1 // SPDX-License-Identifier: GPL-2.0 2 #define KMSG_COMPONENT "zpci" 3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 4 5 #include <linux/kernel.h> 6 #include <linux/irq.h> 7 #include <linux/kernel_stat.h> 8 #include <linux/pci.h> 9 #include <linux/msi.h> 10 #include <linux/smp.h> 11 12 #include <asm/isc.h> 13 #include <asm/airq.h> 14 #include <asm/tpi.h> 15 16 static enum {FLOATING, DIRECTED} irq_delivery; 17 18 /* 19 * summary bit vector 20 * FLOATING - summary bit per function 21 * DIRECTED - summary bit per cpu (only used in fallback path) 22 */ 23 static struct airq_iv *zpci_sbv; 24 25 /* 26 * interrupt bit vectors 27 * FLOATING - interrupt bit vector per function 28 * DIRECTED - interrupt bit vector per cpu 29 */ 30 static struct airq_iv **zpci_ibv; 31 32 /* Modify PCI: Register floating adapter interruptions */ 33 static int zpci_set_airq(struct zpci_dev *zdev) 34 { 35 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT); 36 struct zpci_fib fib = {0}; 37 u8 status; 38 39 fib.fmt0.isc = PCI_ISC; 40 fib.fmt0.sum = 1; /* enable summary notifications */ 41 fib.fmt0.noi = airq_iv_end(zdev->aibv); 42 fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector); 43 fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */ 44 fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8; 45 fib.fmt0.aisbo = zdev->aisb & 63; 46 fib.gd = zdev->gisa; 47 48 return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; 49 } 50 51 /* Modify PCI: Unregister floating adapter interruptions */ 52 static int zpci_clear_airq(struct zpci_dev *zdev) 53 { 54 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT); 55 struct zpci_fib fib = {0}; 56 u8 cc, status; 57 58 fib.gd = zdev->gisa; 59 60 cc = zpci_mod_fc(req, &fib, &status); 61 if (cc == 3 || (cc == 1 && status == 24)) 62 /* Function already gone or IRQs already deregistered. */ 63 cc = 0; 64 65 return cc ? -EIO : 0; 66 } 67 68 /* Modify PCI: Register CPU directed interruptions */ 69 static int zpci_set_directed_irq(struct zpci_dev *zdev) 70 { 71 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D); 72 struct zpci_fib fib = {0}; 73 u8 status; 74 75 fib.fmt = 1; 76 fib.fmt1.noi = zdev->msi_nr_irqs; 77 fib.fmt1.dibvo = zdev->msi_first_bit; 78 fib.gd = zdev->gisa; 79 80 return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; 81 } 82 83 /* Modify PCI: Unregister CPU directed interruptions */ 84 static int zpci_clear_directed_irq(struct zpci_dev *zdev) 85 { 86 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D); 87 struct zpci_fib fib = {0}; 88 u8 cc, status; 89 90 fib.fmt = 1; 91 fib.gd = zdev->gisa; 92 cc = zpci_mod_fc(req, &fib, &status); 93 if (cc == 3 || (cc == 1 && status == 24)) 94 /* Function already gone or IRQs already deregistered. */ 95 cc = 0; 96 97 return cc ? -EIO : 0; 98 } 99 100 /* Register adapter interruptions */ 101 static int zpci_set_irq(struct zpci_dev *zdev) 102 { 103 int rc; 104 105 if (irq_delivery == DIRECTED) 106 rc = zpci_set_directed_irq(zdev); 107 else 108 rc = zpci_set_airq(zdev); 109 110 return rc; 111 } 112 113 /* Clear adapter interruptions */ 114 static int zpci_clear_irq(struct zpci_dev *zdev) 115 { 116 int rc; 117 118 if (irq_delivery == DIRECTED) 119 rc = zpci_clear_directed_irq(zdev); 120 else 121 rc = zpci_clear_airq(zdev); 122 123 return rc; 124 } 125 126 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest, 127 bool force) 128 { 129 struct msi_desc *entry = irq_data_get_msi_desc(data); 130 struct msi_msg msg = entry->msg; 131 int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest)); 132 133 msg.address_lo &= 0xff0000ff; 134 msg.address_lo |= (cpu_addr << 8); 135 pci_write_msi_msg(data->irq, &msg); 136 137 return IRQ_SET_MASK_OK; 138 } 139 140 static struct irq_chip zpci_irq_chip = { 141 .name = "PCI-MSI", 142 .irq_unmask = pci_msi_unmask_irq, 143 .irq_mask = pci_msi_mask_irq, 144 }; 145 146 static void zpci_handle_cpu_local_irq(bool rescan) 147 { 148 struct airq_iv *dibv = zpci_ibv[smp_processor_id()]; 149 union zpci_sic_iib iib = {{0}}; 150 unsigned long bit; 151 int irqs_on = 0; 152 153 for (bit = 0;;) { 154 /* Scan the directed IRQ bit vector */ 155 bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv)); 156 if (bit == -1UL) { 157 if (!rescan || irqs_on++) 158 /* End of second scan with interrupts on. */ 159 break; 160 /* First scan complete, re-enable interrupts. */ 161 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib)) 162 break; 163 bit = 0; 164 continue; 165 } 166 inc_irq_stat(IRQIO_MSI); 167 generic_handle_irq(airq_iv_get_data(dibv, bit)); 168 } 169 } 170 171 struct cpu_irq_data { 172 call_single_data_t csd; 173 atomic_t scheduled; 174 }; 175 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data); 176 177 static void zpci_handle_remote_irq(void *data) 178 { 179 atomic_t *scheduled = data; 180 181 do { 182 zpci_handle_cpu_local_irq(false); 183 } while (atomic_dec_return(scheduled)); 184 } 185 186 static void zpci_handle_fallback_irq(void) 187 { 188 struct cpu_irq_data *cpu_data; 189 union zpci_sic_iib iib = {{0}}; 190 unsigned long cpu; 191 int irqs_on = 0; 192 193 for (cpu = 0;;) { 194 cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv)); 195 if (cpu == -1UL) { 196 if (irqs_on++) 197 /* End of second scan with interrupts on. */ 198 break; 199 /* First scan complete, re-enable interrupts. */ 200 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib)) 201 break; 202 cpu = 0; 203 continue; 204 } 205 cpu_data = &per_cpu(irq_data, cpu); 206 if (atomic_inc_return(&cpu_data->scheduled) > 1) 207 continue; 208 209 INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled); 210 smp_call_function_single_async(cpu, &cpu_data->csd); 211 } 212 } 213 214 static void zpci_directed_irq_handler(struct airq_struct *airq, 215 struct tpi_info *tpi_info) 216 { 217 bool floating = !tpi_info->directed_irq; 218 219 if (floating) { 220 inc_irq_stat(IRQIO_PCF); 221 zpci_handle_fallback_irq(); 222 } else { 223 inc_irq_stat(IRQIO_PCD); 224 zpci_handle_cpu_local_irq(true); 225 } 226 } 227 228 static void zpci_floating_irq_handler(struct airq_struct *airq, 229 struct tpi_info *tpi_info) 230 { 231 union zpci_sic_iib iib = {{0}}; 232 unsigned long si, ai; 233 struct airq_iv *aibv; 234 int irqs_on = 0; 235 236 inc_irq_stat(IRQIO_PCF); 237 for (si = 0;;) { 238 /* Scan adapter summary indicator bit vector */ 239 si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv)); 240 if (si == -1UL) { 241 if (irqs_on++) 242 /* End of second scan with interrupts on. */ 243 break; 244 /* First scan complete, re-enable interrupts. */ 245 if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib)) 246 break; 247 si = 0; 248 continue; 249 } 250 251 /* Scan the adapter interrupt vector for this device. */ 252 aibv = zpci_ibv[si]; 253 for (ai = 0;;) { 254 ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv)); 255 if (ai == -1UL) 256 break; 257 inc_irq_stat(IRQIO_MSI); 258 airq_iv_lock(aibv, ai); 259 generic_handle_irq(airq_iv_get_data(aibv, ai)); 260 airq_iv_unlock(aibv, ai); 261 } 262 } 263 } 264 265 static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs, 266 unsigned long *bit) 267 { 268 if (irq_delivery == DIRECTED) { 269 /* Allocate cpu vector bits */ 270 *bit = airq_iv_alloc(zpci_ibv[0], msi_vecs); 271 if (*bit == -1UL) 272 return -EIO; 273 } else { 274 /* Allocate adapter summary indicator bit */ 275 *bit = airq_iv_alloc_bit(zpci_sbv); 276 if (*bit == -1UL) 277 return -EIO; 278 zdev->aisb = *bit; 279 280 /* Create adapter interrupt vector */ 281 zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL); 282 if (!zdev->aibv) 283 return -ENOMEM; 284 285 /* Wire up shortcut pointer */ 286 zpci_ibv[*bit] = zdev->aibv; 287 /* Each function has its own interrupt vector */ 288 *bit = 0; 289 } 290 return 0; 291 } 292 293 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type) 294 { 295 unsigned int hwirq, msi_vecs, irqs_per_msi, i, cpu; 296 struct zpci_dev *zdev = to_zpci(pdev); 297 struct msi_desc *msi; 298 struct msi_msg msg; 299 unsigned long bit; 300 int cpu_addr; 301 int rc, irq; 302 303 zdev->aisb = -1UL; 304 zdev->msi_first_bit = -1U; 305 306 msi_vecs = min_t(unsigned int, nvec, zdev->max_msi); 307 if (msi_vecs < nvec) { 308 pr_info("%s requested %d irqs, allocate system limit of %d", 309 pci_name(pdev), nvec, zdev->max_msi); 310 } 311 312 rc = __alloc_airq(zdev, msi_vecs, &bit); 313 if (rc < 0) 314 return rc; 315 316 /* 317 * Request MSI interrupts: 318 * When using MSI, nvec_used interrupt sources and their irq 319 * descriptors are controlled through one msi descriptor. 320 * Thus the outer loop over msi descriptors shall run only once, 321 * while two inner loops iterate over the interrupt vectors. 322 * When using MSI-X, each interrupt vector/irq descriptor 323 * is bound to exactly one msi descriptor (nvec_used is one). 324 * So the inner loops are executed once, while the outer iterates 325 * over the MSI-X descriptors. 326 */ 327 hwirq = bit; 328 msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) { 329 if (hwirq - bit >= msi_vecs) 330 break; 331 irqs_per_msi = min_t(unsigned int, msi_vecs, msi->nvec_used); 332 irq = __irq_alloc_descs(-1, 0, irqs_per_msi, 0, THIS_MODULE, 333 (irq_delivery == DIRECTED) ? 334 msi->affinity : NULL); 335 if (irq < 0) 336 return -ENOMEM; 337 338 for (i = 0; i < irqs_per_msi; i++) { 339 rc = irq_set_msi_desc_off(irq, i, msi); 340 if (rc) 341 return rc; 342 irq_set_chip_and_handler(irq + i, &zpci_irq_chip, 343 handle_percpu_irq); 344 } 345 346 msg.data = hwirq - bit; 347 if (irq_delivery == DIRECTED) { 348 if (msi->affinity) 349 cpu = cpumask_first(&msi->affinity->mask); 350 else 351 cpu = 0; 352 cpu_addr = smp_cpu_get_cpu_address(cpu); 353 354 msg.address_lo = zdev->msi_addr & 0xff0000ff; 355 msg.address_lo |= (cpu_addr << 8); 356 357 for_each_possible_cpu(cpu) { 358 for (i = 0; i < irqs_per_msi; i++) 359 airq_iv_set_data(zpci_ibv[cpu], 360 hwirq + i, irq + i); 361 } 362 } else { 363 msg.address_lo = zdev->msi_addr & 0xffffffff; 364 for (i = 0; i < irqs_per_msi; i++) 365 airq_iv_set_data(zdev->aibv, hwirq + i, irq + i); 366 } 367 msg.address_hi = zdev->msi_addr >> 32; 368 pci_write_msi_msg(irq, &msg); 369 hwirq += irqs_per_msi; 370 } 371 372 zdev->msi_first_bit = bit; 373 zdev->msi_nr_irqs = hwirq - bit; 374 375 rc = zpci_set_irq(zdev); 376 if (rc) 377 return rc; 378 379 return (zdev->msi_nr_irqs == nvec) ? 0 : zdev->msi_nr_irqs; 380 } 381 382 void arch_teardown_msi_irqs(struct pci_dev *pdev) 383 { 384 struct zpci_dev *zdev = to_zpci(pdev); 385 struct msi_desc *msi; 386 unsigned int i; 387 int rc; 388 389 /* Disable interrupts */ 390 rc = zpci_clear_irq(zdev); 391 if (rc) 392 return; 393 394 /* Release MSI interrupts */ 395 msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) { 396 for (i = 0; i < msi->nvec_used; i++) { 397 irq_set_msi_desc(msi->irq + i, NULL); 398 irq_free_desc(msi->irq + i); 399 } 400 msi->msg.address_lo = 0; 401 msi->msg.address_hi = 0; 402 msi->msg.data = 0; 403 msi->irq = 0; 404 } 405 406 if (zdev->aisb != -1UL) { 407 zpci_ibv[zdev->aisb] = NULL; 408 airq_iv_free_bit(zpci_sbv, zdev->aisb); 409 zdev->aisb = -1UL; 410 } 411 if (zdev->aibv) { 412 airq_iv_release(zdev->aibv); 413 zdev->aibv = NULL; 414 } 415 416 if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U) 417 airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs); 418 } 419 420 bool arch_restore_msi_irqs(struct pci_dev *pdev) 421 { 422 struct zpci_dev *zdev = to_zpci(pdev); 423 424 zpci_set_irq(zdev); 425 return true; 426 } 427 428 static struct airq_struct zpci_airq = { 429 .handler = zpci_floating_irq_handler, 430 .isc = PCI_ISC, 431 }; 432 433 static void __init cpu_enable_directed_irq(void *unused) 434 { 435 union zpci_sic_iib iib = {{0}}; 436 union zpci_sic_iib ziib = {{0}}; 437 438 iib.cdiib.dibv_addr = virt_to_phys(zpci_ibv[smp_processor_id()]->vector); 439 440 zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib); 441 zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib); 442 } 443 444 static int __init zpci_directed_irq_init(void) 445 { 446 union zpci_sic_iib iib = {{0}}; 447 unsigned int cpu; 448 449 zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL); 450 if (!zpci_sbv) 451 return -ENOMEM; 452 453 iib.diib.isc = PCI_ISC; 454 iib.diib.nr_cpus = num_possible_cpus(); 455 iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector); 456 zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib); 457 458 zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv), 459 GFP_KERNEL); 460 if (!zpci_ibv) 461 return -ENOMEM; 462 463 for_each_possible_cpu(cpu) { 464 /* 465 * Per CPU IRQ vectors look the same but bit-allocation 466 * is only done on the first vector. 467 */ 468 zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE, 469 AIRQ_IV_DATA | 470 AIRQ_IV_CACHELINE | 471 (!cpu ? AIRQ_IV_ALLOC : 0), NULL); 472 if (!zpci_ibv[cpu]) 473 return -ENOMEM; 474 } 475 on_each_cpu(cpu_enable_directed_irq, NULL, 1); 476 477 zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity; 478 479 return 0; 480 } 481 482 static int __init zpci_floating_irq_init(void) 483 { 484 zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL); 485 if (!zpci_ibv) 486 return -ENOMEM; 487 488 zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL); 489 if (!zpci_sbv) 490 goto out_free; 491 492 return 0; 493 494 out_free: 495 kfree(zpci_ibv); 496 return -ENOMEM; 497 } 498 499 int __init zpci_irq_init(void) 500 { 501 union zpci_sic_iib iib = {{0}}; 502 int rc; 503 504 irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING; 505 if (s390_pci_force_floating) 506 irq_delivery = FLOATING; 507 508 if (irq_delivery == DIRECTED) 509 zpci_airq.handler = zpci_directed_irq_handler; 510 511 rc = register_adapter_interrupt(&zpci_airq); 512 if (rc) 513 goto out; 514 /* Set summary to 1 to be called every time for the ISC. */ 515 *zpci_airq.lsi_ptr = 1; 516 517 switch (irq_delivery) { 518 case FLOATING: 519 rc = zpci_floating_irq_init(); 520 break; 521 case DIRECTED: 522 rc = zpci_directed_irq_init(); 523 break; 524 } 525 526 if (rc) 527 goto out_airq; 528 529 /* 530 * Enable floating IRQs (with suppression after one IRQ). When using 531 * directed IRQs this enables the fallback path. 532 */ 533 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib); 534 535 return 0; 536 out_airq: 537 unregister_adapter_interrupt(&zpci_airq); 538 out: 539 return rc; 540 } 541 542 void __init zpci_irq_exit(void) 543 { 544 unsigned int cpu; 545 546 if (irq_delivery == DIRECTED) { 547 for_each_possible_cpu(cpu) { 548 airq_iv_release(zpci_ibv[cpu]); 549 } 550 } 551 kfree(zpci_ibv); 552 if (zpci_sbv) 553 airq_iv_release(zpci_sbv); 554 unregister_adapter_interrupt(&zpci_airq); 555 } 556