1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 32 #include <asm/isc.h> 33 #include <asm/airq.h> 34 #include <asm/facility.h> 35 #include <asm/pci_insn.h> 36 #include <asm/pci_clp.h> 37 #include <asm/pci_dma.h> 38 39 #include "pci_bus.h" 40 #include "pci_iov.h" 41 42 /* list of all detected zpci devices */ 43 static LIST_HEAD(zpci_list); 44 static DEFINE_SPINLOCK(zpci_list_lock); 45 46 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 47 static DEFINE_SPINLOCK(zpci_domain_lock); 48 49 #define ZPCI_IOMAP_ENTRIES \ 50 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 51 ZPCI_IOMAP_MAX_ENTRIES) 52 53 unsigned int s390_pci_no_rid; 54 55 static DEFINE_SPINLOCK(zpci_iomap_lock); 56 static unsigned long *zpci_iomap_bitmap; 57 struct zpci_iomap_entry *zpci_iomap_start; 58 EXPORT_SYMBOL_GPL(zpci_iomap_start); 59 60 DEFINE_STATIC_KEY_FALSE(have_mio); 61 62 static struct kmem_cache *zdev_fmb_cache; 63 64 struct zpci_dev *get_zdev_by_fid(u32 fid) 65 { 66 struct zpci_dev *tmp, *zdev = NULL; 67 68 spin_lock(&zpci_list_lock); 69 list_for_each_entry(tmp, &zpci_list, entry) { 70 if (tmp->fid == fid) { 71 zdev = tmp; 72 break; 73 } 74 } 75 spin_unlock(&zpci_list_lock); 76 return zdev; 77 } 78 79 void zpci_remove_reserved_devices(void) 80 { 81 struct zpci_dev *tmp, *zdev; 82 enum zpci_state state; 83 LIST_HEAD(remove); 84 85 spin_lock(&zpci_list_lock); 86 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 87 if (zdev->state == ZPCI_FN_STATE_STANDBY && 88 !clp_get_state(zdev->fid, &state) && 89 state == ZPCI_FN_STATE_RESERVED) 90 list_move_tail(&zdev->entry, &remove); 91 } 92 spin_unlock(&zpci_list_lock); 93 94 list_for_each_entry_safe(zdev, tmp, &remove, entry) 95 zpci_zdev_put(zdev); 96 } 97 98 int pci_domain_nr(struct pci_bus *bus) 99 { 100 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 101 } 102 EXPORT_SYMBOL_GPL(pci_domain_nr); 103 104 int pci_proc_domain(struct pci_bus *bus) 105 { 106 return pci_domain_nr(bus); 107 } 108 EXPORT_SYMBOL_GPL(pci_proc_domain); 109 110 /* Modify PCI: Register I/O address translation parameters */ 111 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 112 u64 base, u64 limit, u64 iota) 113 { 114 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 115 struct zpci_fib fib = {0}; 116 u8 status; 117 118 WARN_ON_ONCE(iota & 0x3fff); 119 fib.pba = base; 120 fib.pal = limit; 121 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; 122 return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; 123 } 124 125 /* Modify PCI: Unregister I/O address translation parameters */ 126 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 127 { 128 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 129 struct zpci_fib fib = {0}; 130 u8 cc, status; 131 132 cc = zpci_mod_fc(req, &fib, &status); 133 if (cc == 3) /* Function already gone. */ 134 cc = 0; 135 return cc ? -EIO : 0; 136 } 137 138 /* Modify PCI: Set PCI function measurement parameters */ 139 int zpci_fmb_enable_device(struct zpci_dev *zdev) 140 { 141 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 142 struct zpci_fib fib = {0}; 143 u8 cc, status; 144 145 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 146 return -EINVAL; 147 148 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 149 if (!zdev->fmb) 150 return -ENOMEM; 151 WARN_ON((u64) zdev->fmb & 0xf); 152 153 /* reset software counters */ 154 atomic64_set(&zdev->allocated_pages, 0); 155 atomic64_set(&zdev->mapped_pages, 0); 156 atomic64_set(&zdev->unmapped_pages, 0); 157 158 fib.fmb_addr = virt_to_phys(zdev->fmb); 159 cc = zpci_mod_fc(req, &fib, &status); 160 if (cc) { 161 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 162 zdev->fmb = NULL; 163 } 164 return cc ? -EIO : 0; 165 } 166 167 /* Modify PCI: Disable PCI function measurement */ 168 int zpci_fmb_disable_device(struct zpci_dev *zdev) 169 { 170 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 171 struct zpci_fib fib = {0}; 172 u8 cc, status; 173 174 if (!zdev->fmb) 175 return -EINVAL; 176 177 /* Function measurement is disabled if fmb address is zero */ 178 cc = zpci_mod_fc(req, &fib, &status); 179 if (cc == 3) /* Function already gone. */ 180 cc = 0; 181 182 if (!cc) { 183 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 184 zdev->fmb = NULL; 185 } 186 return cc ? -EIO : 0; 187 } 188 189 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 190 { 191 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 192 u64 data; 193 int rc; 194 195 rc = __zpci_load(&data, req, offset); 196 if (!rc) { 197 data = le64_to_cpu((__force __le64) data); 198 data >>= (8 - len) * 8; 199 *val = (u32) data; 200 } else 201 *val = 0xffffffff; 202 return rc; 203 } 204 205 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 206 { 207 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 208 u64 data = val; 209 int rc; 210 211 data <<= (8 - len) * 8; 212 data = (__force u64) cpu_to_le64(data); 213 rc = __zpci_store(data, req, offset); 214 return rc; 215 } 216 217 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 218 resource_size_t size, 219 resource_size_t align) 220 { 221 return 0; 222 } 223 224 /* combine single writes by using store-block insn */ 225 void __iowrite64_copy(void __iomem *to, const void *from, size_t count) 226 { 227 zpci_memcpy_toio(to, from, count); 228 } 229 230 static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot) 231 { 232 unsigned long offset, vaddr; 233 struct vm_struct *area; 234 phys_addr_t last_addr; 235 236 last_addr = addr + size - 1; 237 if (!size || last_addr < addr) 238 return NULL; 239 240 if (!static_branch_unlikely(&have_mio)) 241 return (void __iomem *) addr; 242 243 offset = addr & ~PAGE_MASK; 244 addr &= PAGE_MASK; 245 size = PAGE_ALIGN(size + offset); 246 area = get_vm_area(size, VM_IOREMAP); 247 if (!area) 248 return NULL; 249 250 vaddr = (unsigned long) area->addr; 251 if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) { 252 free_vm_area(area); 253 return NULL; 254 } 255 return (void __iomem *) ((unsigned long) area->addr + offset); 256 } 257 258 void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot) 259 { 260 return __ioremap(addr, size, __pgprot(prot)); 261 } 262 EXPORT_SYMBOL(ioremap_prot); 263 264 void __iomem *ioremap(phys_addr_t addr, size_t size) 265 { 266 return __ioremap(addr, size, PAGE_KERNEL); 267 } 268 EXPORT_SYMBOL(ioremap); 269 270 void __iomem *ioremap_wc(phys_addr_t addr, size_t size) 271 { 272 return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL)); 273 } 274 EXPORT_SYMBOL(ioremap_wc); 275 276 void __iomem *ioremap_wt(phys_addr_t addr, size_t size) 277 { 278 return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL)); 279 } 280 EXPORT_SYMBOL(ioremap_wt); 281 282 void iounmap(volatile void __iomem *addr) 283 { 284 if (static_branch_likely(&have_mio)) 285 vunmap((__force void *) ((unsigned long) addr & PAGE_MASK)); 286 } 287 EXPORT_SYMBOL(iounmap); 288 289 /* Create a virtual mapping cookie for a PCI BAR */ 290 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 291 unsigned long offset, unsigned long max) 292 { 293 struct zpci_dev *zdev = to_zpci(pdev); 294 int idx; 295 296 idx = zdev->bars[bar].map_idx; 297 spin_lock(&zpci_iomap_lock); 298 /* Detect overrun */ 299 WARN_ON(!++zpci_iomap_start[idx].count); 300 zpci_iomap_start[idx].fh = zdev->fh; 301 zpci_iomap_start[idx].bar = bar; 302 spin_unlock(&zpci_iomap_lock); 303 304 return (void __iomem *) ZPCI_ADDR(idx) + offset; 305 } 306 307 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 308 unsigned long offset, 309 unsigned long max) 310 { 311 unsigned long barsize = pci_resource_len(pdev, bar); 312 struct zpci_dev *zdev = to_zpci(pdev); 313 void __iomem *iova; 314 315 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 316 return iova ? iova + offset : iova; 317 } 318 319 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 320 unsigned long offset, unsigned long max) 321 { 322 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 323 return NULL; 324 325 if (static_branch_likely(&have_mio)) 326 return pci_iomap_range_mio(pdev, bar, offset, max); 327 else 328 return pci_iomap_range_fh(pdev, bar, offset, max); 329 } 330 EXPORT_SYMBOL(pci_iomap_range); 331 332 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 333 { 334 return pci_iomap_range(dev, bar, 0, maxlen); 335 } 336 EXPORT_SYMBOL(pci_iomap); 337 338 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 339 unsigned long offset, unsigned long max) 340 { 341 unsigned long barsize = pci_resource_len(pdev, bar); 342 struct zpci_dev *zdev = to_zpci(pdev); 343 void __iomem *iova; 344 345 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 346 return iova ? iova + offset : iova; 347 } 348 349 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 350 unsigned long offset, unsigned long max) 351 { 352 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 353 return NULL; 354 355 if (static_branch_likely(&have_mio)) 356 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 357 else 358 return pci_iomap_range_fh(pdev, bar, offset, max); 359 } 360 EXPORT_SYMBOL(pci_iomap_wc_range); 361 362 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 363 { 364 return pci_iomap_wc_range(dev, bar, 0, maxlen); 365 } 366 EXPORT_SYMBOL(pci_iomap_wc); 367 368 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 369 { 370 unsigned int idx = ZPCI_IDX(addr); 371 372 spin_lock(&zpci_iomap_lock); 373 /* Detect underrun */ 374 WARN_ON(!zpci_iomap_start[idx].count); 375 if (!--zpci_iomap_start[idx].count) { 376 zpci_iomap_start[idx].fh = 0; 377 zpci_iomap_start[idx].bar = 0; 378 } 379 spin_unlock(&zpci_iomap_lock); 380 } 381 382 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 383 { 384 iounmap(addr); 385 } 386 387 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 388 { 389 if (static_branch_likely(&have_mio)) 390 pci_iounmap_mio(pdev, addr); 391 else 392 pci_iounmap_fh(pdev, addr); 393 } 394 EXPORT_SYMBOL(pci_iounmap); 395 396 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 397 int size, u32 *val) 398 { 399 struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn); 400 401 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 402 } 403 404 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 405 int size, u32 val) 406 { 407 struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn); 408 409 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 410 } 411 412 static struct pci_ops pci_root_ops = { 413 .read = pci_read, 414 .write = pci_write, 415 }; 416 417 static void zpci_map_resources(struct pci_dev *pdev) 418 { 419 struct zpci_dev *zdev = to_zpci(pdev); 420 resource_size_t len; 421 int i; 422 423 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 424 len = pci_resource_len(pdev, i); 425 if (!len) 426 continue; 427 428 if (zpci_use_mio(zdev)) 429 pdev->resource[i].start = 430 (resource_size_t __force) zdev->bars[i].mio_wt; 431 else 432 pdev->resource[i].start = (resource_size_t __force) 433 pci_iomap_range_fh(pdev, i, 0, 0); 434 pdev->resource[i].end = pdev->resource[i].start + len - 1; 435 } 436 437 zpci_iov_map_resources(pdev); 438 } 439 440 static void zpci_unmap_resources(struct pci_dev *pdev) 441 { 442 struct zpci_dev *zdev = to_zpci(pdev); 443 resource_size_t len; 444 int i; 445 446 if (zpci_use_mio(zdev)) 447 return; 448 449 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 450 len = pci_resource_len(pdev, i); 451 if (!len) 452 continue; 453 pci_iounmap_fh(pdev, (void __iomem __force *) 454 pdev->resource[i].start); 455 } 456 } 457 458 static int zpci_alloc_iomap(struct zpci_dev *zdev) 459 { 460 unsigned long entry; 461 462 spin_lock(&zpci_iomap_lock); 463 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 464 if (entry == ZPCI_IOMAP_ENTRIES) { 465 spin_unlock(&zpci_iomap_lock); 466 return -ENOSPC; 467 } 468 set_bit(entry, zpci_iomap_bitmap); 469 spin_unlock(&zpci_iomap_lock); 470 return entry; 471 } 472 473 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 474 { 475 spin_lock(&zpci_iomap_lock); 476 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 477 clear_bit(entry, zpci_iomap_bitmap); 478 spin_unlock(&zpci_iomap_lock); 479 } 480 481 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 482 unsigned long size, unsigned long flags) 483 { 484 struct resource *r; 485 486 r = kzalloc(sizeof(*r), GFP_KERNEL); 487 if (!r) 488 return NULL; 489 490 r->start = start; 491 r->end = r->start + size - 1; 492 r->flags = flags; 493 r->name = zdev->res_name; 494 495 if (request_resource(&iomem_resource, r)) { 496 kfree(r); 497 return NULL; 498 } 499 return r; 500 } 501 502 int zpci_setup_bus_resources(struct zpci_dev *zdev, 503 struct list_head *resources) 504 { 505 unsigned long addr, size, flags; 506 struct resource *res; 507 int i, entry; 508 509 snprintf(zdev->res_name, sizeof(zdev->res_name), 510 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 511 512 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 513 if (!zdev->bars[i].size) 514 continue; 515 entry = zpci_alloc_iomap(zdev); 516 if (entry < 0) 517 return entry; 518 zdev->bars[i].map_idx = entry; 519 520 /* only MMIO is supported */ 521 flags = IORESOURCE_MEM; 522 if (zdev->bars[i].val & 8) 523 flags |= IORESOURCE_PREFETCH; 524 if (zdev->bars[i].val & 4) 525 flags |= IORESOURCE_MEM_64; 526 527 if (zpci_use_mio(zdev)) 528 addr = (unsigned long) zdev->bars[i].mio_wt; 529 else 530 addr = ZPCI_ADDR(entry); 531 size = 1UL << zdev->bars[i].size; 532 533 res = __alloc_res(zdev, addr, size, flags); 534 if (!res) { 535 zpci_free_iomap(zdev, entry); 536 return -ENOMEM; 537 } 538 zdev->bars[i].res = res; 539 pci_add_resource(resources, res); 540 } 541 542 return 0; 543 } 544 545 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 546 { 547 int i; 548 549 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 550 if (!zdev->bars[i].size || !zdev->bars[i].res) 551 continue; 552 553 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 554 release_resource(zdev->bars[i].res); 555 kfree(zdev->bars[i].res); 556 } 557 } 558 559 int pcibios_add_device(struct pci_dev *pdev) 560 { 561 struct resource *res; 562 int i; 563 564 if (pdev->is_physfn) 565 pdev->no_vf_scan = 1; 566 567 pdev->dev.groups = zpci_attr_groups; 568 pdev->dev.dma_ops = &s390_pci_dma_ops; 569 zpci_map_resources(pdev); 570 571 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 572 res = &pdev->resource[i]; 573 if (res->parent || !res->flags) 574 continue; 575 pci_claim_resource(pdev, i); 576 } 577 578 return 0; 579 } 580 581 void pcibios_release_device(struct pci_dev *pdev) 582 { 583 zpci_unmap_resources(pdev); 584 } 585 586 int pcibios_enable_device(struct pci_dev *pdev, int mask) 587 { 588 struct zpci_dev *zdev = to_zpci(pdev); 589 590 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 591 zpci_fmb_enable_device(zdev); 592 593 return pci_enable_resources(pdev, mask); 594 } 595 596 void pcibios_disable_device(struct pci_dev *pdev) 597 { 598 struct zpci_dev *zdev = to_zpci(pdev); 599 600 zpci_fmb_disable_device(zdev); 601 zpci_debug_exit_device(zdev); 602 } 603 604 static int __zpci_register_domain(int domain) 605 { 606 spin_lock(&zpci_domain_lock); 607 if (test_bit(domain, zpci_domain)) { 608 spin_unlock(&zpci_domain_lock); 609 pr_err("Domain %04x is already assigned\n", domain); 610 return -EEXIST; 611 } 612 set_bit(domain, zpci_domain); 613 spin_unlock(&zpci_domain_lock); 614 return domain; 615 } 616 617 static int __zpci_alloc_domain(void) 618 { 619 int domain; 620 621 spin_lock(&zpci_domain_lock); 622 /* 623 * We can always auto allocate domains below ZPCI_NR_DEVICES. 624 * There is either a free domain or we have reached the maximum in 625 * which case we would have bailed earlier. 626 */ 627 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 628 set_bit(domain, zpci_domain); 629 spin_unlock(&zpci_domain_lock); 630 return domain; 631 } 632 633 int zpci_alloc_domain(int domain) 634 { 635 if (zpci_unique_uid) { 636 if (domain) 637 return __zpci_register_domain(domain); 638 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 639 update_uid_checking(false); 640 } 641 return __zpci_alloc_domain(); 642 } 643 644 void zpci_free_domain(int domain) 645 { 646 spin_lock(&zpci_domain_lock); 647 clear_bit(domain, zpci_domain); 648 spin_unlock(&zpci_domain_lock); 649 } 650 651 652 int zpci_enable_device(struct zpci_dev *zdev) 653 { 654 int rc; 655 656 rc = clp_enable_fh(zdev, ZPCI_NR_DMA_SPACES); 657 if (rc) 658 goto out; 659 660 rc = zpci_dma_init_device(zdev); 661 if (rc) 662 goto out_dma; 663 664 zdev->state = ZPCI_FN_STATE_ONLINE; 665 return 0; 666 667 out_dma: 668 clp_disable_fh(zdev); 669 out: 670 return rc; 671 } 672 EXPORT_SYMBOL_GPL(zpci_enable_device); 673 674 int zpci_disable_device(struct zpci_dev *zdev) 675 { 676 zpci_dma_exit_device(zdev); 677 /* 678 * The zPCI function may already be disabled by the platform, this is 679 * detected in clp_disable_fh() which becomes a no-op. 680 */ 681 return clp_disable_fh(zdev); 682 } 683 EXPORT_SYMBOL_GPL(zpci_disable_device); 684 685 void zpci_remove_device(struct zpci_dev *zdev) 686 { 687 struct zpci_bus *zbus = zdev->zbus; 688 struct pci_dev *pdev; 689 690 pdev = pci_get_slot(zbus->bus, zdev->devfn); 691 if (pdev) { 692 if (pdev->is_virtfn) 693 return zpci_iov_remove_virtfn(pdev, zdev->vfn); 694 pci_stop_and_remove_bus_device_locked(pdev); 695 } 696 } 697 698 /** 699 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 700 * @fid: Function ID of the device to be created 701 * @fh: Current Function Handle of the device to be created 702 * @state: Initial state after creation either Standby or Configured 703 * 704 * Creates a new zpci device and adds it to its, possibly newly created, zbus 705 * as well as zpci_list. 706 * 707 * Returns: 0 on success, an error value otherwise 708 */ 709 int zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 710 { 711 struct zpci_dev *zdev; 712 int rc; 713 714 zpci_dbg(3, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); 715 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 716 if (!zdev) 717 return -ENOMEM; 718 719 /* FID and Function Handle are the static/dynamic identifiers */ 720 zdev->fid = fid; 721 zdev->fh = fh; 722 723 /* Query function properties and update zdev */ 724 rc = clp_query_pci_fn(zdev); 725 if (rc) 726 goto error; 727 zdev->state = state; 728 729 kref_init(&zdev->kref); 730 mutex_init(&zdev->lock); 731 732 rc = zpci_init_iommu(zdev); 733 if (rc) 734 goto error; 735 736 if (zdev->state == ZPCI_FN_STATE_CONFIGURED) { 737 rc = zpci_enable_device(zdev); 738 if (rc) 739 goto error_destroy_iommu; 740 } 741 742 rc = zpci_bus_device_register(zdev, &pci_root_ops); 743 if (rc) 744 goto error_disable; 745 746 spin_lock(&zpci_list_lock); 747 list_add_tail(&zdev->entry, &zpci_list); 748 spin_unlock(&zpci_list_lock); 749 750 return 0; 751 752 error_disable: 753 if (zdev->state == ZPCI_FN_STATE_ONLINE) 754 zpci_disable_device(zdev); 755 error_destroy_iommu: 756 zpci_destroy_iommu(zdev); 757 error: 758 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); 759 kfree(zdev); 760 return rc; 761 } 762 763 void zpci_release_device(struct kref *kref) 764 { 765 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 766 767 if (zdev->zbus->bus) 768 zpci_remove_device(zdev); 769 770 switch (zdev->state) { 771 case ZPCI_FN_STATE_ONLINE: 772 case ZPCI_FN_STATE_CONFIGURED: 773 zpci_disable_device(zdev); 774 fallthrough; 775 case ZPCI_FN_STATE_STANDBY: 776 if (zdev->has_hp_slot) 777 zpci_exit_slot(zdev); 778 zpci_cleanup_bus_resources(zdev); 779 zpci_bus_device_unregister(zdev); 780 zpci_destroy_iommu(zdev); 781 fallthrough; 782 default: 783 break; 784 } 785 786 spin_lock(&zpci_list_lock); 787 list_del(&zdev->entry); 788 spin_unlock(&zpci_list_lock); 789 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 790 kfree(zdev); 791 } 792 793 int zpci_report_error(struct pci_dev *pdev, 794 struct zpci_report_error_header *report) 795 { 796 struct zpci_dev *zdev = to_zpci(pdev); 797 798 return sclp_pci_report(report, zdev->fh, zdev->fid); 799 } 800 EXPORT_SYMBOL(zpci_report_error); 801 802 static int zpci_mem_init(void) 803 { 804 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 805 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 806 807 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 808 __alignof__(struct zpci_fmb), 0, NULL); 809 if (!zdev_fmb_cache) 810 goto error_fmb; 811 812 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 813 sizeof(*zpci_iomap_start), GFP_KERNEL); 814 if (!zpci_iomap_start) 815 goto error_iomap; 816 817 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 818 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 819 if (!zpci_iomap_bitmap) 820 goto error_iomap_bitmap; 821 822 if (static_branch_likely(&have_mio)) 823 clp_setup_writeback_mio(); 824 825 return 0; 826 error_iomap_bitmap: 827 kfree(zpci_iomap_start); 828 error_iomap: 829 kmem_cache_destroy(zdev_fmb_cache); 830 error_fmb: 831 return -ENOMEM; 832 } 833 834 static void zpci_mem_exit(void) 835 { 836 kfree(zpci_iomap_bitmap); 837 kfree(zpci_iomap_start); 838 kmem_cache_destroy(zdev_fmb_cache); 839 } 840 841 static unsigned int s390_pci_probe __initdata = 1; 842 static unsigned int s390_pci_no_mio __initdata; 843 unsigned int s390_pci_force_floating __initdata; 844 static unsigned int s390_pci_initialized; 845 846 char * __init pcibios_setup(char *str) 847 { 848 if (!strcmp(str, "off")) { 849 s390_pci_probe = 0; 850 return NULL; 851 } 852 if (!strcmp(str, "nomio")) { 853 s390_pci_no_mio = 1; 854 return NULL; 855 } 856 if (!strcmp(str, "force_floating")) { 857 s390_pci_force_floating = 1; 858 return NULL; 859 } 860 if (!strcmp(str, "norid")) { 861 s390_pci_no_rid = 1; 862 return NULL; 863 } 864 return str; 865 } 866 867 bool zpci_is_enabled(void) 868 { 869 return s390_pci_initialized; 870 } 871 872 static int __init pci_base_init(void) 873 { 874 int rc; 875 876 if (!s390_pci_probe) 877 return 0; 878 879 if (!test_facility(69) || !test_facility(71)) { 880 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 881 return 0; 882 } 883 884 if (test_facility(153) && !s390_pci_no_mio) { 885 static_branch_enable(&have_mio); 886 ctl_set_bit(2, 5); 887 } 888 889 rc = zpci_debug_init(); 890 if (rc) 891 goto out; 892 893 rc = zpci_mem_init(); 894 if (rc) 895 goto out_mem; 896 897 rc = zpci_irq_init(); 898 if (rc) 899 goto out_irq; 900 901 rc = zpci_dma_init(); 902 if (rc) 903 goto out_dma; 904 905 rc = clp_scan_pci_devices(); 906 if (rc) 907 goto out_find; 908 909 s390_pci_initialized = 1; 910 return 0; 911 912 out_find: 913 zpci_dma_exit(); 914 out_dma: 915 zpci_irq_exit(); 916 out_irq: 917 zpci_mem_exit(); 918 out_mem: 919 zpci_debug_exit(); 920 out: 921 return rc; 922 } 923 subsys_initcall_sync(pci_base_init); 924