xref: /linux/arch/s390/pci/pci_irq.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "zpci: " fmt
3 
4 #include <linux/kernel.h>
5 #include <linux/irq.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/pci.h>
8 #include <linux/msi.h>
9 #include <linux/smp.h>
10 
11 #include <asm/isc.h>
12 #include <asm/airq.h>
13 #include <asm/tpi.h>
14 
15 static enum {FLOATING, DIRECTED} irq_delivery;
16 
17 /*
18  * summary bit vector
19  * FLOATING - summary bit per function
20  * DIRECTED - summary bit per cpu (only used in fallback path)
21  */
22 static struct airq_iv *zpci_sbv;
23 
24 /*
25  * interrupt bit vectors
26  * FLOATING - interrupt bit vector per function
27  * DIRECTED - interrupt bit vector per cpu
28  */
29 static struct airq_iv **zpci_ibv;
30 
31 /* Modify PCI: Register floating adapter interruptions */
32 static int zpci_set_airq(struct zpci_dev *zdev)
33 {
34 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
35 	struct zpci_fib fib = {0};
36 	u8 status;
37 
38 	fib.fmt0.isc = PCI_ISC;
39 	fib.fmt0.sum = 1;	/* enable summary notifications */
40 	fib.fmt0.noi = airq_iv_end(zdev->aibv);
41 	fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector);
42 	fib.fmt0.aibvo = 0;	/* each zdev has its own interrupt vector */
43 	fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8;
44 	fib.fmt0.aisbo = zdev->aisb & 63;
45 	fib.gd = zdev->gisa;
46 
47 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
48 }
49 
50 /* Modify PCI: Unregister floating adapter interruptions */
51 static int zpci_clear_airq(struct zpci_dev *zdev)
52 {
53 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
54 	struct zpci_fib fib = {0};
55 	u8 cc, status;
56 
57 	fib.gd = zdev->gisa;
58 
59 	cc = zpci_mod_fc(req, &fib, &status);
60 	if (cc == 3 || (cc == 1 && status == 24))
61 		/* Function already gone or IRQs already deregistered. */
62 		cc = 0;
63 
64 	return cc ? -EIO : 0;
65 }
66 
67 /* Modify PCI: Register CPU directed interruptions */
68 static int zpci_set_directed_irq(struct zpci_dev *zdev)
69 {
70 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
71 	struct zpci_fib fib = {0};
72 	u8 status;
73 
74 	fib.fmt = 1;
75 	fib.fmt1.noi = zdev->msi_nr_irqs;
76 	fib.fmt1.dibvo = zdev->msi_first_bit;
77 	fib.gd = zdev->gisa;
78 
79 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
80 }
81 
82 /* Modify PCI: Unregister CPU directed interruptions */
83 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
84 {
85 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
86 	struct zpci_fib fib = {0};
87 	u8 cc, status;
88 
89 	fib.fmt = 1;
90 	fib.gd = zdev->gisa;
91 	cc = zpci_mod_fc(req, &fib, &status);
92 	if (cc == 3 || (cc == 1 && status == 24))
93 		/* Function already gone or IRQs already deregistered. */
94 		cc = 0;
95 
96 	return cc ? -EIO : 0;
97 }
98 
99 /* Register adapter interruptions */
100 static int zpci_set_irq(struct zpci_dev *zdev)
101 {
102 	int rc;
103 
104 	if (irq_delivery == DIRECTED)
105 		rc = zpci_set_directed_irq(zdev);
106 	else
107 		rc = zpci_set_airq(zdev);
108 
109 	return rc;
110 }
111 
112 /* Clear adapter interruptions */
113 static int zpci_clear_irq(struct zpci_dev *zdev)
114 {
115 	int rc;
116 
117 	if (irq_delivery == DIRECTED)
118 		rc = zpci_clear_directed_irq(zdev);
119 	else
120 		rc = zpci_clear_airq(zdev);
121 
122 	return rc;
123 }
124 
125 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
126 				 bool force)
127 {
128 	struct msi_desc *entry = irq_data_get_msi_desc(data);
129 	struct msi_msg msg = entry->msg;
130 	int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
131 
132 	msg.address_lo &= 0xff0000ff;
133 	msg.address_lo |= (cpu_addr << 8);
134 	pci_write_msi_msg(data->irq, &msg);
135 
136 	return IRQ_SET_MASK_OK;
137 }
138 
139 static struct irq_chip zpci_irq_chip = {
140 	.name = "PCI-MSI",
141 	.irq_unmask = pci_msi_unmask_irq,
142 	.irq_mask = pci_msi_mask_irq,
143 };
144 
145 static void zpci_handle_cpu_local_irq(bool rescan)
146 {
147 	struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
148 	union zpci_sic_iib iib = {{0}};
149 	unsigned long bit;
150 	int irqs_on = 0;
151 
152 	for (bit = 0;;) {
153 		/* Scan the directed IRQ bit vector */
154 		bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
155 		if (bit == -1UL) {
156 			if (!rescan || irqs_on++)
157 				/* End of second scan with interrupts on. */
158 				break;
159 			/* First scan complete, re-enable interrupts. */
160 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib))
161 				break;
162 			bit = 0;
163 			continue;
164 		}
165 		inc_irq_stat(IRQIO_MSI);
166 		generic_handle_irq(airq_iv_get_data(dibv, bit));
167 	}
168 }
169 
170 struct cpu_irq_data {
171 	call_single_data_t csd;
172 	atomic_t scheduled;
173 };
174 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
175 
176 static void zpci_handle_remote_irq(void *data)
177 {
178 	atomic_t *scheduled = data;
179 
180 	do {
181 		zpci_handle_cpu_local_irq(false);
182 	} while (atomic_dec_return(scheduled));
183 }
184 
185 static void zpci_handle_fallback_irq(void)
186 {
187 	struct cpu_irq_data *cpu_data;
188 	union zpci_sic_iib iib = {{0}};
189 	unsigned long cpu;
190 	int irqs_on = 0;
191 
192 	for (cpu = 0;;) {
193 		cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
194 		if (cpu == -1UL) {
195 			if (irqs_on++)
196 				/* End of second scan with interrupts on. */
197 				break;
198 			/* First scan complete, re-enable interrupts. */
199 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
200 				break;
201 			cpu = 0;
202 			continue;
203 		}
204 		cpu_data = &per_cpu(irq_data, cpu);
205 		if (atomic_inc_return(&cpu_data->scheduled) > 1)
206 			continue;
207 
208 		INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
209 		smp_call_function_single_async(cpu, &cpu_data->csd);
210 	}
211 }
212 
213 static void zpci_directed_irq_handler(struct airq_struct *airq,
214 				      struct tpi_info *tpi_info)
215 {
216 	bool floating = !tpi_info->directed_irq;
217 
218 	if (floating) {
219 		inc_irq_stat(IRQIO_PCF);
220 		zpci_handle_fallback_irq();
221 	} else {
222 		inc_irq_stat(IRQIO_PCD);
223 		zpci_handle_cpu_local_irq(true);
224 	}
225 }
226 
227 static void zpci_floating_irq_handler(struct airq_struct *airq,
228 				      struct tpi_info *tpi_info)
229 {
230 	union zpci_sic_iib iib = {{0}};
231 	unsigned long si, ai;
232 	struct airq_iv *aibv;
233 	int irqs_on = 0;
234 
235 	inc_irq_stat(IRQIO_PCF);
236 	for (si = 0;;) {
237 		/* Scan adapter summary indicator bit vector */
238 		si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
239 		if (si == -1UL) {
240 			if (irqs_on++)
241 				/* End of second scan with interrupts on. */
242 				break;
243 			/* First scan complete, re-enable interrupts. */
244 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
245 				break;
246 			si = 0;
247 			continue;
248 		}
249 
250 		/* Scan the adapter interrupt vector for this device. */
251 		aibv = zpci_ibv[si];
252 		for (ai = 0;;) {
253 			ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
254 			if (ai == -1UL)
255 				break;
256 			inc_irq_stat(IRQIO_MSI);
257 			airq_iv_lock(aibv, ai);
258 			generic_handle_irq(airq_iv_get_data(aibv, ai));
259 			airq_iv_unlock(aibv, ai);
260 		}
261 	}
262 }
263 
264 static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs,
265 			unsigned long *bit)
266 {
267 	if (irq_delivery == DIRECTED) {
268 		/* Allocate cpu vector bits */
269 		*bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
270 		if (*bit == -1UL)
271 			return -EIO;
272 	} else {
273 		/* Allocate adapter summary indicator bit */
274 		*bit = airq_iv_alloc_bit(zpci_sbv);
275 		if (*bit == -1UL)
276 			return -EIO;
277 		zdev->aisb = *bit;
278 
279 		/* Create adapter interrupt vector */
280 		zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL);
281 		if (!zdev->aibv)
282 			return -ENOMEM;
283 
284 		/* Wire up shortcut pointer */
285 		zpci_ibv[*bit] = zdev->aibv;
286 		/* Each function has its own interrupt vector */
287 		*bit = 0;
288 	}
289 	return 0;
290 }
291 
292 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
293 {
294 	unsigned int hwirq, msi_vecs, irqs_per_msi, i, cpu;
295 	struct zpci_dev *zdev = to_zpci(pdev);
296 	struct msi_desc *msi;
297 	struct msi_msg msg;
298 	unsigned long bit;
299 	int cpu_addr;
300 	int rc, irq;
301 
302 	zdev->aisb = -1UL;
303 	zdev->msi_first_bit = -1U;
304 
305 	msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
306 	if (msi_vecs < nvec) {
307 		pr_info("%s requested %d irqs, allocate system limit of %d",
308 			pci_name(pdev), nvec, zdev->max_msi);
309 	}
310 
311 	rc = __alloc_airq(zdev, msi_vecs, &bit);
312 	if (rc < 0)
313 		return rc;
314 
315 	/*
316 	 * Request MSI interrupts:
317 	 * When using MSI, nvec_used interrupt sources and their irq
318 	 * descriptors are controlled through one msi descriptor.
319 	 * Thus the outer loop over msi descriptors shall run only once,
320 	 * while two inner loops iterate over the interrupt vectors.
321 	 * When using MSI-X, each interrupt vector/irq descriptor
322 	 * is bound to exactly one msi descriptor (nvec_used is one).
323 	 * So the inner loops are executed once, while the outer iterates
324 	 * over the MSI-X descriptors.
325 	 */
326 	hwirq = bit;
327 	msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) {
328 		if (hwirq - bit >= msi_vecs)
329 			break;
330 		irqs_per_msi = min_t(unsigned int, msi_vecs, msi->nvec_used);
331 		irq = __irq_alloc_descs(-1, 0, irqs_per_msi, 0, THIS_MODULE,
332 					(irq_delivery == DIRECTED) ?
333 					msi->affinity : NULL);
334 		if (irq < 0)
335 			return -ENOMEM;
336 
337 		for (i = 0; i < irqs_per_msi; i++) {
338 			rc = irq_set_msi_desc_off(irq, i, msi);
339 			if (rc)
340 				return rc;
341 			irq_set_chip_and_handler(irq + i, &zpci_irq_chip,
342 						 handle_percpu_irq);
343 		}
344 
345 		msg.data = hwirq - bit;
346 		if (irq_delivery == DIRECTED) {
347 			if (msi->affinity)
348 				cpu = cpumask_first(&msi->affinity->mask);
349 			else
350 				cpu = 0;
351 			cpu_addr = smp_cpu_get_cpu_address(cpu);
352 
353 			msg.address_lo = zdev->msi_addr & 0xff0000ff;
354 			msg.address_lo |= (cpu_addr << 8);
355 
356 			for_each_possible_cpu(cpu) {
357 				for (i = 0; i < irqs_per_msi; i++)
358 					airq_iv_set_data(zpci_ibv[cpu],
359 							 hwirq + i, irq + i);
360 			}
361 		} else {
362 			msg.address_lo = zdev->msi_addr & 0xffffffff;
363 			for (i = 0; i < irqs_per_msi; i++)
364 				airq_iv_set_data(zdev->aibv, hwirq + i, irq + i);
365 		}
366 		msg.address_hi = zdev->msi_addr >> 32;
367 		pci_write_msi_msg(irq, &msg);
368 		hwirq += irqs_per_msi;
369 	}
370 
371 	zdev->msi_first_bit = bit;
372 	zdev->msi_nr_irqs = hwirq - bit;
373 
374 	rc = zpci_set_irq(zdev);
375 	if (rc)
376 		return rc;
377 
378 	return (zdev->msi_nr_irqs == nvec) ? 0 : zdev->msi_nr_irqs;
379 }
380 
381 void arch_teardown_msi_irqs(struct pci_dev *pdev)
382 {
383 	struct zpci_dev *zdev = to_zpci(pdev);
384 	struct msi_desc *msi;
385 	unsigned int i;
386 	int rc;
387 
388 	/* Disable interrupts */
389 	rc = zpci_clear_irq(zdev);
390 	if (rc)
391 		return;
392 
393 	/* Release MSI interrupts */
394 	msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) {
395 		for (i = 0; i < msi->nvec_used; i++) {
396 			irq_set_msi_desc(msi->irq + i, NULL);
397 			irq_free_desc(msi->irq + i);
398 		}
399 		msi->msg.address_lo = 0;
400 		msi->msg.address_hi = 0;
401 		msi->msg.data = 0;
402 		msi->irq = 0;
403 	}
404 
405 	if (zdev->aisb != -1UL) {
406 		zpci_ibv[zdev->aisb] = NULL;
407 		airq_iv_free_bit(zpci_sbv, zdev->aisb);
408 		zdev->aisb = -1UL;
409 	}
410 	if (zdev->aibv) {
411 		airq_iv_release(zdev->aibv);
412 		zdev->aibv = NULL;
413 	}
414 
415 	if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
416 		airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
417 }
418 
419 bool arch_restore_msi_irqs(struct pci_dev *pdev)
420 {
421 	struct zpci_dev *zdev = to_zpci(pdev);
422 
423 	zpci_set_irq(zdev);
424 	return true;
425 }
426 
427 static struct airq_struct zpci_airq = {
428 	.handler = zpci_floating_irq_handler,
429 	.isc = PCI_ISC,
430 };
431 
432 static void __init cpu_enable_directed_irq(void *unused)
433 {
434 	union zpci_sic_iib iib = {{0}};
435 	union zpci_sic_iib ziib = {{0}};
436 
437 	iib.cdiib.dibv_addr = virt_to_phys(zpci_ibv[smp_processor_id()]->vector);
438 
439 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
440 	zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib);
441 }
442 
443 static int __init zpci_directed_irq_init(void)
444 {
445 	union zpci_sic_iib iib = {{0}};
446 	unsigned int cpu;
447 
448 	zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL);
449 	if (!zpci_sbv)
450 		return -ENOMEM;
451 
452 	iib.diib.isc = PCI_ISC;
453 	iib.diib.nr_cpus = num_possible_cpus();
454 	iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector);
455 	zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
456 
457 	zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
458 			   GFP_KERNEL);
459 	if (!zpci_ibv)
460 		return -ENOMEM;
461 
462 	for_each_possible_cpu(cpu) {
463 		/*
464 		 * Per CPU IRQ vectors look the same but bit-allocation
465 		 * is only done on the first vector.
466 		 */
467 		zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
468 					       AIRQ_IV_DATA |
469 					       AIRQ_IV_CACHELINE |
470 					       (!cpu ? AIRQ_IV_ALLOC : 0), NULL);
471 		if (!zpci_ibv[cpu])
472 			return -ENOMEM;
473 	}
474 	on_each_cpu(cpu_enable_directed_irq, NULL, 1);
475 
476 	zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
477 
478 	return 0;
479 }
480 
481 static int __init zpci_floating_irq_init(void)
482 {
483 	zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
484 	if (!zpci_ibv)
485 		return -ENOMEM;
486 
487 	zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL);
488 	if (!zpci_sbv)
489 		goto out_free;
490 
491 	return 0;
492 
493 out_free:
494 	kfree(zpci_ibv);
495 	return -ENOMEM;
496 }
497 
498 int __init zpci_irq_init(void)
499 {
500 	union zpci_sic_iib iib = {{0}};
501 	int rc;
502 
503 	irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
504 	if (s390_pci_force_floating)
505 		irq_delivery = FLOATING;
506 
507 	if (irq_delivery == DIRECTED)
508 		zpci_airq.handler = zpci_directed_irq_handler;
509 
510 	rc = register_adapter_interrupt(&zpci_airq);
511 	if (rc)
512 		goto out;
513 	/* Set summary to 1 to be called every time for the ISC. */
514 	*zpci_airq.lsi_ptr = 1;
515 
516 	switch (irq_delivery) {
517 	case FLOATING:
518 		rc = zpci_floating_irq_init();
519 		break;
520 	case DIRECTED:
521 		rc = zpci_directed_irq_init();
522 		break;
523 	}
524 
525 	if (rc)
526 		goto out_airq;
527 
528 	/*
529 	 * Enable floating IRQs (with suppression after one IRQ). When using
530 	 * directed IRQs this enables the fallback path.
531 	 */
532 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib);
533 
534 	return 0;
535 out_airq:
536 	unregister_adapter_interrupt(&zpci_airq);
537 out:
538 	return rc;
539 }
540 
541 void __init zpci_irq_exit(void)
542 {
543 	unsigned int cpu;
544 
545 	if (irq_delivery == DIRECTED) {
546 		for_each_possible_cpu(cpu) {
547 			airq_iv_release(zpci_ibv[cpu]);
548 		}
549 	}
550 	kfree(zpci_ibv);
551 	if (zpci_sbv)
552 		airq_iv_release(zpci_sbv);
553 	unregister_adapter_interrupt(&zpci_airq);
554 }
555