xref: /linux/arch/s390/pci/pci.c (revision 61307b7be41a1f1039d1d1368810a1d92cb97b44)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  *
8  * The System z PCI code is a rewrite from a prototype by
9  * the following people (Kudoz!):
10  *   Alexander Schmidt
11  *   Christoph Raisch
12  *   Hannes Hering
13  *   Hoang-Nam Nguyen
14  *   Jan-Bernd Themann
15  *   Stefan Roscher
16  *   Thomas Klein
17  */
18 
19 #define KMSG_COMPONENT "zpci"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/err.h>
25 #include <linux/export.h>
26 #include <linux/delay.h>
27 #include <linux/seq_file.h>
28 #include <linux/jump_label.h>
29 #include <linux/pci.h>
30 #include <linux/printk.h>
31 #include <linux/lockdep.h>
32 
33 #include <asm/isc.h>
34 #include <asm/airq.h>
35 #include <asm/facility.h>
36 #include <asm/pci_insn.h>
37 #include <asm/pci_clp.h>
38 #include <asm/pci_dma.h>
39 
40 #include "pci_bus.h"
41 #include "pci_iov.h"
42 
43 /* list of all detected zpci devices */
44 static LIST_HEAD(zpci_list);
45 static DEFINE_SPINLOCK(zpci_list_lock);
46 
47 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
48 static DEFINE_SPINLOCK(zpci_domain_lock);
49 
50 #define ZPCI_IOMAP_ENTRIES						\
51 	min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),	\
52 	    ZPCI_IOMAP_MAX_ENTRIES)
53 
54 unsigned int s390_pci_no_rid;
55 
56 static DEFINE_SPINLOCK(zpci_iomap_lock);
57 static unsigned long *zpci_iomap_bitmap;
58 struct zpci_iomap_entry *zpci_iomap_start;
59 EXPORT_SYMBOL_GPL(zpci_iomap_start);
60 
61 DEFINE_STATIC_KEY_FALSE(have_mio);
62 
63 static struct kmem_cache *zdev_fmb_cache;
64 
65 /* AEN structures that must be preserved over KVM module re-insertion */
66 union zpci_sic_iib *zpci_aipb;
67 EXPORT_SYMBOL_GPL(zpci_aipb);
68 struct airq_iv *zpci_aif_sbv;
69 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
70 
71 struct zpci_dev *get_zdev_by_fid(u32 fid)
72 {
73 	struct zpci_dev *tmp, *zdev = NULL;
74 
75 	spin_lock(&zpci_list_lock);
76 	list_for_each_entry(tmp, &zpci_list, entry) {
77 		if (tmp->fid == fid) {
78 			zdev = tmp;
79 			zpci_zdev_get(zdev);
80 			break;
81 		}
82 	}
83 	spin_unlock(&zpci_list_lock);
84 	return zdev;
85 }
86 
87 void zpci_remove_reserved_devices(void)
88 {
89 	struct zpci_dev *tmp, *zdev;
90 	enum zpci_state state;
91 	LIST_HEAD(remove);
92 
93 	spin_lock(&zpci_list_lock);
94 	list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
95 		if (zdev->state == ZPCI_FN_STATE_STANDBY &&
96 		    !clp_get_state(zdev->fid, &state) &&
97 		    state == ZPCI_FN_STATE_RESERVED)
98 			list_move_tail(&zdev->entry, &remove);
99 	}
100 	spin_unlock(&zpci_list_lock);
101 
102 	list_for_each_entry_safe(zdev, tmp, &remove, entry)
103 		zpci_device_reserved(zdev);
104 }
105 
106 int pci_domain_nr(struct pci_bus *bus)
107 {
108 	return ((struct zpci_bus *) bus->sysdata)->domain_nr;
109 }
110 EXPORT_SYMBOL_GPL(pci_domain_nr);
111 
112 int pci_proc_domain(struct pci_bus *bus)
113 {
114 	return pci_domain_nr(bus);
115 }
116 EXPORT_SYMBOL_GPL(pci_proc_domain);
117 
118 /* Modify PCI: Register I/O address translation parameters */
119 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
120 		       u64 base, u64 limit, u64 iota, u8 *status)
121 {
122 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
123 	struct zpci_fib fib = {0};
124 	u8 cc;
125 
126 	WARN_ON_ONCE(iota & 0x3fff);
127 	fib.pba = base;
128 	/* Work around off by one in ISM virt device */
129 	if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
130 		fib.pal = limit + (1 << 12);
131 	else
132 		fib.pal = limit;
133 	fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
134 	fib.gd = zdev->gisa;
135 	cc = zpci_mod_fc(req, &fib, status);
136 	if (cc)
137 		zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
138 	return cc;
139 }
140 EXPORT_SYMBOL_GPL(zpci_register_ioat);
141 
142 /* Modify PCI: Unregister I/O address translation parameters */
143 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
144 {
145 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
146 	struct zpci_fib fib = {0};
147 	u8 cc, status;
148 
149 	fib.gd = zdev->gisa;
150 
151 	cc = zpci_mod_fc(req, &fib, &status);
152 	if (cc)
153 		zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
154 	return cc;
155 }
156 
157 /* Modify PCI: Set PCI function measurement parameters */
158 int zpci_fmb_enable_device(struct zpci_dev *zdev)
159 {
160 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
161 	struct zpci_iommu_ctrs *ctrs;
162 	struct zpci_fib fib = {0};
163 	u8 cc, status;
164 
165 	if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
166 		return -EINVAL;
167 
168 	zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
169 	if (!zdev->fmb)
170 		return -ENOMEM;
171 	WARN_ON((u64) zdev->fmb & 0xf);
172 
173 	/* reset software counters */
174 	ctrs = zpci_get_iommu_ctrs(zdev);
175 	if (ctrs) {
176 		atomic64_set(&ctrs->mapped_pages, 0);
177 		atomic64_set(&ctrs->unmapped_pages, 0);
178 		atomic64_set(&ctrs->global_rpcits, 0);
179 		atomic64_set(&ctrs->sync_map_rpcits, 0);
180 		atomic64_set(&ctrs->sync_rpcits, 0);
181 	}
182 
183 
184 	fib.fmb_addr = virt_to_phys(zdev->fmb);
185 	fib.gd = zdev->gisa;
186 	cc = zpci_mod_fc(req, &fib, &status);
187 	if (cc) {
188 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
189 		zdev->fmb = NULL;
190 	}
191 	return cc ? -EIO : 0;
192 }
193 
194 /* Modify PCI: Disable PCI function measurement */
195 int zpci_fmb_disable_device(struct zpci_dev *zdev)
196 {
197 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
198 	struct zpci_fib fib = {0};
199 	u8 cc, status;
200 
201 	if (!zdev->fmb)
202 		return -EINVAL;
203 
204 	fib.gd = zdev->gisa;
205 
206 	/* Function measurement is disabled if fmb address is zero */
207 	cc = zpci_mod_fc(req, &fib, &status);
208 	if (cc == 3) /* Function already gone. */
209 		cc = 0;
210 
211 	if (!cc) {
212 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
213 		zdev->fmb = NULL;
214 	}
215 	return cc ? -EIO : 0;
216 }
217 
218 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
219 {
220 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
221 	u64 data;
222 	int rc;
223 
224 	rc = __zpci_load(&data, req, offset);
225 	if (!rc) {
226 		data = le64_to_cpu((__force __le64) data);
227 		data >>= (8 - len) * 8;
228 		*val = (u32) data;
229 	} else
230 		*val = 0xffffffff;
231 	return rc;
232 }
233 
234 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
235 {
236 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
237 	u64 data = val;
238 	int rc;
239 
240 	data <<= (8 - len) * 8;
241 	data = (__force u64) cpu_to_le64(data);
242 	rc = __zpci_store(data, req, offset);
243 	return rc;
244 }
245 
246 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
247 				       resource_size_t size,
248 				       resource_size_t align)
249 {
250 	return 0;
251 }
252 
253 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
254 			   unsigned long prot)
255 {
256 	/*
257 	 * When PCI MIO instructions are unavailable the "physical" address
258 	 * encodes a hint for accessing the PCI memory space it represents.
259 	 * Just pass it unchanged such that ioread/iowrite can decode it.
260 	 */
261 	if (!static_branch_unlikely(&have_mio))
262 		return (void __iomem *)phys_addr;
263 
264 	return generic_ioremap_prot(phys_addr, size, __pgprot(prot));
265 }
266 EXPORT_SYMBOL(ioremap_prot);
267 
268 void iounmap(volatile void __iomem *addr)
269 {
270 	if (static_branch_likely(&have_mio))
271 		generic_iounmap(addr);
272 }
273 EXPORT_SYMBOL(iounmap);
274 
275 /* Create a virtual mapping cookie for a PCI BAR */
276 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
277 					unsigned long offset, unsigned long max)
278 {
279 	struct zpci_dev *zdev =	to_zpci(pdev);
280 	int idx;
281 
282 	idx = zdev->bars[bar].map_idx;
283 	spin_lock(&zpci_iomap_lock);
284 	/* Detect overrun */
285 	WARN_ON(!++zpci_iomap_start[idx].count);
286 	zpci_iomap_start[idx].fh = zdev->fh;
287 	zpci_iomap_start[idx].bar = bar;
288 	spin_unlock(&zpci_iomap_lock);
289 
290 	return (void __iomem *) ZPCI_ADDR(idx) + offset;
291 }
292 
293 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
294 					 unsigned long offset,
295 					 unsigned long max)
296 {
297 	unsigned long barsize = pci_resource_len(pdev, bar);
298 	struct zpci_dev *zdev = to_zpci(pdev);
299 	void __iomem *iova;
300 
301 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
302 	return iova ? iova + offset : iova;
303 }
304 
305 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
306 			      unsigned long offset, unsigned long max)
307 {
308 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
309 		return NULL;
310 
311 	if (static_branch_likely(&have_mio))
312 		return pci_iomap_range_mio(pdev, bar, offset, max);
313 	else
314 		return pci_iomap_range_fh(pdev, bar, offset, max);
315 }
316 EXPORT_SYMBOL(pci_iomap_range);
317 
318 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
319 {
320 	return pci_iomap_range(dev, bar, 0, maxlen);
321 }
322 EXPORT_SYMBOL(pci_iomap);
323 
324 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
325 					    unsigned long offset, unsigned long max)
326 {
327 	unsigned long barsize = pci_resource_len(pdev, bar);
328 	struct zpci_dev *zdev = to_zpci(pdev);
329 	void __iomem *iova;
330 
331 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
332 	return iova ? iova + offset : iova;
333 }
334 
335 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
336 				 unsigned long offset, unsigned long max)
337 {
338 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
339 		return NULL;
340 
341 	if (static_branch_likely(&have_mio))
342 		return pci_iomap_wc_range_mio(pdev, bar, offset, max);
343 	else
344 		return pci_iomap_range_fh(pdev, bar, offset, max);
345 }
346 EXPORT_SYMBOL(pci_iomap_wc_range);
347 
348 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
349 {
350 	return pci_iomap_wc_range(dev, bar, 0, maxlen);
351 }
352 EXPORT_SYMBOL(pci_iomap_wc);
353 
354 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
355 {
356 	unsigned int idx = ZPCI_IDX(addr);
357 
358 	spin_lock(&zpci_iomap_lock);
359 	/* Detect underrun */
360 	WARN_ON(!zpci_iomap_start[idx].count);
361 	if (!--zpci_iomap_start[idx].count) {
362 		zpci_iomap_start[idx].fh = 0;
363 		zpci_iomap_start[idx].bar = 0;
364 	}
365 	spin_unlock(&zpci_iomap_lock);
366 }
367 
368 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
369 {
370 	iounmap(addr);
371 }
372 
373 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
374 {
375 	if (static_branch_likely(&have_mio))
376 		pci_iounmap_mio(pdev, addr);
377 	else
378 		pci_iounmap_fh(pdev, addr);
379 }
380 EXPORT_SYMBOL(pci_iounmap);
381 
382 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
383 		    int size, u32 *val)
384 {
385 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
386 
387 	return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
388 }
389 
390 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
391 		     int size, u32 val)
392 {
393 	struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
394 
395 	return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
396 }
397 
398 static struct pci_ops pci_root_ops = {
399 	.read = pci_read,
400 	.write = pci_write,
401 };
402 
403 static void zpci_map_resources(struct pci_dev *pdev)
404 {
405 	struct zpci_dev *zdev = to_zpci(pdev);
406 	resource_size_t len;
407 	int i;
408 
409 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
410 		len = pci_resource_len(pdev, i);
411 		if (!len)
412 			continue;
413 
414 		if (zpci_use_mio(zdev))
415 			pdev->resource[i].start =
416 				(resource_size_t __force) zdev->bars[i].mio_wt;
417 		else
418 			pdev->resource[i].start = (resource_size_t __force)
419 				pci_iomap_range_fh(pdev, i, 0, 0);
420 		pdev->resource[i].end = pdev->resource[i].start + len - 1;
421 	}
422 
423 	zpci_iov_map_resources(pdev);
424 }
425 
426 static void zpci_unmap_resources(struct pci_dev *pdev)
427 {
428 	struct zpci_dev *zdev = to_zpci(pdev);
429 	resource_size_t len;
430 	int i;
431 
432 	if (zpci_use_mio(zdev))
433 		return;
434 
435 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
436 		len = pci_resource_len(pdev, i);
437 		if (!len)
438 			continue;
439 		pci_iounmap_fh(pdev, (void __iomem __force *)
440 			       pdev->resource[i].start);
441 	}
442 }
443 
444 static int zpci_alloc_iomap(struct zpci_dev *zdev)
445 {
446 	unsigned long entry;
447 
448 	spin_lock(&zpci_iomap_lock);
449 	entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
450 	if (entry == ZPCI_IOMAP_ENTRIES) {
451 		spin_unlock(&zpci_iomap_lock);
452 		return -ENOSPC;
453 	}
454 	set_bit(entry, zpci_iomap_bitmap);
455 	spin_unlock(&zpci_iomap_lock);
456 	return entry;
457 }
458 
459 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
460 {
461 	spin_lock(&zpci_iomap_lock);
462 	memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
463 	clear_bit(entry, zpci_iomap_bitmap);
464 	spin_unlock(&zpci_iomap_lock);
465 }
466 
467 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
468 {
469 	int bar, idx;
470 
471 	spin_lock(&zpci_iomap_lock);
472 	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
473 		if (!zdev->bars[bar].size)
474 			continue;
475 		idx = zdev->bars[bar].map_idx;
476 		if (!zpci_iomap_start[idx].count)
477 			continue;
478 		WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
479 	}
480 	spin_unlock(&zpci_iomap_lock);
481 }
482 
483 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
484 {
485 	if (!fh || zdev->fh == fh)
486 		return;
487 
488 	zdev->fh = fh;
489 	if (zpci_use_mio(zdev))
490 		return;
491 	if (zdev->has_resources && zdev_enabled(zdev))
492 		zpci_do_update_iomap_fh(zdev, fh);
493 }
494 
495 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
496 				    unsigned long size, unsigned long flags)
497 {
498 	struct resource *r;
499 
500 	r = kzalloc(sizeof(*r), GFP_KERNEL);
501 	if (!r)
502 		return NULL;
503 
504 	r->start = start;
505 	r->end = r->start + size - 1;
506 	r->flags = flags;
507 	r->name = zdev->res_name;
508 
509 	if (request_resource(&iomem_resource, r)) {
510 		kfree(r);
511 		return NULL;
512 	}
513 	return r;
514 }
515 
516 int zpci_setup_bus_resources(struct zpci_dev *zdev)
517 {
518 	unsigned long addr, size, flags;
519 	struct resource *res;
520 	int i, entry;
521 
522 	snprintf(zdev->res_name, sizeof(zdev->res_name),
523 		 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
524 
525 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
526 		if (!zdev->bars[i].size)
527 			continue;
528 		entry = zpci_alloc_iomap(zdev);
529 		if (entry < 0)
530 			return entry;
531 		zdev->bars[i].map_idx = entry;
532 
533 		/* only MMIO is supported */
534 		flags = IORESOURCE_MEM;
535 		if (zdev->bars[i].val & 8)
536 			flags |= IORESOURCE_PREFETCH;
537 		if (zdev->bars[i].val & 4)
538 			flags |= IORESOURCE_MEM_64;
539 
540 		if (zpci_use_mio(zdev))
541 			addr = (unsigned long) zdev->bars[i].mio_wt;
542 		else
543 			addr = ZPCI_ADDR(entry);
544 		size = 1UL << zdev->bars[i].size;
545 
546 		res = __alloc_res(zdev, addr, size, flags);
547 		if (!res) {
548 			zpci_free_iomap(zdev, entry);
549 			return -ENOMEM;
550 		}
551 		zdev->bars[i].res = res;
552 	}
553 	zdev->has_resources = 1;
554 
555 	return 0;
556 }
557 
558 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
559 {
560 	struct resource *res;
561 	int i;
562 
563 	pci_lock_rescan_remove();
564 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
565 		res = zdev->bars[i].res;
566 		if (!res)
567 			continue;
568 
569 		release_resource(res);
570 		pci_bus_remove_resource(zdev->zbus->bus, res);
571 		zpci_free_iomap(zdev, zdev->bars[i].map_idx);
572 		zdev->bars[i].res = NULL;
573 		kfree(res);
574 	}
575 	zdev->has_resources = 0;
576 	pci_unlock_rescan_remove();
577 }
578 
579 int pcibios_device_add(struct pci_dev *pdev)
580 {
581 	struct zpci_dev *zdev = to_zpci(pdev);
582 	struct resource *res;
583 	int i;
584 
585 	/* The pdev has a reference to the zdev via its bus */
586 	zpci_zdev_get(zdev);
587 	if (pdev->is_physfn)
588 		pdev->no_vf_scan = 1;
589 
590 	pdev->dev.groups = zpci_attr_groups;
591 	zpci_map_resources(pdev);
592 
593 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
594 		res = &pdev->resource[i];
595 		if (res->parent || !res->flags)
596 			continue;
597 		pci_claim_resource(pdev, i);
598 	}
599 
600 	return 0;
601 }
602 
603 void pcibios_release_device(struct pci_dev *pdev)
604 {
605 	struct zpci_dev *zdev = to_zpci(pdev);
606 
607 	zpci_unmap_resources(pdev);
608 	zpci_zdev_put(zdev);
609 }
610 
611 int pcibios_enable_device(struct pci_dev *pdev, int mask)
612 {
613 	struct zpci_dev *zdev = to_zpci(pdev);
614 
615 	zpci_debug_init_device(zdev, dev_name(&pdev->dev));
616 	zpci_fmb_enable_device(zdev);
617 
618 	return pci_enable_resources(pdev, mask);
619 }
620 
621 void pcibios_disable_device(struct pci_dev *pdev)
622 {
623 	struct zpci_dev *zdev = to_zpci(pdev);
624 
625 	zpci_fmb_disable_device(zdev);
626 	zpci_debug_exit_device(zdev);
627 }
628 
629 static int __zpci_register_domain(int domain)
630 {
631 	spin_lock(&zpci_domain_lock);
632 	if (test_bit(domain, zpci_domain)) {
633 		spin_unlock(&zpci_domain_lock);
634 		pr_err("Domain %04x is already assigned\n", domain);
635 		return -EEXIST;
636 	}
637 	set_bit(domain, zpci_domain);
638 	spin_unlock(&zpci_domain_lock);
639 	return domain;
640 }
641 
642 static int __zpci_alloc_domain(void)
643 {
644 	int domain;
645 
646 	spin_lock(&zpci_domain_lock);
647 	/*
648 	 * We can always auto allocate domains below ZPCI_NR_DEVICES.
649 	 * There is either a free domain or we have reached the maximum in
650 	 * which case we would have bailed earlier.
651 	 */
652 	domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
653 	set_bit(domain, zpci_domain);
654 	spin_unlock(&zpci_domain_lock);
655 	return domain;
656 }
657 
658 int zpci_alloc_domain(int domain)
659 {
660 	if (zpci_unique_uid) {
661 		if (domain)
662 			return __zpci_register_domain(domain);
663 		pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
664 		update_uid_checking(false);
665 	}
666 	return __zpci_alloc_domain();
667 }
668 
669 void zpci_free_domain(int domain)
670 {
671 	spin_lock(&zpci_domain_lock);
672 	clear_bit(domain, zpci_domain);
673 	spin_unlock(&zpci_domain_lock);
674 }
675 
676 
677 int zpci_enable_device(struct zpci_dev *zdev)
678 {
679 	u32 fh = zdev->fh;
680 	int rc = 0;
681 
682 	if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
683 		rc = -EIO;
684 	else
685 		zpci_update_fh(zdev, fh);
686 	return rc;
687 }
688 EXPORT_SYMBOL_GPL(zpci_enable_device);
689 
690 int zpci_disable_device(struct zpci_dev *zdev)
691 {
692 	u32 fh = zdev->fh;
693 	int cc, rc = 0;
694 
695 	cc = clp_disable_fh(zdev, &fh);
696 	if (!cc) {
697 		zpci_update_fh(zdev, fh);
698 	} else if (cc == CLP_RC_SETPCIFN_ALRDY) {
699 		pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
700 			zdev->fid);
701 		/* Function is already disabled - update handle */
702 		rc = clp_refresh_fh(zdev->fid, &fh);
703 		if (!rc) {
704 			zpci_update_fh(zdev, fh);
705 			rc = -EINVAL;
706 		}
707 	} else {
708 		rc = -EIO;
709 	}
710 	return rc;
711 }
712 EXPORT_SYMBOL_GPL(zpci_disable_device);
713 
714 /**
715  * zpci_hot_reset_device - perform a reset of the given zPCI function
716  * @zdev: the slot which should be reset
717  *
718  * Performs a low level reset of the zPCI function. The reset is low level in
719  * the sense that the zPCI function can be reset without detaching it from the
720  * common PCI subsystem. The reset may be performed while under control of
721  * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
722  * table is reinstated at the end of the reset.
723  *
724  * After the reset the functions internal state is reset to an initial state
725  * equivalent to its state during boot when first probing a driver.
726  * Consequently after reset the PCI function requires re-initialization via the
727  * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
728  * and enabling the function via e.g. pci_enable_device_flags(). The caller
729  * must guard against concurrent reset attempts.
730  *
731  * In most cases this function should not be called directly but through
732  * pci_reset_function() or pci_reset_bus() which handle the save/restore and
733  * locking - asserted by lockdep.
734  *
735  * Return: 0 on success and an error value otherwise
736  */
737 int zpci_hot_reset_device(struct zpci_dev *zdev)
738 {
739 	u8 status;
740 	int rc;
741 
742 	lockdep_assert_held(&zdev->state_lock);
743 	zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
744 	if (zdev_enabled(zdev)) {
745 		/* Disables device access, DMAs and IRQs (reset state) */
746 		rc = zpci_disable_device(zdev);
747 		/*
748 		 * Due to a z/VM vs LPAR inconsistency in the error state the
749 		 * FH may indicate an enabled device but disable says the
750 		 * device is already disabled don't treat it as an error here.
751 		 */
752 		if (rc == -EINVAL)
753 			rc = 0;
754 		if (rc)
755 			return rc;
756 	}
757 
758 	rc = zpci_enable_device(zdev);
759 	if (rc)
760 		return rc;
761 
762 	if (zdev->dma_table)
763 		rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
764 					virt_to_phys(zdev->dma_table), &status);
765 	if (rc) {
766 		zpci_disable_device(zdev);
767 		return rc;
768 	}
769 
770 	return 0;
771 }
772 
773 /**
774  * zpci_create_device() - Create a new zpci_dev and add it to the zbus
775  * @fid: Function ID of the device to be created
776  * @fh: Current Function Handle of the device to be created
777  * @state: Initial state after creation either Standby or Configured
778  *
779  * Creates a new zpci device and adds it to its, possibly newly created, zbus
780  * as well as zpci_list.
781  *
782  * Returns: the zdev on success or an error pointer otherwise
783  */
784 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
785 {
786 	struct zpci_dev *zdev;
787 	int rc;
788 
789 	zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
790 	zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
791 	if (!zdev)
792 		return ERR_PTR(-ENOMEM);
793 
794 	/* FID and Function Handle are the static/dynamic identifiers */
795 	zdev->fid = fid;
796 	zdev->fh = fh;
797 
798 	/* Query function properties and update zdev */
799 	rc = clp_query_pci_fn(zdev);
800 	if (rc)
801 		goto error;
802 	zdev->state =  state;
803 
804 	kref_init(&zdev->kref);
805 	mutex_init(&zdev->state_lock);
806 	mutex_init(&zdev->fmb_lock);
807 	mutex_init(&zdev->kzdev_lock);
808 
809 	rc = zpci_init_iommu(zdev);
810 	if (rc)
811 		goto error;
812 
813 	rc = zpci_bus_device_register(zdev, &pci_root_ops);
814 	if (rc)
815 		goto error_destroy_iommu;
816 
817 	spin_lock(&zpci_list_lock);
818 	list_add_tail(&zdev->entry, &zpci_list);
819 	spin_unlock(&zpci_list_lock);
820 
821 	return zdev;
822 
823 error_destroy_iommu:
824 	zpci_destroy_iommu(zdev);
825 error:
826 	zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
827 	kfree(zdev);
828 	return ERR_PTR(rc);
829 }
830 
831 bool zpci_is_device_configured(struct zpci_dev *zdev)
832 {
833 	enum zpci_state state = zdev->state;
834 
835 	return state != ZPCI_FN_STATE_RESERVED &&
836 		state != ZPCI_FN_STATE_STANDBY;
837 }
838 
839 /**
840  * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
841  * @zdev: The zpci_dev to be configured
842  * @fh: The general function handle supplied by the platform
843  *
844  * Given a device in the configuration state Configured, enables, scans and
845  * adds it to the common code PCI subsystem if possible. If any failure occurs,
846  * the zpci_dev is left disabled.
847  *
848  * Return: 0 on success, or an error code otherwise
849  */
850 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
851 {
852 	zpci_update_fh(zdev, fh);
853 	return zpci_bus_scan_device(zdev);
854 }
855 
856 /**
857  * zpci_deconfigure_device() - Deconfigure a zpci_dev
858  * @zdev: The zpci_dev to configure
859  *
860  * Deconfigure a zPCI function that is currently configured and possibly known
861  * to the common code PCI subsystem.
862  * If any failure occurs the device is left as is.
863  *
864  * Return: 0 on success, or an error code otherwise
865  */
866 int zpci_deconfigure_device(struct zpci_dev *zdev)
867 {
868 	int rc;
869 
870 	lockdep_assert_held(&zdev->state_lock);
871 	if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
872 		return 0;
873 
874 	if (zdev->zbus->bus)
875 		zpci_bus_remove_device(zdev, false);
876 
877 	if (zdev_enabled(zdev)) {
878 		rc = zpci_disable_device(zdev);
879 		if (rc)
880 			return rc;
881 	}
882 
883 	rc = sclp_pci_deconfigure(zdev->fid);
884 	zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
885 	if (rc)
886 		return rc;
887 	zdev->state = ZPCI_FN_STATE_STANDBY;
888 
889 	return 0;
890 }
891 
892 /**
893  * zpci_device_reserved() - Mark device as reserved
894  * @zdev: the zpci_dev that was reserved
895  *
896  * Handle the case that a given zPCI function was reserved by another system.
897  * After a call to this function the zpci_dev can not be found via
898  * get_zdev_by_fid() anymore but may still be accessible via existing
899  * references though it will not be functional anymore.
900  */
901 void zpci_device_reserved(struct zpci_dev *zdev)
902 {
903 	/*
904 	 * Remove device from zpci_list as it is going away. This also
905 	 * makes sure we ignore subsequent zPCI events for this device.
906 	 */
907 	spin_lock(&zpci_list_lock);
908 	list_del(&zdev->entry);
909 	spin_unlock(&zpci_list_lock);
910 	zdev->state = ZPCI_FN_STATE_RESERVED;
911 	zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
912 	zpci_zdev_put(zdev);
913 }
914 
915 void zpci_release_device(struct kref *kref)
916 {
917 	struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
918 	int ret;
919 
920 	if (zdev->has_hp_slot)
921 		zpci_exit_slot(zdev);
922 
923 	if (zdev->zbus->bus)
924 		zpci_bus_remove_device(zdev, false);
925 
926 	if (zdev_enabled(zdev))
927 		zpci_disable_device(zdev);
928 
929 	switch (zdev->state) {
930 	case ZPCI_FN_STATE_CONFIGURED:
931 		ret = sclp_pci_deconfigure(zdev->fid);
932 		zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
933 		fallthrough;
934 	case ZPCI_FN_STATE_STANDBY:
935 		if (zdev->has_hp_slot)
936 			zpci_exit_slot(zdev);
937 		spin_lock(&zpci_list_lock);
938 		list_del(&zdev->entry);
939 		spin_unlock(&zpci_list_lock);
940 		zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
941 		fallthrough;
942 	case ZPCI_FN_STATE_RESERVED:
943 		if (zdev->has_resources)
944 			zpci_cleanup_bus_resources(zdev);
945 		zpci_bus_device_unregister(zdev);
946 		zpci_destroy_iommu(zdev);
947 		fallthrough;
948 	default:
949 		break;
950 	}
951 	zpci_dbg(3, "rem fid:%x\n", zdev->fid);
952 	kfree_rcu(zdev, rcu);
953 }
954 
955 int zpci_report_error(struct pci_dev *pdev,
956 		      struct zpci_report_error_header *report)
957 {
958 	struct zpci_dev *zdev = to_zpci(pdev);
959 
960 	return sclp_pci_report(report, zdev->fh, zdev->fid);
961 }
962 EXPORT_SYMBOL(zpci_report_error);
963 
964 /**
965  * zpci_clear_error_state() - Clears the zPCI error state of the device
966  * @zdev: The zdev for which the zPCI error state should be reset
967  *
968  * Clear the zPCI error state of the device. If clearing the zPCI error state
969  * fails the device is left in the error state. In this case it may make sense
970  * to call zpci_io_perm_failure() on the associated pdev if it exists.
971  *
972  * Returns: 0 on success, -EIO otherwise
973  */
974 int zpci_clear_error_state(struct zpci_dev *zdev)
975 {
976 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
977 	struct zpci_fib fib = {0};
978 	u8 status;
979 	int cc;
980 
981 	cc = zpci_mod_fc(req, &fib, &status);
982 	if (cc) {
983 		zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
984 		return -EIO;
985 	}
986 
987 	return 0;
988 }
989 
990 /**
991  * zpci_reset_load_store_blocked() - Re-enables L/S from error state
992  * @zdev: The zdev for which to unblock load/store access
993  *
994  * Re-enables load/store access for a PCI function in the error state while
995  * keeping DMA blocked. In this state drivers can poke MMIO space to determine
996  * if error recovery is possible while catching any rogue DMA access from the
997  * device.
998  *
999  * Returns: 0 on success, -EIO otherwise
1000  */
1001 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1002 {
1003 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1004 	struct zpci_fib fib = {0};
1005 	u8 status;
1006 	int cc;
1007 
1008 	cc = zpci_mod_fc(req, &fib, &status);
1009 	if (cc) {
1010 		zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1011 		return -EIO;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 static int zpci_mem_init(void)
1018 {
1019 	BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1020 		     __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1021 
1022 	zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1023 					   __alignof__(struct zpci_fmb), 0, NULL);
1024 	if (!zdev_fmb_cache)
1025 		goto error_fmb;
1026 
1027 	zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1028 				   sizeof(*zpci_iomap_start), GFP_KERNEL);
1029 	if (!zpci_iomap_start)
1030 		goto error_iomap;
1031 
1032 	zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1033 				    sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1034 	if (!zpci_iomap_bitmap)
1035 		goto error_iomap_bitmap;
1036 
1037 	if (static_branch_likely(&have_mio))
1038 		clp_setup_writeback_mio();
1039 
1040 	return 0;
1041 error_iomap_bitmap:
1042 	kfree(zpci_iomap_start);
1043 error_iomap:
1044 	kmem_cache_destroy(zdev_fmb_cache);
1045 error_fmb:
1046 	return -ENOMEM;
1047 }
1048 
1049 static void zpci_mem_exit(void)
1050 {
1051 	kfree(zpci_iomap_bitmap);
1052 	kfree(zpci_iomap_start);
1053 	kmem_cache_destroy(zdev_fmb_cache);
1054 }
1055 
1056 static unsigned int s390_pci_probe __initdata = 1;
1057 unsigned int s390_pci_force_floating __initdata;
1058 static unsigned int s390_pci_initialized;
1059 
1060 char * __init pcibios_setup(char *str)
1061 {
1062 	if (!strcmp(str, "off")) {
1063 		s390_pci_probe = 0;
1064 		return NULL;
1065 	}
1066 	if (!strcmp(str, "nomio")) {
1067 		S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1068 		return NULL;
1069 	}
1070 	if (!strcmp(str, "force_floating")) {
1071 		s390_pci_force_floating = 1;
1072 		return NULL;
1073 	}
1074 	if (!strcmp(str, "norid")) {
1075 		s390_pci_no_rid = 1;
1076 		return NULL;
1077 	}
1078 	return str;
1079 }
1080 
1081 bool zpci_is_enabled(void)
1082 {
1083 	return s390_pci_initialized;
1084 }
1085 
1086 static int __init pci_base_init(void)
1087 {
1088 	int rc;
1089 
1090 	if (!s390_pci_probe)
1091 		return 0;
1092 
1093 	if (!test_facility(69) || !test_facility(71)) {
1094 		pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1095 		return 0;
1096 	}
1097 
1098 	if (MACHINE_HAS_PCI_MIO) {
1099 		static_branch_enable(&have_mio);
1100 		system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1101 	}
1102 
1103 	rc = zpci_debug_init();
1104 	if (rc)
1105 		goto out;
1106 
1107 	rc = zpci_mem_init();
1108 	if (rc)
1109 		goto out_mem;
1110 
1111 	rc = zpci_irq_init();
1112 	if (rc)
1113 		goto out_irq;
1114 
1115 	rc = clp_scan_pci_devices();
1116 	if (rc)
1117 		goto out_find;
1118 	zpci_bus_scan_busses();
1119 
1120 	s390_pci_initialized = 1;
1121 	return 0;
1122 
1123 out_find:
1124 	zpci_irq_exit();
1125 out_irq:
1126 	zpci_mem_exit();
1127 out_mem:
1128 	zpci_debug_exit();
1129 out:
1130 	return rc;
1131 }
1132 subsys_initcall_sync(pci_base_init);
1133