xref: /linux/arch/s390/pci/pci_irq.c (revision 09b1704f5b02c18dd02b21343530463fcfc92c54)
1 // SPDX-License-Identifier: GPL-2.0
2 #define KMSG_COMPONENT "zpci"
3 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
4 
5 #include <linux/kernel.h>
6 #include <linux/irq.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/smp.h>
11 
12 #include <asm/isc.h>
13 #include <asm/airq.h>
14 #include <asm/tpi.h>
15 
16 static enum {FLOATING, DIRECTED} irq_delivery;
17 
18 /*
19  * summary bit vector
20  * FLOATING - summary bit per function
21  * DIRECTED - summary bit per cpu (only used in fallback path)
22  */
23 static struct airq_iv *zpci_sbv;
24 
25 /*
26  * interrupt bit vectors
27  * FLOATING - interrupt bit vector per function
28  * DIRECTED - interrupt bit vector per cpu
29  */
30 static struct airq_iv **zpci_ibv;
31 
32 /* Modify PCI: Register floating adapter interruptions */
33 static int zpci_set_airq(struct zpci_dev *zdev)
34 {
35 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
36 	struct zpci_fib fib = {0};
37 	u8 status;
38 
39 	fib.fmt0.isc = PCI_ISC;
40 	fib.fmt0.sum = 1;	/* enable summary notifications */
41 	fib.fmt0.noi = airq_iv_end(zdev->aibv);
42 	fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector);
43 	fib.fmt0.aibvo = 0;	/* each zdev has its own interrupt vector */
44 	fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8;
45 	fib.fmt0.aisbo = zdev->aisb & 63;
46 	fib.gd = zdev->gisa;
47 
48 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
49 }
50 
51 /* Modify PCI: Unregister floating adapter interruptions */
52 static int zpci_clear_airq(struct zpci_dev *zdev)
53 {
54 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
55 	struct zpci_fib fib = {0};
56 	u8 cc, status;
57 
58 	fib.gd = zdev->gisa;
59 
60 	cc = zpci_mod_fc(req, &fib, &status);
61 	if (cc == 3 || (cc == 1 && status == 24))
62 		/* Function already gone or IRQs already deregistered. */
63 		cc = 0;
64 
65 	return cc ? -EIO : 0;
66 }
67 
68 /* Modify PCI: Register CPU directed interruptions */
69 static int zpci_set_directed_irq(struct zpci_dev *zdev)
70 {
71 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
72 	struct zpci_fib fib = {0};
73 	u8 status;
74 
75 	fib.fmt = 1;
76 	fib.fmt1.noi = zdev->msi_nr_irqs;
77 	fib.fmt1.dibvo = zdev->msi_first_bit;
78 	fib.gd = zdev->gisa;
79 
80 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
81 }
82 
83 /* Modify PCI: Unregister CPU directed interruptions */
84 static int zpci_clear_directed_irq(struct zpci_dev *zdev)
85 {
86 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
87 	struct zpci_fib fib = {0};
88 	u8 cc, status;
89 
90 	fib.fmt = 1;
91 	fib.gd = zdev->gisa;
92 	cc = zpci_mod_fc(req, &fib, &status);
93 	if (cc == 3 || (cc == 1 && status == 24))
94 		/* Function already gone or IRQs already deregistered. */
95 		cc = 0;
96 
97 	return cc ? -EIO : 0;
98 }
99 
100 /* Register adapter interruptions */
101 static int zpci_set_irq(struct zpci_dev *zdev)
102 {
103 	int rc;
104 
105 	if (irq_delivery == DIRECTED)
106 		rc = zpci_set_directed_irq(zdev);
107 	else
108 		rc = zpci_set_airq(zdev);
109 
110 	return rc;
111 }
112 
113 /* Clear adapter interruptions */
114 static int zpci_clear_irq(struct zpci_dev *zdev)
115 {
116 	int rc;
117 
118 	if (irq_delivery == DIRECTED)
119 		rc = zpci_clear_directed_irq(zdev);
120 	else
121 		rc = zpci_clear_airq(zdev);
122 
123 	return rc;
124 }
125 
126 static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
127 				 bool force)
128 {
129 	struct msi_desc *entry = irq_data_get_msi_desc(data);
130 	struct msi_msg msg = entry->msg;
131 	int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
132 
133 	msg.address_lo &= 0xff0000ff;
134 	msg.address_lo |= (cpu_addr << 8);
135 	pci_write_msi_msg(data->irq, &msg);
136 
137 	return IRQ_SET_MASK_OK;
138 }
139 
140 static struct irq_chip zpci_irq_chip = {
141 	.name = "PCI-MSI",
142 	.irq_unmask = pci_msi_unmask_irq,
143 	.irq_mask = pci_msi_mask_irq,
144 };
145 
146 static void zpci_handle_cpu_local_irq(bool rescan)
147 {
148 	struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
149 	union zpci_sic_iib iib = {{0}};
150 	unsigned long bit;
151 	int irqs_on = 0;
152 
153 	for (bit = 0;;) {
154 		/* Scan the directed IRQ bit vector */
155 		bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
156 		if (bit == -1UL) {
157 			if (!rescan || irqs_on++)
158 				/* End of second scan with interrupts on. */
159 				break;
160 			/* First scan complete, re-enable interrupts. */
161 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib))
162 				break;
163 			bit = 0;
164 			continue;
165 		}
166 		inc_irq_stat(IRQIO_MSI);
167 		generic_handle_irq(airq_iv_get_data(dibv, bit));
168 	}
169 }
170 
171 struct cpu_irq_data {
172 	call_single_data_t csd;
173 	atomic_t scheduled;
174 };
175 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
176 
177 static void zpci_handle_remote_irq(void *data)
178 {
179 	atomic_t *scheduled = data;
180 
181 	do {
182 		zpci_handle_cpu_local_irq(false);
183 	} while (atomic_dec_return(scheduled));
184 }
185 
186 static void zpci_handle_fallback_irq(void)
187 {
188 	struct cpu_irq_data *cpu_data;
189 	union zpci_sic_iib iib = {{0}};
190 	unsigned long cpu;
191 	int irqs_on = 0;
192 
193 	for (cpu = 0;;) {
194 		cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
195 		if (cpu == -1UL) {
196 			if (irqs_on++)
197 				/* End of second scan with interrupts on. */
198 				break;
199 			/* First scan complete, re-enable interrupts. */
200 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
201 				break;
202 			cpu = 0;
203 			continue;
204 		}
205 		cpu_data = &per_cpu(irq_data, cpu);
206 		if (atomic_inc_return(&cpu_data->scheduled) > 1)
207 			continue;
208 
209 		INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled);
210 		smp_call_function_single_async(cpu, &cpu_data->csd);
211 	}
212 }
213 
214 static void zpci_directed_irq_handler(struct airq_struct *airq,
215 				      struct tpi_info *tpi_info)
216 {
217 	bool floating = !tpi_info->directed_irq;
218 
219 	if (floating) {
220 		inc_irq_stat(IRQIO_PCF);
221 		zpci_handle_fallback_irq();
222 	} else {
223 		inc_irq_stat(IRQIO_PCD);
224 		zpci_handle_cpu_local_irq(true);
225 	}
226 }
227 
228 static void zpci_floating_irq_handler(struct airq_struct *airq,
229 				      struct tpi_info *tpi_info)
230 {
231 	union zpci_sic_iib iib = {{0}};
232 	unsigned long si, ai;
233 	struct airq_iv *aibv;
234 	int irqs_on = 0;
235 
236 	inc_irq_stat(IRQIO_PCF);
237 	for (si = 0;;) {
238 		/* Scan adapter summary indicator bit vector */
239 		si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
240 		if (si == -1UL) {
241 			if (irqs_on++)
242 				/* End of second scan with interrupts on. */
243 				break;
244 			/* First scan complete, re-enable interrupts. */
245 			if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib))
246 				break;
247 			si = 0;
248 			continue;
249 		}
250 
251 		/* Scan the adapter interrupt vector for this device. */
252 		aibv = zpci_ibv[si];
253 		for (ai = 0;;) {
254 			ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
255 			if (ai == -1UL)
256 				break;
257 			inc_irq_stat(IRQIO_MSI);
258 			airq_iv_lock(aibv, ai);
259 			generic_handle_irq(airq_iv_get_data(aibv, ai));
260 			airq_iv_unlock(aibv, ai);
261 		}
262 	}
263 }
264 
265 static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs,
266 			unsigned long *bit)
267 {
268 	if (irq_delivery == DIRECTED) {
269 		/* Allocate cpu vector bits */
270 		*bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
271 		if (*bit == -1UL)
272 			return -EIO;
273 	} else {
274 		/* Allocate adapter summary indicator bit */
275 		*bit = airq_iv_alloc_bit(zpci_sbv);
276 		if (*bit == -1UL)
277 			return -EIO;
278 		zdev->aisb = *bit;
279 
280 		/* Create adapter interrupt vector */
281 		zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL);
282 		if (!zdev->aibv)
283 			return -ENOMEM;
284 
285 		/* Wire up shortcut pointer */
286 		zpci_ibv[*bit] = zdev->aibv;
287 		/* Each function has its own interrupt vector */
288 		*bit = 0;
289 	}
290 	return 0;
291 }
292 
293 int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
294 {
295 	unsigned int hwirq, msi_vecs, irqs_per_msi, i, cpu;
296 	struct zpci_dev *zdev = to_zpci(pdev);
297 	struct msi_desc *msi;
298 	struct msi_msg msg;
299 	unsigned long bit;
300 	int cpu_addr;
301 	int rc, irq;
302 
303 	zdev->aisb = -1UL;
304 	zdev->msi_first_bit = -1U;
305 
306 	msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
307 	if (msi_vecs < nvec) {
308 		pr_info("%s requested %d irqs, allocate system limit of %d",
309 			pci_name(pdev), nvec, zdev->max_msi);
310 	}
311 
312 	rc = __alloc_airq(zdev, msi_vecs, &bit);
313 	if (rc < 0)
314 		return rc;
315 
316 	/*
317 	 * Request MSI interrupts:
318 	 * When using MSI, nvec_used interrupt sources and their irq
319 	 * descriptors are controlled through one msi descriptor.
320 	 * Thus the outer loop over msi descriptors shall run only once,
321 	 * while two inner loops iterate over the interrupt vectors.
322 	 * When using MSI-X, each interrupt vector/irq descriptor
323 	 * is bound to exactly one msi descriptor (nvec_used is one).
324 	 * So the inner loops are executed once, while the outer iterates
325 	 * over the MSI-X descriptors.
326 	 */
327 	hwirq = bit;
328 	msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) {
329 		if (hwirq - bit >= msi_vecs)
330 			break;
331 		irqs_per_msi = min_t(unsigned int, msi_vecs, msi->nvec_used);
332 		irq = __irq_alloc_descs(-1, 0, irqs_per_msi, 0, THIS_MODULE,
333 					(irq_delivery == DIRECTED) ?
334 					msi->affinity : NULL);
335 		if (irq < 0)
336 			return -ENOMEM;
337 
338 		for (i = 0; i < irqs_per_msi; i++) {
339 			rc = irq_set_msi_desc_off(irq, i, msi);
340 			if (rc)
341 				return rc;
342 			irq_set_chip_and_handler(irq + i, &zpci_irq_chip,
343 						 handle_percpu_irq);
344 		}
345 
346 		msg.data = hwirq - bit;
347 		if (irq_delivery == DIRECTED) {
348 			if (msi->affinity)
349 				cpu = cpumask_first(&msi->affinity->mask);
350 			else
351 				cpu = 0;
352 			cpu_addr = smp_cpu_get_cpu_address(cpu);
353 
354 			msg.address_lo = zdev->msi_addr & 0xff0000ff;
355 			msg.address_lo |= (cpu_addr << 8);
356 
357 			for_each_possible_cpu(cpu) {
358 				for (i = 0; i < irqs_per_msi; i++)
359 					airq_iv_set_data(zpci_ibv[cpu],
360 							 hwirq + i, irq + i);
361 			}
362 		} else {
363 			msg.address_lo = zdev->msi_addr & 0xffffffff;
364 			for (i = 0; i < irqs_per_msi; i++)
365 				airq_iv_set_data(zdev->aibv, hwirq + i, irq + i);
366 		}
367 		msg.address_hi = zdev->msi_addr >> 32;
368 		pci_write_msi_msg(irq, &msg);
369 		hwirq += irqs_per_msi;
370 	}
371 
372 	zdev->msi_first_bit = bit;
373 	zdev->msi_nr_irqs = hwirq - bit;
374 
375 	rc = zpci_set_irq(zdev);
376 	if (rc)
377 		return rc;
378 
379 	return (zdev->msi_nr_irqs == nvec) ? 0 : zdev->msi_nr_irqs;
380 }
381 
382 void arch_teardown_msi_irqs(struct pci_dev *pdev)
383 {
384 	struct zpci_dev *zdev = to_zpci(pdev);
385 	struct msi_desc *msi;
386 	unsigned int i;
387 	int rc;
388 
389 	/* Disable interrupts */
390 	rc = zpci_clear_irq(zdev);
391 	if (rc)
392 		return;
393 
394 	/* Release MSI interrupts */
395 	msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) {
396 		for (i = 0; i < msi->nvec_used; i++) {
397 			irq_set_msi_desc(msi->irq + i, NULL);
398 			irq_free_desc(msi->irq + i);
399 		}
400 		msi->msg.address_lo = 0;
401 		msi->msg.address_hi = 0;
402 		msi->msg.data = 0;
403 		msi->irq = 0;
404 	}
405 
406 	if (zdev->aisb != -1UL) {
407 		zpci_ibv[zdev->aisb] = NULL;
408 		airq_iv_free_bit(zpci_sbv, zdev->aisb);
409 		zdev->aisb = -1UL;
410 	}
411 	if (zdev->aibv) {
412 		airq_iv_release(zdev->aibv);
413 		zdev->aibv = NULL;
414 	}
415 
416 	if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
417 		airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
418 }
419 
420 bool arch_restore_msi_irqs(struct pci_dev *pdev)
421 {
422 	struct zpci_dev *zdev = to_zpci(pdev);
423 
424 	zpci_set_irq(zdev);
425 	return true;
426 }
427 
428 static struct airq_struct zpci_airq = {
429 	.handler = zpci_floating_irq_handler,
430 	.isc = PCI_ISC,
431 };
432 
433 static void __init cpu_enable_directed_irq(void *unused)
434 {
435 	union zpci_sic_iib iib = {{0}};
436 	union zpci_sic_iib ziib = {{0}};
437 
438 	iib.cdiib.dibv_addr = virt_to_phys(zpci_ibv[smp_processor_id()]->vector);
439 
440 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
441 	zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib);
442 }
443 
444 static int __init zpci_directed_irq_init(void)
445 {
446 	union zpci_sic_iib iib = {{0}};
447 	unsigned int cpu;
448 
449 	zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL);
450 	if (!zpci_sbv)
451 		return -ENOMEM;
452 
453 	iib.diib.isc = PCI_ISC;
454 	iib.diib.nr_cpus = num_possible_cpus();
455 	iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector);
456 	zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
457 
458 	zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
459 			   GFP_KERNEL);
460 	if (!zpci_ibv)
461 		return -ENOMEM;
462 
463 	for_each_possible_cpu(cpu) {
464 		/*
465 		 * Per CPU IRQ vectors look the same but bit-allocation
466 		 * is only done on the first vector.
467 		 */
468 		zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
469 					       AIRQ_IV_DATA |
470 					       AIRQ_IV_CACHELINE |
471 					       (!cpu ? AIRQ_IV_ALLOC : 0), NULL);
472 		if (!zpci_ibv[cpu])
473 			return -ENOMEM;
474 	}
475 	on_each_cpu(cpu_enable_directed_irq, NULL, 1);
476 
477 	zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
478 
479 	return 0;
480 }
481 
482 static int __init zpci_floating_irq_init(void)
483 {
484 	zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
485 	if (!zpci_ibv)
486 		return -ENOMEM;
487 
488 	zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL);
489 	if (!zpci_sbv)
490 		goto out_free;
491 
492 	return 0;
493 
494 out_free:
495 	kfree(zpci_ibv);
496 	return -ENOMEM;
497 }
498 
499 int __init zpci_irq_init(void)
500 {
501 	union zpci_sic_iib iib = {{0}};
502 	int rc;
503 
504 	irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
505 	if (s390_pci_force_floating)
506 		irq_delivery = FLOATING;
507 
508 	if (irq_delivery == DIRECTED)
509 		zpci_airq.handler = zpci_directed_irq_handler;
510 
511 	rc = register_adapter_interrupt(&zpci_airq);
512 	if (rc)
513 		goto out;
514 	/* Set summary to 1 to be called every time for the ISC. */
515 	*zpci_airq.lsi_ptr = 1;
516 
517 	switch (irq_delivery) {
518 	case FLOATING:
519 		rc = zpci_floating_irq_init();
520 		break;
521 	case DIRECTED:
522 		rc = zpci_directed_irq_init();
523 		break;
524 	}
525 
526 	if (rc)
527 		goto out_airq;
528 
529 	/*
530 	 * Enable floating IRQs (with suppression after one IRQ). When using
531 	 * directed IRQs this enables the fallback path.
532 	 */
533 	zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib);
534 
535 	return 0;
536 out_airq:
537 	unregister_adapter_interrupt(&zpci_airq);
538 out:
539 	return rc;
540 }
541 
542 void __init zpci_irq_exit(void)
543 {
544 	unsigned int cpu;
545 
546 	if (irq_delivery == DIRECTED) {
547 		for_each_possible_cpu(cpu) {
548 			airq_iv_release(zpci_ibv[cpu]);
549 		}
550 	}
551 	kfree(zpci_ibv);
552 	if (zpci_sbv)
553 		airq_iv_release(zpci_sbv);
554 	unregister_adapter_interrupt(&zpci_airq);
555 }
556