xref: /linux/arch/s390/pci/pci.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  *
8  * The System z PCI code is a rewrite from a prototype by
9  * the following people (Kudoz!):
10  *   Alexander Schmidt
11  *   Christoph Raisch
12  *   Hannes Hering
13  *   Hoang-Nam Nguyen
14  *   Jan-Bernd Themann
15  *   Stefan Roscher
16  *   Thomas Klein
17  */
18 
19 #define KMSG_COMPONENT "zpci"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/err.h>
25 #include <linux/export.h>
26 #include <linux/delay.h>
27 #include <linux/seq_file.h>
28 #include <linux/jump_label.h>
29 #include <linux/pci.h>
30 #include <linux/printk.h>
31 #include <linux/lockdep.h>
32 
33 #include <asm/isc.h>
34 #include <asm/airq.h>
35 #include <asm/facility.h>
36 #include <asm/pci_insn.h>
37 #include <asm/pci_clp.h>
38 #include <asm/pci_dma.h>
39 
40 #include "pci_bus.h"
41 #include "pci_iov.h"
42 
43 /* list of all detected zpci devices */
44 static LIST_HEAD(zpci_list);
45 static DEFINE_SPINLOCK(zpci_list_lock);
46 
47 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
48 static DEFINE_SPINLOCK(zpci_domain_lock);
49 
50 #define ZPCI_IOMAP_ENTRIES						\
51 	min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),	\
52 	    ZPCI_IOMAP_MAX_ENTRIES)
53 
54 unsigned int s390_pci_no_rid;
55 
56 static DEFINE_SPINLOCK(zpci_iomap_lock);
57 static unsigned long *zpci_iomap_bitmap;
58 struct zpci_iomap_entry *zpci_iomap_start;
59 EXPORT_SYMBOL_GPL(zpci_iomap_start);
60 
61 DEFINE_STATIC_KEY_FALSE(have_mio);
62 
63 static struct kmem_cache *zdev_fmb_cache;
64 
65 /* AEN structures that must be preserved over KVM module re-insertion */
66 union zpci_sic_iib *zpci_aipb;
67 EXPORT_SYMBOL_GPL(zpci_aipb);
68 struct airq_iv *zpci_aif_sbv;
69 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
70 
71 struct zpci_dev *get_zdev_by_fid(u32 fid)
72 {
73 	struct zpci_dev *tmp, *zdev = NULL;
74 
75 	spin_lock(&zpci_list_lock);
76 	list_for_each_entry(tmp, &zpci_list, entry) {
77 		if (tmp->fid == fid) {
78 			zdev = tmp;
79 			zpci_zdev_get(zdev);
80 			break;
81 		}
82 	}
83 	spin_unlock(&zpci_list_lock);
84 	return zdev;
85 }
86 
87 void zpci_remove_reserved_devices(void)
88 {
89 	struct zpci_dev *tmp, *zdev;
90 	enum zpci_state state;
91 	LIST_HEAD(remove);
92 
93 	spin_lock(&zpci_list_lock);
94 	list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
95 		if (zdev->state == ZPCI_FN_STATE_STANDBY &&
96 		    !clp_get_state(zdev->fid, &state) &&
97 		    state == ZPCI_FN_STATE_RESERVED)
98 			list_move_tail(&zdev->entry, &remove);
99 	}
100 	spin_unlock(&zpci_list_lock);
101 
102 	list_for_each_entry_safe(zdev, tmp, &remove, entry)
103 		zpci_device_reserved(zdev);
104 }
105 
106 int pci_domain_nr(struct pci_bus *bus)
107 {
108 	return ((struct zpci_bus *) bus->sysdata)->domain_nr;
109 }
110 EXPORT_SYMBOL_GPL(pci_domain_nr);
111 
112 int pci_proc_domain(struct pci_bus *bus)
113 {
114 	return pci_domain_nr(bus);
115 }
116 EXPORT_SYMBOL_GPL(pci_proc_domain);
117 
118 /* Modify PCI: Register I/O address translation parameters */
119 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
120 		       u64 base, u64 limit, u64 iota, u8 *status)
121 {
122 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
123 	struct zpci_fib fib = {0};
124 	u8 cc;
125 
126 	WARN_ON_ONCE(iota & 0x3fff);
127 	fib.pba = base;
128 	/* Work around off by one in ISM virt device */
129 	if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
130 		fib.pal = limit + (1 << 12);
131 	else
132 		fib.pal = limit;
133 	fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
134 	fib.gd = zdev->gisa;
135 	cc = zpci_mod_fc(req, &fib, status);
136 	if (cc)
137 		zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
138 	return cc;
139 }
140 EXPORT_SYMBOL_GPL(zpci_register_ioat);
141 
142 /* Modify PCI: Unregister I/O address translation parameters */
143 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
144 {
145 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
146 	struct zpci_fib fib = {0};
147 	u8 cc, status;
148 
149 	fib.gd = zdev->gisa;
150 
151 	cc = zpci_mod_fc(req, &fib, &status);
152 	if (cc)
153 		zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
154 	return cc;
155 }
156 
157 /* Modify PCI: Set PCI function measurement parameters */
158 int zpci_fmb_enable_device(struct zpci_dev *zdev)
159 {
160 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
161 	struct zpci_iommu_ctrs *ctrs;
162 	struct zpci_fib fib = {0};
163 	u8 cc, status;
164 
165 	if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
166 		return -EINVAL;
167 
168 	zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
169 	if (!zdev->fmb)
170 		return -ENOMEM;
171 	WARN_ON((u64) zdev->fmb & 0xf);
172 
173 	/* reset software counters */
174 	ctrs = zpci_get_iommu_ctrs(zdev);
175 	if (ctrs) {
176 		atomic64_set(&ctrs->mapped_pages, 0);
177 		atomic64_set(&ctrs->unmapped_pages, 0);
178 		atomic64_set(&ctrs->global_rpcits, 0);
179 		atomic64_set(&ctrs->sync_map_rpcits, 0);
180 		atomic64_set(&ctrs->sync_rpcits, 0);
181 	}
182 
183 
184 	fib.fmb_addr = virt_to_phys(zdev->fmb);
185 	fib.gd = zdev->gisa;
186 	cc = zpci_mod_fc(req, &fib, &status);
187 	if (cc) {
188 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
189 		zdev->fmb = NULL;
190 	}
191 	return cc ? -EIO : 0;
192 }
193 
194 /* Modify PCI: Disable PCI function measurement */
195 int zpci_fmb_disable_device(struct zpci_dev *zdev)
196 {
197 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
198 	struct zpci_fib fib = {0};
199 	u8 cc, status;
200 
201 	if (!zdev->fmb)
202 		return -EINVAL;
203 
204 	fib.gd = zdev->gisa;
205 
206 	/* Function measurement is disabled if fmb address is zero */
207 	cc = zpci_mod_fc(req, &fib, &status);
208 	if (cc == 3) /* Function already gone. */
209 		cc = 0;
210 
211 	if (!cc) {
212 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
213 		zdev->fmb = NULL;
214 	}
215 	return cc ? -EIO : 0;
216 }
217 
218 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
219 {
220 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
221 	u64 data;
222 	int rc;
223 
224 	rc = __zpci_load(&data, req, offset);
225 	if (!rc) {
226 		data = le64_to_cpu((__force __le64) data);
227 		data >>= (8 - len) * 8;
228 		*val = (u32) data;
229 	} else
230 		*val = 0xffffffff;
231 	return rc;
232 }
233 
234 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
235 {
236 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
237 	u64 data = val;
238 	int rc;
239 
240 	data <<= (8 - len) * 8;
241 	data = (__force u64) cpu_to_le64(data);
242 	rc = __zpci_store(data, req, offset);
243 	return rc;
244 }
245 
246 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
247 				       resource_size_t size,
248 				       resource_size_t align)
249 {
250 	return 0;
251 }
252 
253 /* combine single writes by using store-block insn */
254 void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
255 {
256 	zpci_memcpy_toio(to, from, count * 8);
257 }
258 
259 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
260 			   unsigned long prot)
261 {
262 	/*
263 	 * When PCI MIO instructions are unavailable the "physical" address
264 	 * encodes a hint for accessing the PCI memory space it represents.
265 	 * Just pass it unchanged such that ioread/iowrite can decode it.
266 	 */
267 	if (!static_branch_unlikely(&have_mio))
268 		return (void __iomem *)phys_addr;
269 
270 	return generic_ioremap_prot(phys_addr, size, __pgprot(prot));
271 }
272 EXPORT_SYMBOL(ioremap_prot);
273 
274 void iounmap(volatile void __iomem *addr)
275 {
276 	if (static_branch_likely(&have_mio))
277 		generic_iounmap(addr);
278 }
279 EXPORT_SYMBOL(iounmap);
280 
281 /* Create a virtual mapping cookie for a PCI BAR */
282 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
283 					unsigned long offset, unsigned long max)
284 {
285 	struct zpci_dev *zdev =	to_zpci(pdev);
286 	int idx;
287 
288 	idx = zdev->bars[bar].map_idx;
289 	spin_lock(&zpci_iomap_lock);
290 	/* Detect overrun */
291 	WARN_ON(!++zpci_iomap_start[idx].count);
292 	zpci_iomap_start[idx].fh = zdev->fh;
293 	zpci_iomap_start[idx].bar = bar;
294 	spin_unlock(&zpci_iomap_lock);
295 
296 	return (void __iomem *) ZPCI_ADDR(idx) + offset;
297 }
298 
299 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
300 					 unsigned long offset,
301 					 unsigned long max)
302 {
303 	unsigned long barsize = pci_resource_len(pdev, bar);
304 	struct zpci_dev *zdev = to_zpci(pdev);
305 	void __iomem *iova;
306 
307 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
308 	return iova ? iova + offset : iova;
309 }
310 
311 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
312 			      unsigned long offset, unsigned long max)
313 {
314 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
315 		return NULL;
316 
317 	if (static_branch_likely(&have_mio))
318 		return pci_iomap_range_mio(pdev, bar, offset, max);
319 	else
320 		return pci_iomap_range_fh(pdev, bar, offset, max);
321 }
322 EXPORT_SYMBOL(pci_iomap_range);
323 
324 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
325 {
326 	return pci_iomap_range(dev, bar, 0, maxlen);
327 }
328 EXPORT_SYMBOL(pci_iomap);
329 
330 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
331 					    unsigned long offset, unsigned long max)
332 {
333 	unsigned long barsize = pci_resource_len(pdev, bar);
334 	struct zpci_dev *zdev = to_zpci(pdev);
335 	void __iomem *iova;
336 
337 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
338 	return iova ? iova + offset : iova;
339 }
340 
341 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
342 				 unsigned long offset, unsigned long max)
343 {
344 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
345 		return NULL;
346 
347 	if (static_branch_likely(&have_mio))
348 		return pci_iomap_wc_range_mio(pdev, bar, offset, max);
349 	else
350 		return pci_iomap_range_fh(pdev, bar, offset, max);
351 }
352 EXPORT_SYMBOL(pci_iomap_wc_range);
353 
354 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
355 {
356 	return pci_iomap_wc_range(dev, bar, 0, maxlen);
357 }
358 EXPORT_SYMBOL(pci_iomap_wc);
359 
360 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
361 {
362 	unsigned int idx = ZPCI_IDX(addr);
363 
364 	spin_lock(&zpci_iomap_lock);
365 	/* Detect underrun */
366 	WARN_ON(!zpci_iomap_start[idx].count);
367 	if (!--zpci_iomap_start[idx].count) {
368 		zpci_iomap_start[idx].fh = 0;
369 		zpci_iomap_start[idx].bar = 0;
370 	}
371 	spin_unlock(&zpci_iomap_lock);
372 }
373 
374 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
375 {
376 	iounmap(addr);
377 }
378 
379 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
380 {
381 	if (static_branch_likely(&have_mio))
382 		pci_iounmap_mio(pdev, addr);
383 	else
384 		pci_iounmap_fh(pdev, addr);
385 }
386 EXPORT_SYMBOL(pci_iounmap);
387 
388 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
389 		    int size, u32 *val)
390 {
391 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
392 
393 	return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
394 }
395 
396 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
397 		     int size, u32 val)
398 {
399 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
400 
401 	return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
402 }
403 
404 static struct pci_ops pci_root_ops = {
405 	.read = pci_read,
406 	.write = pci_write,
407 };
408 
409 static void zpci_map_resources(struct pci_dev *pdev)
410 {
411 	struct zpci_dev *zdev = to_zpci(pdev);
412 	resource_size_t len;
413 	int i;
414 
415 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
416 		len = pci_resource_len(pdev, i);
417 		if (!len)
418 			continue;
419 
420 		if (zpci_use_mio(zdev))
421 			pdev->resource[i].start =
422 				(resource_size_t __force) zdev->bars[i].mio_wt;
423 		else
424 			pdev->resource[i].start = (resource_size_t __force)
425 				pci_iomap_range_fh(pdev, i, 0, 0);
426 		pdev->resource[i].end = pdev->resource[i].start + len - 1;
427 	}
428 
429 	zpci_iov_map_resources(pdev);
430 }
431 
432 static void zpci_unmap_resources(struct pci_dev *pdev)
433 {
434 	struct zpci_dev *zdev = to_zpci(pdev);
435 	resource_size_t len;
436 	int i;
437 
438 	if (zpci_use_mio(zdev))
439 		return;
440 
441 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
442 		len = pci_resource_len(pdev, i);
443 		if (!len)
444 			continue;
445 		pci_iounmap_fh(pdev, (void __iomem __force *)
446 			       pdev->resource[i].start);
447 	}
448 }
449 
450 static int zpci_alloc_iomap(struct zpci_dev *zdev)
451 {
452 	unsigned long entry;
453 
454 	spin_lock(&zpci_iomap_lock);
455 	entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
456 	if (entry == ZPCI_IOMAP_ENTRIES) {
457 		spin_unlock(&zpci_iomap_lock);
458 		return -ENOSPC;
459 	}
460 	set_bit(entry, zpci_iomap_bitmap);
461 	spin_unlock(&zpci_iomap_lock);
462 	return entry;
463 }
464 
465 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
466 {
467 	spin_lock(&zpci_iomap_lock);
468 	memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
469 	clear_bit(entry, zpci_iomap_bitmap);
470 	spin_unlock(&zpci_iomap_lock);
471 }
472 
473 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
474 {
475 	int bar, idx;
476 
477 	spin_lock(&zpci_iomap_lock);
478 	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
479 		if (!zdev->bars[bar].size)
480 			continue;
481 		idx = zdev->bars[bar].map_idx;
482 		if (!zpci_iomap_start[idx].count)
483 			continue;
484 		WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
485 	}
486 	spin_unlock(&zpci_iomap_lock);
487 }
488 
489 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
490 {
491 	if (!fh || zdev->fh == fh)
492 		return;
493 
494 	zdev->fh = fh;
495 	if (zpci_use_mio(zdev))
496 		return;
497 	if (zdev->has_resources && zdev_enabled(zdev))
498 		zpci_do_update_iomap_fh(zdev, fh);
499 }
500 
501 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
502 				    unsigned long size, unsigned long flags)
503 {
504 	struct resource *r;
505 
506 	r = kzalloc(sizeof(*r), GFP_KERNEL);
507 	if (!r)
508 		return NULL;
509 
510 	r->start = start;
511 	r->end = r->start + size - 1;
512 	r->flags = flags;
513 	r->name = zdev->res_name;
514 
515 	if (request_resource(&iomem_resource, r)) {
516 		kfree(r);
517 		return NULL;
518 	}
519 	return r;
520 }
521 
522 int zpci_setup_bus_resources(struct zpci_dev *zdev)
523 {
524 	unsigned long addr, size, flags;
525 	struct resource *res;
526 	int i, entry;
527 
528 	snprintf(zdev->res_name, sizeof(zdev->res_name),
529 		 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
530 
531 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
532 		if (!zdev->bars[i].size)
533 			continue;
534 		entry = zpci_alloc_iomap(zdev);
535 		if (entry < 0)
536 			return entry;
537 		zdev->bars[i].map_idx = entry;
538 
539 		/* only MMIO is supported */
540 		flags = IORESOURCE_MEM;
541 		if (zdev->bars[i].val & 8)
542 			flags |= IORESOURCE_PREFETCH;
543 		if (zdev->bars[i].val & 4)
544 			flags |= IORESOURCE_MEM_64;
545 
546 		if (zpci_use_mio(zdev))
547 			addr = (unsigned long) zdev->bars[i].mio_wt;
548 		else
549 			addr = ZPCI_ADDR(entry);
550 		size = 1UL << zdev->bars[i].size;
551 
552 		res = __alloc_res(zdev, addr, size, flags);
553 		if (!res) {
554 			zpci_free_iomap(zdev, entry);
555 			return -ENOMEM;
556 		}
557 		zdev->bars[i].res = res;
558 	}
559 	zdev->has_resources = 1;
560 
561 	return 0;
562 }
563 
564 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
565 {
566 	struct resource *res;
567 	int i;
568 
569 	pci_lock_rescan_remove();
570 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
571 		res = zdev->bars[i].res;
572 		if (!res)
573 			continue;
574 
575 		release_resource(res);
576 		pci_bus_remove_resource(zdev->zbus->bus, res);
577 		zpci_free_iomap(zdev, zdev->bars[i].map_idx);
578 		zdev->bars[i].res = NULL;
579 		kfree(res);
580 	}
581 	zdev->has_resources = 0;
582 	pci_unlock_rescan_remove();
583 }
584 
585 int pcibios_device_add(struct pci_dev *pdev)
586 {
587 	struct zpci_dev *zdev = to_zpci(pdev);
588 	struct resource *res;
589 	int i;
590 
591 	/* The pdev has a reference to the zdev via its bus */
592 	zpci_zdev_get(zdev);
593 	if (pdev->is_physfn)
594 		pdev->no_vf_scan = 1;
595 
596 	pdev->dev.groups = zpci_attr_groups;
597 	zpci_map_resources(pdev);
598 
599 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
600 		res = &pdev->resource[i];
601 		if (res->parent || !res->flags)
602 			continue;
603 		pci_claim_resource(pdev, i);
604 	}
605 
606 	return 0;
607 }
608 
609 void pcibios_release_device(struct pci_dev *pdev)
610 {
611 	struct zpci_dev *zdev = to_zpci(pdev);
612 
613 	zpci_unmap_resources(pdev);
614 	zpci_zdev_put(zdev);
615 }
616 
617 int pcibios_enable_device(struct pci_dev *pdev, int mask)
618 {
619 	struct zpci_dev *zdev = to_zpci(pdev);
620 
621 	zpci_debug_init_device(zdev, dev_name(&pdev->dev));
622 	zpci_fmb_enable_device(zdev);
623 
624 	return pci_enable_resources(pdev, mask);
625 }
626 
627 void pcibios_disable_device(struct pci_dev *pdev)
628 {
629 	struct zpci_dev *zdev = to_zpci(pdev);
630 
631 	zpci_fmb_disable_device(zdev);
632 	zpci_debug_exit_device(zdev);
633 }
634 
635 static int __zpci_register_domain(int domain)
636 {
637 	spin_lock(&zpci_domain_lock);
638 	if (test_bit(domain, zpci_domain)) {
639 		spin_unlock(&zpci_domain_lock);
640 		pr_err("Domain %04x is already assigned\n", domain);
641 		return -EEXIST;
642 	}
643 	set_bit(domain, zpci_domain);
644 	spin_unlock(&zpci_domain_lock);
645 	return domain;
646 }
647 
648 static int __zpci_alloc_domain(void)
649 {
650 	int domain;
651 
652 	spin_lock(&zpci_domain_lock);
653 	/*
654 	 * We can always auto allocate domains below ZPCI_NR_DEVICES.
655 	 * There is either a free domain or we have reached the maximum in
656 	 * which case we would have bailed earlier.
657 	 */
658 	domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
659 	set_bit(domain, zpci_domain);
660 	spin_unlock(&zpci_domain_lock);
661 	return domain;
662 }
663 
664 int zpci_alloc_domain(int domain)
665 {
666 	if (zpci_unique_uid) {
667 		if (domain)
668 			return __zpci_register_domain(domain);
669 		pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
670 		update_uid_checking(false);
671 	}
672 	return __zpci_alloc_domain();
673 }
674 
675 void zpci_free_domain(int domain)
676 {
677 	spin_lock(&zpci_domain_lock);
678 	clear_bit(domain, zpci_domain);
679 	spin_unlock(&zpci_domain_lock);
680 }
681 
682 
683 int zpci_enable_device(struct zpci_dev *zdev)
684 {
685 	u32 fh = zdev->fh;
686 	int rc = 0;
687 
688 	if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
689 		rc = -EIO;
690 	else
691 		zpci_update_fh(zdev, fh);
692 	return rc;
693 }
694 EXPORT_SYMBOL_GPL(zpci_enable_device);
695 
696 int zpci_disable_device(struct zpci_dev *zdev)
697 {
698 	u32 fh = zdev->fh;
699 	int cc, rc = 0;
700 
701 	cc = clp_disable_fh(zdev, &fh);
702 	if (!cc) {
703 		zpci_update_fh(zdev, fh);
704 	} else if (cc == CLP_RC_SETPCIFN_ALRDY) {
705 		pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
706 			zdev->fid);
707 		/* Function is already disabled - update handle */
708 		rc = clp_refresh_fh(zdev->fid, &fh);
709 		if (!rc) {
710 			zpci_update_fh(zdev, fh);
711 			rc = -EINVAL;
712 		}
713 	} else {
714 		rc = -EIO;
715 	}
716 	return rc;
717 }
718 EXPORT_SYMBOL_GPL(zpci_disable_device);
719 
720 /**
721  * zpci_hot_reset_device - perform a reset of the given zPCI function
722  * @zdev: the slot which should be reset
723  *
724  * Performs a low level reset of the zPCI function. The reset is low level in
725  * the sense that the zPCI function can be reset without detaching it from the
726  * common PCI subsystem. The reset may be performed while under control of
727  * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
728  * table is reinstated at the end of the reset.
729  *
730  * After the reset the functions internal state is reset to an initial state
731  * equivalent to its state during boot when first probing a driver.
732  * Consequently after reset the PCI function requires re-initialization via the
733  * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
734  * and enabling the function via e.g. pci_enable_device_flags(). The caller
735  * must guard against concurrent reset attempts.
736  *
737  * In most cases this function should not be called directly but through
738  * pci_reset_function() or pci_reset_bus() which handle the save/restore and
739  * locking - asserted by lockdep.
740  *
741  * Return: 0 on success and an error value otherwise
742  */
743 int zpci_hot_reset_device(struct zpci_dev *zdev)
744 {
745 	u8 status;
746 	int rc;
747 
748 	lockdep_assert_held(&zdev->state_lock);
749 	zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
750 	if (zdev_enabled(zdev)) {
751 		/* Disables device access, DMAs and IRQs (reset state) */
752 		rc = zpci_disable_device(zdev);
753 		/*
754 		 * Due to a z/VM vs LPAR inconsistency in the error state the
755 		 * FH may indicate an enabled device but disable says the
756 		 * device is already disabled don't treat it as an error here.
757 		 */
758 		if (rc == -EINVAL)
759 			rc = 0;
760 		if (rc)
761 			return rc;
762 	}
763 
764 	rc = zpci_enable_device(zdev);
765 	if (rc)
766 		return rc;
767 
768 	if (zdev->dma_table)
769 		rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
770 					virt_to_phys(zdev->dma_table), &status);
771 	if (rc) {
772 		zpci_disable_device(zdev);
773 		return rc;
774 	}
775 
776 	return 0;
777 }
778 
779 /**
780  * zpci_create_device() - Create a new zpci_dev and add it to the zbus
781  * @fid: Function ID of the device to be created
782  * @fh: Current Function Handle of the device to be created
783  * @state: Initial state after creation either Standby or Configured
784  *
785  * Creates a new zpci device and adds it to its, possibly newly created, zbus
786  * as well as zpci_list.
787  *
788  * Returns: the zdev on success or an error pointer otherwise
789  */
790 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
791 {
792 	struct zpci_dev *zdev;
793 	int rc;
794 
795 	zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
796 	zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
797 	if (!zdev)
798 		return ERR_PTR(-ENOMEM);
799 
800 	/* FID and Function Handle are the static/dynamic identifiers */
801 	zdev->fid = fid;
802 	zdev->fh = fh;
803 
804 	/* Query function properties and update zdev */
805 	rc = clp_query_pci_fn(zdev);
806 	if (rc)
807 		goto error;
808 	zdev->state =  state;
809 
810 	kref_init(&zdev->kref);
811 	mutex_init(&zdev->state_lock);
812 	mutex_init(&zdev->fmb_lock);
813 	mutex_init(&zdev->kzdev_lock);
814 
815 	rc = zpci_init_iommu(zdev);
816 	if (rc)
817 		goto error;
818 
819 	rc = zpci_bus_device_register(zdev, &pci_root_ops);
820 	if (rc)
821 		goto error_destroy_iommu;
822 
823 	spin_lock(&zpci_list_lock);
824 	list_add_tail(&zdev->entry, &zpci_list);
825 	spin_unlock(&zpci_list_lock);
826 
827 	return zdev;
828 
829 error_destroy_iommu:
830 	zpci_destroy_iommu(zdev);
831 error:
832 	zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
833 	kfree(zdev);
834 	return ERR_PTR(rc);
835 }
836 
837 bool zpci_is_device_configured(struct zpci_dev *zdev)
838 {
839 	enum zpci_state state = zdev->state;
840 
841 	return state != ZPCI_FN_STATE_RESERVED &&
842 		state != ZPCI_FN_STATE_STANDBY;
843 }
844 
845 /**
846  * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
847  * @zdev: The zpci_dev to be configured
848  * @fh: The general function handle supplied by the platform
849  *
850  * Given a device in the configuration state Configured, enables, scans and
851  * adds it to the common code PCI subsystem if possible. If any failure occurs,
852  * the zpci_dev is left disabled.
853  *
854  * Return: 0 on success, or an error code otherwise
855  */
856 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
857 {
858 	zpci_update_fh(zdev, fh);
859 	return zpci_bus_scan_device(zdev);
860 }
861 
862 /**
863  * zpci_deconfigure_device() - Deconfigure a zpci_dev
864  * @zdev: The zpci_dev to configure
865  *
866  * Deconfigure a zPCI function that is currently configured and possibly known
867  * to the common code PCI subsystem.
868  * If any failure occurs the device is left as is.
869  *
870  * Return: 0 on success, or an error code otherwise
871  */
872 int zpci_deconfigure_device(struct zpci_dev *zdev)
873 {
874 	int rc;
875 
876 	lockdep_assert_held(&zdev->state_lock);
877 	if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
878 		return 0;
879 
880 	if (zdev->zbus->bus)
881 		zpci_bus_remove_device(zdev, false);
882 
883 	if (zdev_enabled(zdev)) {
884 		rc = zpci_disable_device(zdev);
885 		if (rc)
886 			return rc;
887 	}
888 
889 	rc = sclp_pci_deconfigure(zdev->fid);
890 	zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
891 	if (rc)
892 		return rc;
893 	zdev->state = ZPCI_FN_STATE_STANDBY;
894 
895 	return 0;
896 }
897 
898 /**
899  * zpci_device_reserved() - Mark device as reserved
900  * @zdev: the zpci_dev that was reserved
901  *
902  * Handle the case that a given zPCI function was reserved by another system.
903  * After a call to this function the zpci_dev can not be found via
904  * get_zdev_by_fid() anymore but may still be accessible via existing
905  * references though it will not be functional anymore.
906  */
907 void zpci_device_reserved(struct zpci_dev *zdev)
908 {
909 	/*
910 	 * Remove device from zpci_list as it is going away. This also
911 	 * makes sure we ignore subsequent zPCI events for this device.
912 	 */
913 	spin_lock(&zpci_list_lock);
914 	list_del(&zdev->entry);
915 	spin_unlock(&zpci_list_lock);
916 	zdev->state = ZPCI_FN_STATE_RESERVED;
917 	zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
918 	zpci_zdev_put(zdev);
919 }
920 
921 void zpci_release_device(struct kref *kref)
922 {
923 	struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
924 	int ret;
925 
926 	if (zdev->has_hp_slot)
927 		zpci_exit_slot(zdev);
928 
929 	if (zdev->zbus->bus)
930 		zpci_bus_remove_device(zdev, false);
931 
932 	if (zdev_enabled(zdev))
933 		zpci_disable_device(zdev);
934 
935 	switch (zdev->state) {
936 	case ZPCI_FN_STATE_CONFIGURED:
937 		ret = sclp_pci_deconfigure(zdev->fid);
938 		zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
939 		fallthrough;
940 	case ZPCI_FN_STATE_STANDBY:
941 		if (zdev->has_hp_slot)
942 			zpci_exit_slot(zdev);
943 		spin_lock(&zpci_list_lock);
944 		list_del(&zdev->entry);
945 		spin_unlock(&zpci_list_lock);
946 		zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
947 		fallthrough;
948 	case ZPCI_FN_STATE_RESERVED:
949 		if (zdev->has_resources)
950 			zpci_cleanup_bus_resources(zdev);
951 		zpci_bus_device_unregister(zdev);
952 		zpci_destroy_iommu(zdev);
953 		fallthrough;
954 	default:
955 		break;
956 	}
957 	zpci_dbg(3, "rem fid:%x\n", zdev->fid);
958 	kfree_rcu(zdev, rcu);
959 }
960 
961 int zpci_report_error(struct pci_dev *pdev,
962 		      struct zpci_report_error_header *report)
963 {
964 	struct zpci_dev *zdev = to_zpci(pdev);
965 
966 	return sclp_pci_report(report, zdev->fh, zdev->fid);
967 }
968 EXPORT_SYMBOL(zpci_report_error);
969 
970 /**
971  * zpci_clear_error_state() - Clears the zPCI error state of the device
972  * @zdev: The zdev for which the zPCI error state should be reset
973  *
974  * Clear the zPCI error state of the device. If clearing the zPCI error state
975  * fails the device is left in the error state. In this case it may make sense
976  * to call zpci_io_perm_failure() on the associated pdev if it exists.
977  *
978  * Returns: 0 on success, -EIO otherwise
979  */
980 int zpci_clear_error_state(struct zpci_dev *zdev)
981 {
982 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
983 	struct zpci_fib fib = {0};
984 	u8 status;
985 	int cc;
986 
987 	cc = zpci_mod_fc(req, &fib, &status);
988 	if (cc) {
989 		zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
990 		return -EIO;
991 	}
992 
993 	return 0;
994 }
995 
996 /**
997  * zpci_reset_load_store_blocked() - Re-enables L/S from error state
998  * @zdev: The zdev for which to unblock load/store access
999  *
1000  * Re-enables load/store access for a PCI function in the error state while
1001  * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1002  * if error recovery is possible while catching any rogue DMA access from the
1003  * device.
1004  *
1005  * Returns: 0 on success, -EIO otherwise
1006  */
1007 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1008 {
1009 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1010 	struct zpci_fib fib = {0};
1011 	u8 status;
1012 	int cc;
1013 
1014 	cc = zpci_mod_fc(req, &fib, &status);
1015 	if (cc) {
1016 		zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1017 		return -EIO;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int zpci_mem_init(void)
1024 {
1025 	BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1026 		     __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1027 
1028 	zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1029 					   __alignof__(struct zpci_fmb), 0, NULL);
1030 	if (!zdev_fmb_cache)
1031 		goto error_fmb;
1032 
1033 	zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1034 				   sizeof(*zpci_iomap_start), GFP_KERNEL);
1035 	if (!zpci_iomap_start)
1036 		goto error_iomap;
1037 
1038 	zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1039 				    sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1040 	if (!zpci_iomap_bitmap)
1041 		goto error_iomap_bitmap;
1042 
1043 	if (static_branch_likely(&have_mio))
1044 		clp_setup_writeback_mio();
1045 
1046 	return 0;
1047 error_iomap_bitmap:
1048 	kfree(zpci_iomap_start);
1049 error_iomap:
1050 	kmem_cache_destroy(zdev_fmb_cache);
1051 error_fmb:
1052 	return -ENOMEM;
1053 }
1054 
1055 static void zpci_mem_exit(void)
1056 {
1057 	kfree(zpci_iomap_bitmap);
1058 	kfree(zpci_iomap_start);
1059 	kmem_cache_destroy(zdev_fmb_cache);
1060 }
1061 
1062 static unsigned int s390_pci_probe __initdata = 1;
1063 unsigned int s390_pci_force_floating __initdata;
1064 static unsigned int s390_pci_initialized;
1065 
1066 char * __init pcibios_setup(char *str)
1067 {
1068 	if (!strcmp(str, "off")) {
1069 		s390_pci_probe = 0;
1070 		return NULL;
1071 	}
1072 	if (!strcmp(str, "nomio")) {
1073 		S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1074 		return NULL;
1075 	}
1076 	if (!strcmp(str, "force_floating")) {
1077 		s390_pci_force_floating = 1;
1078 		return NULL;
1079 	}
1080 	if (!strcmp(str, "norid")) {
1081 		s390_pci_no_rid = 1;
1082 		return NULL;
1083 	}
1084 	return str;
1085 }
1086 
1087 bool zpci_is_enabled(void)
1088 {
1089 	return s390_pci_initialized;
1090 }
1091 
1092 static int __init pci_base_init(void)
1093 {
1094 	int rc;
1095 
1096 	if (!s390_pci_probe)
1097 		return 0;
1098 
1099 	if (!test_facility(69) || !test_facility(71)) {
1100 		pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1101 		return 0;
1102 	}
1103 
1104 	if (MACHINE_HAS_PCI_MIO) {
1105 		static_branch_enable(&have_mio);
1106 		system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1107 	}
1108 
1109 	rc = zpci_debug_init();
1110 	if (rc)
1111 		goto out;
1112 
1113 	rc = zpci_mem_init();
1114 	if (rc)
1115 		goto out_mem;
1116 
1117 	rc = zpci_irq_init();
1118 	if (rc)
1119 		goto out_irq;
1120 
1121 	rc = clp_scan_pci_devices();
1122 	if (rc)
1123 		goto out_find;
1124 	zpci_bus_scan_busses();
1125 
1126 	s390_pci_initialized = 1;
1127 	return 0;
1128 
1129 out_find:
1130 	zpci_irq_exit();
1131 out_irq:
1132 	zpci_mem_exit();
1133 out_mem:
1134 	zpci_debug_exit();
1135 out:
1136 	return rc;
1137 }
1138 subsys_initcall_sync(pci_base_init);
1139