xref: /linux/arch/s390/pci/pci_irq.c (revision 6c363eafc4d637ac4bd83d4a7dd06dd3cfbe7c5f)
1 // SPDX-License-Identifier: GPL-2.0
2 #define KMSG_COMPONENT "zpci"
3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
4 
5 #include <linux/kernel.h>
6 #include <linux/irq.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/smp.h>
11 
12 #include <asm/isc.h>
13 #include <asm/airq.h>
14 
15 static enum {FLOATING, DIRECTED} irq_delivery;
16 
17 #define	SIC_IRQ_MODE_ALL		0
18 #define	SIC_IRQ_MODE_SINGLE		1
19 #define	SIC_IRQ_MODE_DIRECT		4
20 #define	SIC_IRQ_MODE_D_ALL		16
21 #define	SIC_IRQ_MODE_D_SINGLE		17
22 #define	SIC_IRQ_MODE_SET_CPU		18
23 
24 /*
25  * summary bit vector
26  * FLOATING - summary bit per function
27  * DIRECTED - summary bit per cpu (only used in fallback path)
28  */
29 static struct airq_iv *zpci_sbv;
30 
31 /*
32  * interrupt bit vectors
33  * FLOATING - interrupt bit vector per function
34  * DIRECTED - interrupt bit vector per cpu
35  */
36 static struct airq_iv **zpci_ibv;
37 
38 /* Modify PCI: Register adapter interruptions */
39 static int zpci_set_airq(struct zpci_dev *zdev)
40 {
41 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
42 	struct zpci_fib fib = {0};
43 	u8 status;
44 
45 	fib.fmt0.isc = PCI_ISC;
46 	fib.fmt0.sum = 1;	/* enable summary notifications */
47 	fib.fmt0.noi = airq_iv_end(zdev->aibv);
48 	fib.fmt0.aibv = (unsigned long) zdev->aibv->vector;
49 	fib.fmt0.aibvo = 0;	/* each zdev has its own interrupt vector */
50 	fib.fmt0.aisb = (unsigned long) zpci_sbv->vector + (zdev->aisb/64)*8;
51 	fib.fmt0.aisbo = zdev->aisb & 63;
52 
53 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
54 }
55 
56 /* Modify PCI: Unregister adapter interruptions */
57 static int zpci_clear_airq(struct zpci_dev *zdev)
58 {
59 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
60 	struct zpci_fib fib = {0};
61 	u8 cc, status;
62 
63 	cc = zpci_mod_fc(req, &fib, &status);
64 	if (cc == 3 || (cc == 1 && status == 24))
65 		/* Function already gone or IRQs already deregistered. */
66 		cc = 0;
67 
68 	return cc ? -EIO : 0;
69 }
70 
71 /* Modify PCI: Register CPU directed interruptions */
72 static int zpci_set_directed_irq(struct zpci_dev *zdev)
73 {
74 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
75 	struct zpci_fib fib = {0};
76 	u8 status;
77 
78 	fib.fmt = 1;
79 	fib.fmt1.noi = zdev->msi_nr_irqs;
80 	fib.fmt1.dibvo = zdev->msi_first_bit;
81 
82 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
83 }
84 
85 /* Modify PCI: Unregister CPU directed interruptions */
86 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
87 {
88 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
89 	struct zpci_fib fib = {0};
90 	u8 cc, status;
91 
92 	fib.fmt = 1;
93 	cc = zpci_mod_fc(req, &fib, &status);
94 	if (cc == 3 || (cc == 1 && status == 24))
95 		/* Function already gone or IRQs already deregistered. */
96 		cc = 0;
97 
98 	return cc ? -EIO : 0;
99 }
100 
101 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
102 				 bool force)
103 {
104 	struct msi_desc *entry = irq_get_msi_desc(data->irq);
105 	struct msi_msg msg = entry->msg;
106 	int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
107 
108 	msg.address_lo &= 0xff0000ff;
109 	msg.address_lo |= (cpu_addr << 8);
110 	pci_write_msi_msg(data->irq, &msg);
111 
112 	return IRQ_SET_MASK_OK;
113 }
114 
115 static struct irq_chip zpci_irq_chip = {
116 	.name = "PCI-MSI",
117 	.irq_unmask = pci_msi_unmask_irq,
118 	.irq_mask = pci_msi_mask_irq,
119 };
120 
121 static void zpci_handle_cpu_local_irq(bool rescan)
122 {
123 	struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
124 	unsigned long bit;
125 	int irqs_on = 0;
126 
127 	for (bit = 0;;) {
128 		/* Scan the directed IRQ bit vector */
129 		bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
130 		if (bit == -1UL) {
131 			if (!rescan || irqs_on++)
132 				/* End of second scan with interrupts on. */
133 				break;
134 			/* First scan complete, reenable interrupts. */
135 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC))
136 				break;
137 			bit = 0;
138 			continue;
139 		}
140 		inc_irq_stat(IRQIO_MSI);
141 		generic_handle_irq(airq_iv_get_data(dibv, bit));
142 	}
143 }
144 
145 struct cpu_irq_data {
146 	call_single_data_t csd;
147 	atomic_t scheduled;
148 };
149 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
150 
151 static void zpci_handle_remote_irq(void *data)
152 {
153 	atomic_t *scheduled = data;
154 
155 	do {
156 		zpci_handle_cpu_local_irq(false);
157 	} while (atomic_dec_return(scheduled));
158 }
159 
160 static void zpci_handle_fallback_irq(void)
161 {
162 	struct cpu_irq_data *cpu_data;
163 	unsigned long cpu;
164 	int irqs_on = 0;
165 
166 	for (cpu = 0;;) {
167 		cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
168 		if (cpu == -1UL) {
169 			if (irqs_on++)
170 				/* End of second scan with interrupts on. */
171 				break;
172 			/* First scan complete, reenable interrupts. */
173 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
174 				break;
175 			cpu = 0;
176 			continue;
177 		}
178 		cpu_data = &per_cpu(irq_data, cpu);
179 		if (atomic_inc_return(&cpu_data->scheduled) > 1)
180 			continue;
181 
182 		INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
183 		smp_call_function_single_async(cpu, &cpu_data->csd);
184 	}
185 }
186 
187 static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating)
188 {
189 	if (floating) {
190 		inc_irq_stat(IRQIO_PCF);
191 		zpci_handle_fallback_irq();
192 	} else {
193 		inc_irq_stat(IRQIO_PCD);
194 		zpci_handle_cpu_local_irq(true);
195 	}
196 }
197 
198 static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating)
199 {
200 	unsigned long si, ai;
201 	struct airq_iv *aibv;
202 	int irqs_on = 0;
203 
204 	inc_irq_stat(IRQIO_PCF);
205 	for (si = 0;;) {
206 		/* Scan adapter summary indicator bit vector */
207 		si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
208 		if (si == -1UL) {
209 			if (irqs_on++)
210 				/* End of second scan with interrupts on. */
211 				break;
212 			/* First scan complete, reenable interrupts. */
213 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
214 				break;
215 			si = 0;
216 			continue;
217 		}
218 
219 		/* Scan the adapter interrupt vector for this device. */
220 		aibv = zpci_ibv[si];
221 		for (ai = 0;;) {
222 			ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
223 			if (ai == -1UL)
224 				break;
225 			inc_irq_stat(IRQIO_MSI);
226 			airq_iv_lock(aibv, ai);
227 			generic_handle_irq(airq_iv_get_data(aibv, ai));
228 			airq_iv_unlock(aibv, ai);
229 		}
230 	}
231 }
232 
233 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
234 {
235 	struct zpci_dev *zdev = to_zpci(pdev);
236 	unsigned int hwirq, msi_vecs, cpu;
237 	unsigned long bit;
238 	struct msi_desc *msi;
239 	struct msi_msg msg;
240 	int cpu_addr;
241 	int rc, irq;
242 
243 	zdev->aisb = -1UL;
244 	zdev->msi_first_bit = -1U;
245 	if (type == PCI_CAP_ID_MSI && nvec > 1)
246 		return 1;
247 	msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
248 
249 	if (irq_delivery == DIRECTED) {
250 		/* Allocate cpu vector bits */
251 		bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
252 		if (bit == -1UL)
253 			return -EIO;
254 	} else {
255 		/* Allocate adapter summary indicator bit */
256 		bit = airq_iv_alloc_bit(zpci_sbv);
257 		if (bit == -1UL)
258 			return -EIO;
259 		zdev->aisb = bit;
260 
261 		/* Create adapter interrupt vector */
262 		zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
263 		if (!zdev->aibv)
264 			return -ENOMEM;
265 
266 		/* Wire up shortcut pointer */
267 		zpci_ibv[bit] = zdev->aibv;
268 		/* Each function has its own interrupt vector */
269 		bit = 0;
270 	}
271 
272 	/* Request MSI interrupts */
273 	hwirq = bit;
274 	for_each_pci_msi_entry(msi, pdev) {
275 		rc = -EIO;
276 		if (hwirq - bit >= msi_vecs)
277 			break;
278 		irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE,
279 				(irq_delivery == DIRECTED) ?
280 				msi->affinity : NULL);
281 		if (irq < 0)
282 			return -ENOMEM;
283 		rc = irq_set_msi_desc(irq, msi);
284 		if (rc)
285 			return rc;
286 		irq_set_chip_and_handler(irq, &zpci_irq_chip,
287 					 handle_percpu_irq);
288 		msg.data = hwirq - bit;
289 		if (irq_delivery == DIRECTED) {
290 			if (msi->affinity)
291 				cpu = cpumask_first(&msi->affinity->mask);
292 			else
293 				cpu = 0;
294 			cpu_addr = smp_cpu_get_cpu_address(cpu);
295 
296 			msg.address_lo = zdev->msi_addr & 0xff0000ff;
297 			msg.address_lo |= (cpu_addr << 8);
298 
299 			for_each_possible_cpu(cpu) {
300 				airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
301 			}
302 		} else {
303 			msg.address_lo = zdev->msi_addr & 0xffffffff;
304 			airq_iv_set_data(zdev->aibv, hwirq, irq);
305 		}
306 		msg.address_hi = zdev->msi_addr >> 32;
307 		pci_write_msi_msg(irq, &msg);
308 		hwirq++;
309 	}
310 
311 	zdev->msi_first_bit = bit;
312 	zdev->msi_nr_irqs = msi_vecs;
313 
314 	if (irq_delivery == DIRECTED)
315 		rc = zpci_set_directed_irq(zdev);
316 	else
317 		rc = zpci_set_airq(zdev);
318 	if (rc)
319 		return rc;
320 
321 	return (msi_vecs == nvec) ? 0 : msi_vecs;
322 }
323 
324 void arch_teardown_msi_irqs(struct pci_dev *pdev)
325 {
326 	struct zpci_dev *zdev = to_zpci(pdev);
327 	struct msi_desc *msi;
328 	int rc;
329 
330 	/* Disable interrupts */
331 	if (irq_delivery == DIRECTED)
332 		rc = zpci_clear_directed_irq(zdev);
333 	else
334 		rc = zpci_clear_airq(zdev);
335 	if (rc)
336 		return;
337 
338 	/* Release MSI interrupts */
339 	for_each_pci_msi_entry(msi, pdev) {
340 		if (!msi->irq)
341 			continue;
342 		if (msi->msi_attrib.is_msix)
343 			__pci_msix_desc_mask_irq(msi, 1);
344 		else
345 			__pci_msi_desc_mask_irq(msi, 1, 1);
346 		irq_set_msi_desc(msi->irq, NULL);
347 		irq_free_desc(msi->irq);
348 		msi->msg.address_lo = 0;
349 		msi->msg.address_hi = 0;
350 		msi->msg.data = 0;
351 		msi->irq = 0;
352 	}
353 
354 	if (zdev->aisb != -1UL) {
355 		zpci_ibv[zdev->aisb] = NULL;
356 		airq_iv_free_bit(zpci_sbv, zdev->aisb);
357 		zdev->aisb = -1UL;
358 	}
359 	if (zdev->aibv) {
360 		airq_iv_release(zdev->aibv);
361 		zdev->aibv = NULL;
362 	}
363 
364 	if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
365 		airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
366 }
367 
368 static struct airq_struct zpci_airq = {
369 	.handler = zpci_floating_irq_handler,
370 	.isc = PCI_ISC,
371 };
372 
373 static void __init cpu_enable_directed_irq(void *unused)
374 {
375 	union zpci_sic_iib iib = {{0}};
376 
377 	iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
378 
379 	__zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
380 	zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC);
381 }
382 
383 static int __init zpci_directed_irq_init(void)
384 {
385 	union zpci_sic_iib iib = {{0}};
386 	unsigned int cpu;
387 
388 	zpci_sbv = airq_iv_create(num_possible_cpus(), 0);
389 	if (!zpci_sbv)
390 		return -ENOMEM;
391 
392 	iib.diib.isc = PCI_ISC;
393 	iib.diib.nr_cpus = num_possible_cpus();
394 	iib.diib.disb_addr = (u64) zpci_sbv->vector;
395 	__zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
396 
397 	zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
398 			   GFP_KERNEL);
399 	if (!zpci_ibv)
400 		return -ENOMEM;
401 
402 	for_each_possible_cpu(cpu) {
403 		/*
404 		 * Per CPU IRQ vectors look the same but bit-allocation
405 		 * is only done on the first vector.
406 		 */
407 		zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
408 					       AIRQ_IV_DATA |
409 					       AIRQ_IV_CACHELINE |
410 					       (!cpu ? AIRQ_IV_ALLOC : 0));
411 		if (!zpci_ibv[cpu])
412 			return -ENOMEM;
413 	}
414 	on_each_cpu(cpu_enable_directed_irq, NULL, 1);
415 
416 	zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
417 
418 	return 0;
419 }
420 
421 static int __init zpci_floating_irq_init(void)
422 {
423 	zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
424 	if (!zpci_ibv)
425 		return -ENOMEM;
426 
427 	zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
428 	if (!zpci_sbv)
429 		goto out_free;
430 
431 	return 0;
432 
433 out_free:
434 	kfree(zpci_ibv);
435 	return -ENOMEM;
436 }
437 
438 int __init zpci_irq_init(void)
439 {
440 	int rc;
441 
442 	irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
443 	if (s390_pci_force_floating)
444 		irq_delivery = FLOATING;
445 
446 	if (irq_delivery == DIRECTED)
447 		zpci_airq.handler = zpci_directed_irq_handler;
448 
449 	rc = register_adapter_interrupt(&zpci_airq);
450 	if (rc)
451 		goto out;
452 	/* Set summary to 1 to be called every time for the ISC. */
453 	*zpci_airq.lsi_ptr = 1;
454 
455 	switch (irq_delivery) {
456 	case FLOATING:
457 		rc = zpci_floating_irq_init();
458 		break;
459 	case DIRECTED:
460 		rc = zpci_directed_irq_init();
461 		break;
462 	}
463 
464 	if (rc)
465 		goto out_airq;
466 
467 	/*
468 	 * Enable floating IRQs (with suppression after one IRQ). When using
469 	 * directed IRQs this enables the fallback path.
470 	 */
471 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC);
472 
473 	return 0;
474 out_airq:
475 	unregister_adapter_interrupt(&zpci_airq);
476 out:
477 	return rc;
478 }
479 
480 void __init zpci_irq_exit(void)
481 {
482 	unsigned int cpu;
483 
484 	if (irq_delivery == DIRECTED) {
485 		for_each_possible_cpu(cpu) {
486 			airq_iv_release(zpci_ibv[cpu]);
487 		}
488 	}
489 	kfree(zpci_ibv);
490 	if (zpci_sbv)
491 		airq_iv_release(zpci_sbv);
492 	unregister_adapter_interrupt(&zpci_airq);
493 }
494