xref: /linux/arch/s390/pci/pci_irq.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 #define KMSG_COMPONENT "zpci"
3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
4 
5 #include <linux/kernel.h>
6 #include <linux/irq.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/smp.h>
11 
12 #include <asm/isc.h>
13 #include <asm/airq.h>
14 #include <asm/tpi.h>
15 
16 static enum {FLOATING, DIRECTED} irq_delivery;
17 
18 /*
19  * summary bit vector
20  * FLOATING - summary bit per function
21  * DIRECTED - summary bit per cpu (only used in fallback path)
22  */
23 static struct airq_iv *zpci_sbv;
24 
25 /*
26  * interrupt bit vectors
27  * FLOATING - interrupt bit vector per function
28  * DIRECTED - interrupt bit vector per cpu
29  */
30 static struct airq_iv **zpci_ibv;
31 
32 /* Modify PCI: Register floating adapter interruptions */
33 static int zpci_set_airq(struct zpci_dev *zdev)
34 {
35 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
36 	struct zpci_fib fib = {0};
37 	u8 status;
38 
39 	fib.fmt0.isc = PCI_ISC;
40 	fib.fmt0.sum = 1;	/* enable summary notifications */
41 	fib.fmt0.noi = airq_iv_end(zdev->aibv);
42 	fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector);
43 	fib.fmt0.aibvo = 0;	/* each zdev has its own interrupt vector */
44 	fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8;
45 	fib.fmt0.aisbo = zdev->aisb & 63;
46 	fib.gd = zdev->gisa;
47 
48 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
49 }
50 
51 /* Modify PCI: Unregister floating adapter interruptions */
52 static int zpci_clear_airq(struct zpci_dev *zdev)
53 {
54 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
55 	struct zpci_fib fib = {0};
56 	u8 cc, status;
57 
58 	fib.gd = zdev->gisa;
59 
60 	cc = zpci_mod_fc(req, &fib, &status);
61 	if (cc == 3 || (cc == 1 && status == 24))
62 		/* Function already gone or IRQs already deregistered. */
63 		cc = 0;
64 
65 	return cc ? -EIO : 0;
66 }
67 
68 /* Modify PCI: Register CPU directed interruptions */
69 static int zpci_set_directed_irq(struct zpci_dev *zdev)
70 {
71 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
72 	struct zpci_fib fib = {0};
73 	u8 status;
74 
75 	fib.fmt = 1;
76 	fib.fmt1.noi = zdev->msi_nr_irqs;
77 	fib.fmt1.dibvo = zdev->msi_first_bit;
78 	fib.gd = zdev->gisa;
79 
80 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
81 }
82 
83 /* Modify PCI: Unregister CPU directed interruptions */
84 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
85 {
86 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
87 	struct zpci_fib fib = {0};
88 	u8 cc, status;
89 
90 	fib.fmt = 1;
91 	fib.gd = zdev->gisa;
92 	cc = zpci_mod_fc(req, &fib, &status);
93 	if (cc == 3 || (cc == 1 && status == 24))
94 		/* Function already gone or IRQs already deregistered. */
95 		cc = 0;
96 
97 	return cc ? -EIO : 0;
98 }
99 
100 /* Register adapter interruptions */
101 static int zpci_set_irq(struct zpci_dev *zdev)
102 {
103 	int rc;
104 
105 	if (irq_delivery == DIRECTED)
106 		rc = zpci_set_directed_irq(zdev);
107 	else
108 		rc = zpci_set_airq(zdev);
109 
110 	if (!rc)
111 		zdev->irqs_registered = 1;
112 
113 	return rc;
114 }
115 
116 /* Clear adapter interruptions */
117 static int zpci_clear_irq(struct zpci_dev *zdev)
118 {
119 	int rc;
120 
121 	if (irq_delivery == DIRECTED)
122 		rc = zpci_clear_directed_irq(zdev);
123 	else
124 		rc = zpci_clear_airq(zdev);
125 
126 	if (!rc)
127 		zdev->irqs_registered = 0;
128 
129 	return rc;
130 }
131 
132 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
133 				 bool force)
134 {
135 	struct msi_desc *entry = irq_data_get_msi_desc(data);
136 	struct msi_msg msg = entry->msg;
137 	int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
138 
139 	msg.address_lo &= 0xff0000ff;
140 	msg.address_lo |= (cpu_addr << 8);
141 	pci_write_msi_msg(data->irq, &msg);
142 
143 	return IRQ_SET_MASK_OK;
144 }
145 
146 static struct irq_chip zpci_irq_chip = {
147 	.name = "PCI-MSI",
148 	.irq_unmask = pci_msi_unmask_irq,
149 	.irq_mask = pci_msi_mask_irq,
150 };
151 
152 static void zpci_handle_cpu_local_irq(bool rescan)
153 {
154 	struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
155 	union zpci_sic_iib iib = {{0}};
156 	unsigned long bit;
157 	int irqs_on = 0;
158 
159 	for (bit = 0;;) {
160 		/* Scan the directed IRQ bit vector */
161 		bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
162 		if (bit == -1UL) {
163 			if (!rescan || irqs_on++)
164 				/* End of second scan with interrupts on. */
165 				break;
166 			/* First scan complete, re-enable interrupts. */
167 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib))
168 				break;
169 			bit = 0;
170 			continue;
171 		}
172 		inc_irq_stat(IRQIO_MSI);
173 		generic_handle_irq(airq_iv_get_data(dibv, bit));
174 	}
175 }
176 
177 struct cpu_irq_data {
178 	call_single_data_t csd;
179 	atomic_t scheduled;
180 };
181 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
182 
183 static void zpci_handle_remote_irq(void *data)
184 {
185 	atomic_t *scheduled = data;
186 
187 	do {
188 		zpci_handle_cpu_local_irq(false);
189 	} while (atomic_dec_return(scheduled));
190 }
191 
192 static void zpci_handle_fallback_irq(void)
193 {
194 	struct cpu_irq_data *cpu_data;
195 	union zpci_sic_iib iib = {{0}};
196 	unsigned long cpu;
197 	int irqs_on = 0;
198 
199 	for (cpu = 0;;) {
200 		cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
201 		if (cpu == -1UL) {
202 			if (irqs_on++)
203 				/* End of second scan with interrupts on. */
204 				break;
205 			/* First scan complete, re-enable interrupts. */
206 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
207 				break;
208 			cpu = 0;
209 			continue;
210 		}
211 		cpu_data = &per_cpu(irq_data, cpu);
212 		if (atomic_inc_return(&cpu_data->scheduled) > 1)
213 			continue;
214 
215 		INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
216 		smp_call_function_single_async(cpu, &cpu_data->csd);
217 	}
218 }
219 
220 static void zpci_directed_irq_handler(struct airq_struct *airq,
221 				      struct tpi_info *tpi_info)
222 {
223 	bool floating = !tpi_info->directed_irq;
224 
225 	if (floating) {
226 		inc_irq_stat(IRQIO_PCF);
227 		zpci_handle_fallback_irq();
228 	} else {
229 		inc_irq_stat(IRQIO_PCD);
230 		zpci_handle_cpu_local_irq(true);
231 	}
232 }
233 
234 static void zpci_floating_irq_handler(struct airq_struct *airq,
235 				      struct tpi_info *tpi_info)
236 {
237 	union zpci_sic_iib iib = {{0}};
238 	unsigned long si, ai;
239 	struct airq_iv *aibv;
240 	int irqs_on = 0;
241 
242 	inc_irq_stat(IRQIO_PCF);
243 	for (si = 0;;) {
244 		/* Scan adapter summary indicator bit vector */
245 		si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
246 		if (si == -1UL) {
247 			if (irqs_on++)
248 				/* End of second scan with interrupts on. */
249 				break;
250 			/* First scan complete, re-enable interrupts. */
251 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
252 				break;
253 			si = 0;
254 			continue;
255 		}
256 
257 		/* Scan the adapter interrupt vector for this device. */
258 		aibv = zpci_ibv[si];
259 		for (ai = 0;;) {
260 			ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
261 			if (ai == -1UL)
262 				break;
263 			inc_irq_stat(IRQIO_MSI);
264 			airq_iv_lock(aibv, ai);
265 			generic_handle_irq(airq_iv_get_data(aibv, ai));
266 			airq_iv_unlock(aibv, ai);
267 		}
268 	}
269 }
270 
271 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
272 {
273 	struct zpci_dev *zdev = to_zpci(pdev);
274 	unsigned int hwirq, msi_vecs, cpu;
275 	unsigned long bit;
276 	struct msi_desc *msi;
277 	struct msi_msg msg;
278 	int cpu_addr;
279 	int rc, irq;
280 
281 	zdev->aisb = -1UL;
282 	zdev->msi_first_bit = -1U;
283 	if (type == PCI_CAP_ID_MSI && nvec > 1)
284 		return 1;
285 	msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
286 
287 	if (irq_delivery == DIRECTED) {
288 		/* Allocate cpu vector bits */
289 		bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
290 		if (bit == -1UL)
291 			return -EIO;
292 	} else {
293 		/* Allocate adapter summary indicator bit */
294 		bit = airq_iv_alloc_bit(zpci_sbv);
295 		if (bit == -1UL)
296 			return -EIO;
297 		zdev->aisb = bit;
298 
299 		/* Create adapter interrupt vector */
300 		zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL);
301 		if (!zdev->aibv)
302 			return -ENOMEM;
303 
304 		/* Wire up shortcut pointer */
305 		zpci_ibv[bit] = zdev->aibv;
306 		/* Each function has its own interrupt vector */
307 		bit = 0;
308 	}
309 
310 	/* Request MSI interrupts */
311 	hwirq = bit;
312 	msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) {
313 		rc = -EIO;
314 		if (hwirq - bit >= msi_vecs)
315 			break;
316 		irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE,
317 				(irq_delivery == DIRECTED) ?
318 				msi->affinity : NULL);
319 		if (irq < 0)
320 			return -ENOMEM;
321 		rc = irq_set_msi_desc(irq, msi);
322 		if (rc)
323 			return rc;
324 		irq_set_chip_and_handler(irq, &zpci_irq_chip,
325 					 handle_percpu_irq);
326 		msg.data = hwirq - bit;
327 		if (irq_delivery == DIRECTED) {
328 			if (msi->affinity)
329 				cpu = cpumask_first(&msi->affinity->mask);
330 			else
331 				cpu = 0;
332 			cpu_addr = smp_cpu_get_cpu_address(cpu);
333 
334 			msg.address_lo = zdev->msi_addr & 0xff0000ff;
335 			msg.address_lo |= (cpu_addr << 8);
336 
337 			for_each_possible_cpu(cpu) {
338 				airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
339 			}
340 		} else {
341 			msg.address_lo = zdev->msi_addr & 0xffffffff;
342 			airq_iv_set_data(zdev->aibv, hwirq, irq);
343 		}
344 		msg.address_hi = zdev->msi_addr >> 32;
345 		pci_write_msi_msg(irq, &msg);
346 		hwirq++;
347 	}
348 
349 	zdev->msi_first_bit = bit;
350 	zdev->msi_nr_irqs = msi_vecs;
351 
352 	rc = zpci_set_irq(zdev);
353 	if (rc)
354 		return rc;
355 
356 	return (msi_vecs == nvec) ? 0 : msi_vecs;
357 }
358 
359 void arch_teardown_msi_irqs(struct pci_dev *pdev)
360 {
361 	struct zpci_dev *zdev = to_zpci(pdev);
362 	struct msi_desc *msi;
363 	int rc;
364 
365 	/* Disable interrupts */
366 	rc = zpci_clear_irq(zdev);
367 	if (rc)
368 		return;
369 
370 	/* Release MSI interrupts */
371 	msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) {
372 		irq_set_msi_desc(msi->irq, NULL);
373 		irq_free_desc(msi->irq);
374 		msi->msg.address_lo = 0;
375 		msi->msg.address_hi = 0;
376 		msi->msg.data = 0;
377 		msi->irq = 0;
378 	}
379 
380 	if (zdev->aisb != -1UL) {
381 		zpci_ibv[zdev->aisb] = NULL;
382 		airq_iv_free_bit(zpci_sbv, zdev->aisb);
383 		zdev->aisb = -1UL;
384 	}
385 	if (zdev->aibv) {
386 		airq_iv_release(zdev->aibv);
387 		zdev->aibv = NULL;
388 	}
389 
390 	if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
391 		airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
392 }
393 
394 bool arch_restore_msi_irqs(struct pci_dev *pdev)
395 {
396 	struct zpci_dev *zdev = to_zpci(pdev);
397 
398 	if (!zdev->irqs_registered)
399 		zpci_set_irq(zdev);
400 	return true;
401 }
402 
403 static struct airq_struct zpci_airq = {
404 	.handler = zpci_floating_irq_handler,
405 	.isc = PCI_ISC,
406 };
407 
408 static void __init cpu_enable_directed_irq(void *unused)
409 {
410 	union zpci_sic_iib iib = {{0}};
411 	union zpci_sic_iib ziib = {{0}};
412 
413 	iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
414 
415 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
416 	zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib);
417 }
418 
419 static int __init zpci_directed_irq_init(void)
420 {
421 	union zpci_sic_iib iib = {{0}};
422 	unsigned int cpu;
423 
424 	zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL);
425 	if (!zpci_sbv)
426 		return -ENOMEM;
427 
428 	iib.diib.isc = PCI_ISC;
429 	iib.diib.nr_cpus = num_possible_cpus();
430 	iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector);
431 	zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
432 
433 	zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
434 			   GFP_KERNEL);
435 	if (!zpci_ibv)
436 		return -ENOMEM;
437 
438 	for_each_possible_cpu(cpu) {
439 		/*
440 		 * Per CPU IRQ vectors look the same but bit-allocation
441 		 * is only done on the first vector.
442 		 */
443 		zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
444 					       AIRQ_IV_DATA |
445 					       AIRQ_IV_CACHELINE |
446 					       (!cpu ? AIRQ_IV_ALLOC : 0), NULL);
447 		if (!zpci_ibv[cpu])
448 			return -ENOMEM;
449 	}
450 	on_each_cpu(cpu_enable_directed_irq, NULL, 1);
451 
452 	zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
453 
454 	return 0;
455 }
456 
457 static int __init zpci_floating_irq_init(void)
458 {
459 	zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
460 	if (!zpci_ibv)
461 		return -ENOMEM;
462 
463 	zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL);
464 	if (!zpci_sbv)
465 		goto out_free;
466 
467 	return 0;
468 
469 out_free:
470 	kfree(zpci_ibv);
471 	return -ENOMEM;
472 }
473 
474 int __init zpci_irq_init(void)
475 {
476 	union zpci_sic_iib iib = {{0}};
477 	int rc;
478 
479 	irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
480 	if (s390_pci_force_floating)
481 		irq_delivery = FLOATING;
482 
483 	if (irq_delivery == DIRECTED)
484 		zpci_airq.handler = zpci_directed_irq_handler;
485 
486 	rc = register_adapter_interrupt(&zpci_airq);
487 	if (rc)
488 		goto out;
489 	/* Set summary to 1 to be called every time for the ISC. */
490 	*zpci_airq.lsi_ptr = 1;
491 
492 	switch (irq_delivery) {
493 	case FLOATING:
494 		rc = zpci_floating_irq_init();
495 		break;
496 	case DIRECTED:
497 		rc = zpci_directed_irq_init();
498 		break;
499 	}
500 
501 	if (rc)
502 		goto out_airq;
503 
504 	/*
505 	 * Enable floating IRQs (with suppression after one IRQ). When using
506 	 * directed IRQs this enables the fallback path.
507 	 */
508 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib);
509 
510 	return 0;
511 out_airq:
512 	unregister_adapter_interrupt(&zpci_airq);
513 out:
514 	return rc;
515 }
516 
517 void __init zpci_irq_exit(void)
518 {
519 	unsigned int cpu;
520 
521 	if (irq_delivery == DIRECTED) {
522 		for_each_possible_cpu(cpu) {
523 			airq_iv_release(zpci_ibv[cpu]);
524 		}
525 	}
526 	kfree(zpci_ibv);
527 	if (zpci_sbv)
528 		airq_iv_release(zpci_sbv);
529 	unregister_adapter_interrupt(&zpci_airq);
530 }
531