \ 279 __ioremap((offset), (size), (flags)) 280 #define ioremap_prot(offset, size, flags) \ 281 __ioremap_mode((offset), (size), (flags)) 282 #define iounmap(addr) \ 283 __iounmap((addr)) 284 285 #define maybebadio(port) \ 286 printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \ 287 __func__, __LINE__, (port), (u32)__builtin_return_address(0)) 288 289 /* 290 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 291 * access 292 */ 293 #define xlate_dev_mem_ptr(p) __va(p) 294 295 /* 296 * Convert a virtual cached pointer to an uncached pointer 297 */ 298 #define xlate_dev_kmem_ptr(p) p 299 300 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE 301 int valid_phys_addr_range(unsigned long addr, size_t size); 302 int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); 303 304 #endif /* __KERNEL__ */ 305 306 #endif /* __ASM_SH_IO_H */ 307