1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 32 #include <asm/isc.h> 33 #include <asm/airq.h> 34 #include <asm/facility.h> 35 #include <asm/pci_insn.h> 36 #include <asm/pci_clp.h> 37 #include <asm/pci_dma.h> 38 39 #include "pci_bus.h" 40 #include "pci_iov.h" 41 42 /* list of all detected zpci devices */ 43 static LIST_HEAD(zpci_list); 44 static DEFINE_SPINLOCK(zpci_list_lock); 45 46 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 47 static DEFINE_SPINLOCK(zpci_domain_lock); 48 49 #define ZPCI_IOMAP_ENTRIES \ 50 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 51 ZPCI_IOMAP_MAX_ENTRIES) 52 53 unsigned int s390_pci_no_rid; 54 55 static DEFINE_SPINLOCK(zpci_iomap_lock); 56 static unsigned long *zpci_iomap_bitmap; 57 struct zpci_iomap_entry *zpci_iomap_start; 58 EXPORT_SYMBOL_GPL(zpci_iomap_start); 59 60 DEFINE_STATIC_KEY_FALSE(have_mio); 61 62 static struct kmem_cache *zdev_fmb_cache; 63 64 /* AEN structures that must be preserved over KVM module re-insertion */ 65 union zpci_sic_iib *zpci_aipb; 66 EXPORT_SYMBOL_GPL(zpci_aipb); 67 struct airq_iv *zpci_aif_sbv; 68 EXPORT_SYMBOL_GPL(zpci_aif_sbv); 69 70 struct zpci_dev *get_zdev_by_fid(u32 fid) 71 { 72 struct zpci_dev *tmp, *zdev = NULL; 73 74 spin_lock(&zpci_list_lock); 75 list_for_each_entry(tmp, &zpci_list, entry) { 76 if (tmp->fid == fid) { 77 zdev = tmp; 78 zpci_zdev_get(zdev); 79 break; 80 } 81 } 82 spin_unlock(&zpci_list_lock); 83 return zdev; 84 } 85 86 void zpci_remove_reserved_devices(void) 87 { 88 struct zpci_dev *tmp, *zdev; 89 enum zpci_state state; 90 LIST_HEAD(remove); 91 92 spin_lock(&zpci_list_lock); 93 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 94 if (zdev->state == ZPCI_FN_STATE_STANDBY && 95 !clp_get_state(zdev->fid, &state) && 96 state == ZPCI_FN_STATE_RESERVED) 97 list_move_tail(&zdev->entry, &remove); 98 } 99 spin_unlock(&zpci_list_lock); 100 101 list_for_each_entry_safe(zdev, tmp, &remove, entry) 102 zpci_device_reserved(zdev); 103 } 104 105 int pci_domain_nr(struct pci_bus *bus) 106 { 107 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 108 } 109 EXPORT_SYMBOL_GPL(pci_domain_nr); 110 111 int pci_proc_domain(struct pci_bus *bus) 112 { 113 return pci_domain_nr(bus); 114 } 115 EXPORT_SYMBOL_GPL(pci_proc_domain); 116 117 /* Modify PCI: Register I/O address translation parameters */ 118 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 119 u64 base, u64 limit, u64 iota, u8 *status) 120 { 121 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 122 struct zpci_fib fib = {0}; 123 u8 cc; 124 125 WARN_ON_ONCE(iota & 0x3fff); 126 fib.pba = base; 127 fib.pal = limit; 128 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; 129 fib.gd = zdev->gisa; 130 cc = zpci_mod_fc(req, &fib, status); 131 if (cc) 132 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status); 133 return cc; 134 } 135 EXPORT_SYMBOL_GPL(zpci_register_ioat); 136 137 /* Modify PCI: Unregister I/O address translation parameters */ 138 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 139 { 140 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 141 struct zpci_fib fib = {0}; 142 u8 cc, status; 143 144 fib.gd = zdev->gisa; 145 146 cc = zpci_mod_fc(req, &fib, &status); 147 if (cc) 148 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 149 return cc; 150 } 151 152 /* Modify PCI: Set PCI function measurement parameters */ 153 int zpci_fmb_enable_device(struct zpci_dev *zdev) 154 { 155 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 156 struct zpci_fib fib = {0}; 157 u8 cc, status; 158 159 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 160 return -EINVAL; 161 162 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 163 if (!zdev->fmb) 164 return -ENOMEM; 165 WARN_ON((u64) zdev->fmb & 0xf); 166 167 /* reset software counters */ 168 atomic64_set(&zdev->allocated_pages, 0); 169 atomic64_set(&zdev->mapped_pages, 0); 170 atomic64_set(&zdev->unmapped_pages, 0); 171 172 fib.fmb_addr = virt_to_phys(zdev->fmb); 173 fib.gd = zdev->gisa; 174 cc = zpci_mod_fc(req, &fib, &status); 175 if (cc) { 176 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 177 zdev->fmb = NULL; 178 } 179 return cc ? -EIO : 0; 180 } 181 182 /* Modify PCI: Disable PCI function measurement */ 183 int zpci_fmb_disable_device(struct zpci_dev *zdev) 184 { 185 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 186 struct zpci_fib fib = {0}; 187 u8 cc, status; 188 189 if (!zdev->fmb) 190 return -EINVAL; 191 192 fib.gd = zdev->gisa; 193 194 /* Function measurement is disabled if fmb address is zero */ 195 cc = zpci_mod_fc(req, &fib, &status); 196 if (cc == 3) /* Function already gone. */ 197 cc = 0; 198 199 if (!cc) { 200 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 201 zdev->fmb = NULL; 202 } 203 return cc ? -EIO : 0; 204 } 205 206 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 207 { 208 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 209 u64 data; 210 int rc; 211 212 rc = __zpci_load(&data, req, offset); 213 if (!rc) { 214 data = le64_to_cpu((__force __le64) data); 215 data >>= (8 - len) * 8; 216 *val = (u32) data; 217 } else 218 *val = 0xffffffff; 219 return rc; 220 } 221 222 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 223 { 224 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 225 u64 data = val; 226 int rc; 227 228 data <<= (8 - len) * 8; 229 data = (__force u64) cpu_to_le64(data); 230 rc = __zpci_store(data, req, offset); 231 return rc; 232 } 233 234 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 235 resource_size_t size, 236 resource_size_t align) 237 { 238 return 0; 239 } 240 241 /* combine single writes by using store-block insn */ 242 void __iowrite64_copy(void __iomem *to, const void *from, size_t count) 243 { 244 zpci_memcpy_toio(to, from, count); 245 } 246 247 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size, 248 unsigned long prot) 249 { 250 /* 251 * When PCI MIO instructions are unavailable the "physical" address 252 * encodes a hint for accessing the PCI memory space it represents. 253 * Just pass it unchanged such that ioread/iowrite can decode it. 254 */ 255 if (!static_branch_unlikely(&have_mio)) 256 return (void __iomem *)phys_addr; 257 258 return generic_ioremap_prot(phys_addr, size, __pgprot(prot)); 259 } 260 EXPORT_SYMBOL(ioremap_prot); 261 262 void iounmap(volatile void __iomem *addr) 263 { 264 if (static_branch_likely(&have_mio)) 265 generic_iounmap(addr); 266 } 267 EXPORT_SYMBOL(iounmap); 268 269 /* Create a virtual mapping cookie for a PCI BAR */ 270 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 271 unsigned long offset, unsigned long max) 272 { 273 struct zpci_dev *zdev = to_zpci(pdev); 274 int idx; 275 276 idx = zdev->bars[bar].map_idx; 277 spin_lock(&zpci_iomap_lock); 278 /* Detect overrun */ 279 WARN_ON(!++zpci_iomap_start[idx].count); 280 zpci_iomap_start[idx].fh = zdev->fh; 281 zpci_iomap_start[idx].bar = bar; 282 spin_unlock(&zpci_iomap_lock); 283 284 return (void __iomem *) ZPCI_ADDR(idx) + offset; 285 } 286 287 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 288 unsigned long offset, 289 unsigned long max) 290 { 291 unsigned long barsize = pci_resource_len(pdev, bar); 292 struct zpci_dev *zdev = to_zpci(pdev); 293 void __iomem *iova; 294 295 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 296 return iova ? iova + offset : iova; 297 } 298 299 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 300 unsigned long offset, unsigned long max) 301 { 302 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 303 return NULL; 304 305 if (static_branch_likely(&have_mio)) 306 return pci_iomap_range_mio(pdev, bar, offset, max); 307 else 308 return pci_iomap_range_fh(pdev, bar, offset, max); 309 } 310 EXPORT_SYMBOL(pci_iomap_range); 311 312 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 313 { 314 return pci_iomap_range(dev, bar, 0, maxlen); 315 } 316 EXPORT_SYMBOL(pci_iomap); 317 318 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 319 unsigned long offset, unsigned long max) 320 { 321 unsigned long barsize = pci_resource_len(pdev, bar); 322 struct zpci_dev *zdev = to_zpci(pdev); 323 void __iomem *iova; 324 325 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 326 return iova ? iova + offset : iova; 327 } 328 329 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 330 unsigned long offset, unsigned long max) 331 { 332 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 333 return NULL; 334 335 if (static_branch_likely(&have_mio)) 336 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 337 else 338 return pci_iomap_range_fh(pdev, bar, offset, max); 339 } 340 EXPORT_SYMBOL(pci_iomap_wc_range); 341 342 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 343 { 344 return pci_iomap_wc_range(dev, bar, 0, maxlen); 345 } 346 EXPORT_SYMBOL(pci_iomap_wc); 347 348 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 349 { 350 unsigned int idx = ZPCI_IDX(addr); 351 352 spin_lock(&zpci_iomap_lock); 353 /* Detect underrun */ 354 WARN_ON(!zpci_iomap_start[idx].count); 355 if (!--zpci_iomap_start[idx].count) { 356 zpci_iomap_start[idx].fh = 0; 357 zpci_iomap_start[idx].bar = 0; 358 } 359 spin_unlock(&zpci_iomap_lock); 360 } 361 362 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 363 { 364 iounmap(addr); 365 } 366 367 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 368 { 369 if (static_branch_likely(&have_mio)) 370 pci_iounmap_mio(pdev, addr); 371 else 372 pci_iounmap_fh(pdev, addr); 373 } 374 EXPORT_SYMBOL(pci_iounmap); 375 376 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 377 int size, u32 *val) 378 { 379 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 380 381 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 382 } 383 384 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 385 int size, u32 val) 386 { 387 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 388 389 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 390 } 391 392 static struct pci_ops pci_root_ops = { 393 .read = pci_read, 394 .write = pci_write, 395 }; 396 397 static void zpci_map_resources(struct pci_dev *pdev) 398 { 399 struct zpci_dev *zdev = to_zpci(pdev); 400 resource_size_t len; 401 int i; 402 403 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 404 len = pci_resource_len(pdev, i); 405 if (!len) 406 continue; 407 408 if (zpci_use_mio(zdev)) 409 pdev->resource[i].start = 410 (resource_size_t __force) zdev->bars[i].mio_wt; 411 else 412 pdev->resource[i].start = (resource_size_t __force) 413 pci_iomap_range_fh(pdev, i, 0, 0); 414 pdev->resource[i].end = pdev->resource[i].start + len - 1; 415 } 416 417 zpci_iov_map_resources(pdev); 418 } 419 420 static void zpci_unmap_resources(struct pci_dev *pdev) 421 { 422 struct zpci_dev *zdev = to_zpci(pdev); 423 resource_size_t len; 424 int i; 425 426 if (zpci_use_mio(zdev)) 427 return; 428 429 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 430 len = pci_resource_len(pdev, i); 431 if (!len) 432 continue; 433 pci_iounmap_fh(pdev, (void __iomem __force *) 434 pdev->resource[i].start); 435 } 436 } 437 438 static int zpci_alloc_iomap(struct zpci_dev *zdev) 439 { 440 unsigned long entry; 441 442 spin_lock(&zpci_iomap_lock); 443 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 444 if (entry == ZPCI_IOMAP_ENTRIES) { 445 spin_unlock(&zpci_iomap_lock); 446 return -ENOSPC; 447 } 448 set_bit(entry, zpci_iomap_bitmap); 449 spin_unlock(&zpci_iomap_lock); 450 return entry; 451 } 452 453 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 454 { 455 spin_lock(&zpci_iomap_lock); 456 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 457 clear_bit(entry, zpci_iomap_bitmap); 458 spin_unlock(&zpci_iomap_lock); 459 } 460 461 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) 462 { 463 int bar, idx; 464 465 spin_lock(&zpci_iomap_lock); 466 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 467 if (!zdev->bars[bar].size) 468 continue; 469 idx = zdev->bars[bar].map_idx; 470 if (!zpci_iomap_start[idx].count) 471 continue; 472 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); 473 } 474 spin_unlock(&zpci_iomap_lock); 475 } 476 477 void zpci_update_fh(struct zpci_dev *zdev, u32 fh) 478 { 479 if (!fh || zdev->fh == fh) 480 return; 481 482 zdev->fh = fh; 483 if (zpci_use_mio(zdev)) 484 return; 485 if (zdev->has_resources && zdev_enabled(zdev)) 486 zpci_do_update_iomap_fh(zdev, fh); 487 } 488 489 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 490 unsigned long size, unsigned long flags) 491 { 492 struct resource *r; 493 494 r = kzalloc(sizeof(*r), GFP_KERNEL); 495 if (!r) 496 return NULL; 497 498 r->start = start; 499 r->end = r->start + size - 1; 500 r->flags = flags; 501 r->name = zdev->res_name; 502 503 if (request_resource(&iomem_resource, r)) { 504 kfree(r); 505 return NULL; 506 } 507 return r; 508 } 509 510 int zpci_setup_bus_resources(struct zpci_dev *zdev) 511 { 512 unsigned long addr, size, flags; 513 struct resource *res; 514 int i, entry; 515 516 snprintf(zdev->res_name, sizeof(zdev->res_name), 517 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 518 519 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 520 if (!zdev->bars[i].size) 521 continue; 522 entry = zpci_alloc_iomap(zdev); 523 if (entry < 0) 524 return entry; 525 zdev->bars[i].map_idx = entry; 526 527 /* only MMIO is supported */ 528 flags = IORESOURCE_MEM; 529 if (zdev->bars[i].val & 8) 530 flags |= IORESOURCE_PREFETCH; 531 if (zdev->bars[i].val & 4) 532 flags |= IORESOURCE_MEM_64; 533 534 if (zpci_use_mio(zdev)) 535 addr = (unsigned long) zdev->bars[i].mio_wt; 536 else 537 addr = ZPCI_ADDR(entry); 538 size = 1UL << zdev->bars[i].size; 539 540 res = __alloc_res(zdev, addr, size, flags); 541 if (!res) { 542 zpci_free_iomap(zdev, entry); 543 return -ENOMEM; 544 } 545 zdev->bars[i].res = res; 546 } 547 zdev->has_resources = 1; 548 549 return 0; 550 } 551 552 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 553 { 554 struct resource *res; 555 int i; 556 557 pci_lock_rescan_remove(); 558 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 559 res = zdev->bars[i].res; 560 if (!res) 561 continue; 562 563 release_resource(res); 564 pci_bus_remove_resource(zdev->zbus->bus, res); 565 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 566 zdev->bars[i].res = NULL; 567 kfree(res); 568 } 569 zdev->has_resources = 0; 570 pci_unlock_rescan_remove(); 571 } 572 573 int pcibios_device_add(struct pci_dev *pdev) 574 { 575 struct zpci_dev *zdev = to_zpci(pdev); 576 struct resource *res; 577 int i; 578 579 /* The pdev has a reference to the zdev via its bus */ 580 zpci_zdev_get(zdev); 581 if (pdev->is_physfn) 582 pdev->no_vf_scan = 1; 583 584 pdev->dev.groups = zpci_attr_groups; 585 pdev->dev.dma_ops = &s390_pci_dma_ops; 586 zpci_map_resources(pdev); 587 588 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 589 res = &pdev->resource[i]; 590 if (res->parent || !res->flags) 591 continue; 592 pci_claim_resource(pdev, i); 593 } 594 595 return 0; 596 } 597 598 void pcibios_release_device(struct pci_dev *pdev) 599 { 600 struct zpci_dev *zdev = to_zpci(pdev); 601 602 zpci_unmap_resources(pdev); 603 zpci_zdev_put(zdev); 604 } 605 606 int pcibios_enable_device(struct pci_dev *pdev, int mask) 607 { 608 struct zpci_dev *zdev = to_zpci(pdev); 609 610 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 611 zpci_fmb_enable_device(zdev); 612 613 return pci_enable_resources(pdev, mask); 614 } 615 616 void pcibios_disable_device(struct pci_dev *pdev) 617 { 618 struct zpci_dev *zdev = to_zpci(pdev); 619 620 zpci_fmb_disable_device(zdev); 621 zpci_debug_exit_device(zdev); 622 } 623 624 static int __zpci_register_domain(int domain) 625 { 626 spin_lock(&zpci_domain_lock); 627 if (test_bit(domain, zpci_domain)) { 628 spin_unlock(&zpci_domain_lock); 629 pr_err("Domain %04x is already assigned\n", domain); 630 return -EEXIST; 631 } 632 set_bit(domain, zpci_domain); 633 spin_unlock(&zpci_domain_lock); 634 return domain; 635 } 636 637 static int __zpci_alloc_domain(void) 638 { 639 int domain; 640 641 spin_lock(&zpci_domain_lock); 642 /* 643 * We can always auto allocate domains below ZPCI_NR_DEVICES. 644 * There is either a free domain or we have reached the maximum in 645 * which case we would have bailed earlier. 646 */ 647 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 648 set_bit(domain, zpci_domain); 649 spin_unlock(&zpci_domain_lock); 650 return domain; 651 } 652 653 int zpci_alloc_domain(int domain) 654 { 655 if (zpci_unique_uid) { 656 if (domain) 657 return __zpci_register_domain(domain); 658 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 659 update_uid_checking(false); 660 } 661 return __zpci_alloc_domain(); 662 } 663 664 void zpci_free_domain(int domain) 665 { 666 spin_lock(&zpci_domain_lock); 667 clear_bit(domain, zpci_domain); 668 spin_unlock(&zpci_domain_lock); 669 } 670 671 672 int zpci_enable_device(struct zpci_dev *zdev) 673 { 674 u32 fh = zdev->fh; 675 int rc = 0; 676 677 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) 678 rc = -EIO; 679 else 680 zpci_update_fh(zdev, fh); 681 return rc; 682 } 683 EXPORT_SYMBOL_GPL(zpci_enable_device); 684 685 int zpci_disable_device(struct zpci_dev *zdev) 686 { 687 u32 fh = zdev->fh; 688 int cc, rc = 0; 689 690 cc = clp_disable_fh(zdev, &fh); 691 if (!cc) { 692 zpci_update_fh(zdev, fh); 693 } else if (cc == CLP_RC_SETPCIFN_ALRDY) { 694 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", 695 zdev->fid); 696 /* Function is already disabled - update handle */ 697 rc = clp_refresh_fh(zdev->fid, &fh); 698 if (!rc) { 699 zpci_update_fh(zdev, fh); 700 rc = -EINVAL; 701 } 702 } else { 703 rc = -EIO; 704 } 705 return rc; 706 } 707 EXPORT_SYMBOL_GPL(zpci_disable_device); 708 709 /** 710 * zpci_hot_reset_device - perform a reset of the given zPCI function 711 * @zdev: the slot which should be reset 712 * 713 * Performs a low level reset of the zPCI function. The reset is low level in 714 * the sense that the zPCI function can be reset without detaching it from the 715 * common PCI subsystem. The reset may be performed while under control of 716 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation 717 * table is reinstated at the end of the reset. 718 * 719 * After the reset the functions internal state is reset to an initial state 720 * equivalent to its state during boot when first probing a driver. 721 * Consequently after reset the PCI function requires re-initialization via the 722 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() 723 * and enabling the function via e.g.pci_enablde_device_flags().The caller 724 * must guard against concurrent reset attempts. 725 * 726 * In most cases this function should not be called directly but through 727 * pci_reset_function() or pci_reset_bus() which handle the save/restore and 728 * locking. 729 * 730 * Return: 0 on success and an error value otherwise 731 */ 732 int zpci_hot_reset_device(struct zpci_dev *zdev) 733 { 734 u8 status; 735 int rc; 736 737 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); 738 if (zdev_enabled(zdev)) { 739 /* Disables device access, DMAs and IRQs (reset state) */ 740 rc = zpci_disable_device(zdev); 741 /* 742 * Due to a z/VM vs LPAR inconsistency in the error state the 743 * FH may indicate an enabled device but disable says the 744 * device is already disabled don't treat it as an error here. 745 */ 746 if (rc == -EINVAL) 747 rc = 0; 748 if (rc) 749 return rc; 750 } 751 752 rc = zpci_enable_device(zdev); 753 if (rc) 754 return rc; 755 756 if (zdev->dma_table) 757 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, 758 virt_to_phys(zdev->dma_table), &status); 759 else 760 rc = zpci_dma_init_device(zdev); 761 if (rc) { 762 zpci_disable_device(zdev); 763 return rc; 764 } 765 766 return 0; 767 } 768 769 /** 770 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 771 * @fid: Function ID of the device to be created 772 * @fh: Current Function Handle of the device to be created 773 * @state: Initial state after creation either Standby or Configured 774 * 775 * Creates a new zpci device and adds it to its, possibly newly created, zbus 776 * as well as zpci_list. 777 * 778 * Returns: the zdev on success or an error pointer otherwise 779 */ 780 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 781 { 782 struct zpci_dev *zdev; 783 int rc; 784 785 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); 786 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 787 if (!zdev) 788 return ERR_PTR(-ENOMEM); 789 790 /* FID and Function Handle are the static/dynamic identifiers */ 791 zdev->fid = fid; 792 zdev->fh = fh; 793 794 /* Query function properties and update zdev */ 795 rc = clp_query_pci_fn(zdev); 796 if (rc) 797 goto error; 798 zdev->state = state; 799 800 kref_init(&zdev->kref); 801 mutex_init(&zdev->lock); 802 mutex_init(&zdev->kzdev_lock); 803 804 rc = zpci_init_iommu(zdev); 805 if (rc) 806 goto error; 807 808 rc = zpci_bus_device_register(zdev, &pci_root_ops); 809 if (rc) 810 goto error_destroy_iommu; 811 812 spin_lock(&zpci_list_lock); 813 list_add_tail(&zdev->entry, &zpci_list); 814 spin_unlock(&zpci_list_lock); 815 816 return zdev; 817 818 error_destroy_iommu: 819 zpci_destroy_iommu(zdev); 820 error: 821 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); 822 kfree(zdev); 823 return ERR_PTR(rc); 824 } 825 826 bool zpci_is_device_configured(struct zpci_dev *zdev) 827 { 828 enum zpci_state state = zdev->state; 829 830 return state != ZPCI_FN_STATE_RESERVED && 831 state != ZPCI_FN_STATE_STANDBY; 832 } 833 834 /** 835 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev 836 * @zdev: The zpci_dev to be configured 837 * @fh: The general function handle supplied by the platform 838 * 839 * Given a device in the configuration state Configured, enables, scans and 840 * adds it to the common code PCI subsystem if possible. If any failure occurs, 841 * the zpci_dev is left disabled. 842 * 843 * Return: 0 on success, or an error code otherwise 844 */ 845 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) 846 { 847 zpci_update_fh(zdev, fh); 848 return zpci_bus_scan_device(zdev); 849 } 850 851 /** 852 * zpci_deconfigure_device() - Deconfigure a zpci_dev 853 * @zdev: The zpci_dev to configure 854 * 855 * Deconfigure a zPCI function that is currently configured and possibly known 856 * to the common code PCI subsystem. 857 * If any failure occurs the device is left as is. 858 * 859 * Return: 0 on success, or an error code otherwise 860 */ 861 int zpci_deconfigure_device(struct zpci_dev *zdev) 862 { 863 int rc; 864 865 if (zdev->zbus->bus) 866 zpci_bus_remove_device(zdev, false); 867 868 if (zdev->dma_table) { 869 rc = zpci_dma_exit_device(zdev); 870 if (rc) 871 return rc; 872 } 873 if (zdev_enabled(zdev)) { 874 rc = zpci_disable_device(zdev); 875 if (rc) 876 return rc; 877 } 878 879 rc = sclp_pci_deconfigure(zdev->fid); 880 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); 881 if (rc) 882 return rc; 883 zdev->state = ZPCI_FN_STATE_STANDBY; 884 885 return 0; 886 } 887 888 /** 889 * zpci_device_reserved() - Mark device as resverved 890 * @zdev: the zpci_dev that was reserved 891 * 892 * Handle the case that a given zPCI function was reserved by another system. 893 * After a call to this function the zpci_dev can not be found via 894 * get_zdev_by_fid() anymore but may still be accessible via existing 895 * references though it will not be functional anymore. 896 */ 897 void zpci_device_reserved(struct zpci_dev *zdev) 898 { 899 if (zdev->has_hp_slot) 900 zpci_exit_slot(zdev); 901 /* 902 * Remove device from zpci_list as it is going away. This also 903 * makes sure we ignore subsequent zPCI events for this device. 904 */ 905 spin_lock(&zpci_list_lock); 906 list_del(&zdev->entry); 907 spin_unlock(&zpci_list_lock); 908 zdev->state = ZPCI_FN_STATE_RESERVED; 909 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 910 zpci_zdev_put(zdev); 911 } 912 913 void zpci_release_device(struct kref *kref) 914 { 915 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 916 int ret; 917 918 if (zdev->zbus->bus) 919 zpci_bus_remove_device(zdev, false); 920 921 if (zdev->dma_table) 922 zpci_dma_exit_device(zdev); 923 if (zdev_enabled(zdev)) 924 zpci_disable_device(zdev); 925 926 switch (zdev->state) { 927 case ZPCI_FN_STATE_CONFIGURED: 928 ret = sclp_pci_deconfigure(zdev->fid); 929 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); 930 fallthrough; 931 case ZPCI_FN_STATE_STANDBY: 932 if (zdev->has_hp_slot) 933 zpci_exit_slot(zdev); 934 spin_lock(&zpci_list_lock); 935 list_del(&zdev->entry); 936 spin_unlock(&zpci_list_lock); 937 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 938 fallthrough; 939 case ZPCI_FN_STATE_RESERVED: 940 if (zdev->has_resources) 941 zpci_cleanup_bus_resources(zdev); 942 zpci_bus_device_unregister(zdev); 943 zpci_destroy_iommu(zdev); 944 fallthrough; 945 default: 946 break; 947 } 948 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 949 kfree_rcu(zdev, rcu); 950 } 951 952 int zpci_report_error(struct pci_dev *pdev, 953 struct zpci_report_error_header *report) 954 { 955 struct zpci_dev *zdev = to_zpci(pdev); 956 957 return sclp_pci_report(report, zdev->fh, zdev->fid); 958 } 959 EXPORT_SYMBOL(zpci_report_error); 960 961 /** 962 * zpci_clear_error_state() - Clears the zPCI error state of the device 963 * @zdev: The zdev for which the zPCI error state should be reset 964 * 965 * Clear the zPCI error state of the device. If clearing the zPCI error state 966 * fails the device is left in the error state. In this case it may make sense 967 * to call zpci_io_perm_failure() on the associated pdev if it exists. 968 * 969 * Returns: 0 on success, -EIO otherwise 970 */ 971 int zpci_clear_error_state(struct zpci_dev *zdev) 972 { 973 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); 974 struct zpci_fib fib = {0}; 975 u8 status; 976 int cc; 977 978 cc = zpci_mod_fc(req, &fib, &status); 979 if (cc) { 980 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 981 return -EIO; 982 } 983 984 return 0; 985 } 986 987 /** 988 * zpci_reset_load_store_blocked() - Re-enables L/S from error state 989 * @zdev: The zdev for which to unblock load/store access 990 * 991 * Re-enables load/store access for a PCI function in the error state while 992 * keeping DMA blocked. In this state drivers can poke MMIO space to determine 993 * if error recovery is possible while catching any rogue DMA access from the 994 * device. 995 * 996 * Returns: 0 on success, -EIO otherwise 997 */ 998 int zpci_reset_load_store_blocked(struct zpci_dev *zdev) 999 { 1000 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); 1001 struct zpci_fib fib = {0}; 1002 u8 status; 1003 int cc; 1004 1005 cc = zpci_mod_fc(req, &fib, &status); 1006 if (cc) { 1007 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1008 return -EIO; 1009 } 1010 1011 return 0; 1012 } 1013 1014 static int zpci_mem_init(void) 1015 { 1016 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 1017 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 1018 1019 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 1020 __alignof__(struct zpci_fmb), 0, NULL); 1021 if (!zdev_fmb_cache) 1022 goto error_fmb; 1023 1024 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 1025 sizeof(*zpci_iomap_start), GFP_KERNEL); 1026 if (!zpci_iomap_start) 1027 goto error_iomap; 1028 1029 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 1030 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 1031 if (!zpci_iomap_bitmap) 1032 goto error_iomap_bitmap; 1033 1034 if (static_branch_likely(&have_mio)) 1035 clp_setup_writeback_mio(); 1036 1037 return 0; 1038 error_iomap_bitmap: 1039 kfree(zpci_iomap_start); 1040 error_iomap: 1041 kmem_cache_destroy(zdev_fmb_cache); 1042 error_fmb: 1043 return -ENOMEM; 1044 } 1045 1046 static void zpci_mem_exit(void) 1047 { 1048 kfree(zpci_iomap_bitmap); 1049 kfree(zpci_iomap_start); 1050 kmem_cache_destroy(zdev_fmb_cache); 1051 } 1052 1053 static unsigned int s390_pci_probe __initdata = 1; 1054 unsigned int s390_pci_force_floating __initdata; 1055 static unsigned int s390_pci_initialized; 1056 1057 char * __init pcibios_setup(char *str) 1058 { 1059 if (!strcmp(str, "off")) { 1060 s390_pci_probe = 0; 1061 return NULL; 1062 } 1063 if (!strcmp(str, "nomio")) { 1064 S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO; 1065 return NULL; 1066 } 1067 if (!strcmp(str, "force_floating")) { 1068 s390_pci_force_floating = 1; 1069 return NULL; 1070 } 1071 if (!strcmp(str, "norid")) { 1072 s390_pci_no_rid = 1; 1073 return NULL; 1074 } 1075 return str; 1076 } 1077 1078 bool zpci_is_enabled(void) 1079 { 1080 return s390_pci_initialized; 1081 } 1082 1083 static int __init pci_base_init(void) 1084 { 1085 int rc; 1086 1087 if (!s390_pci_probe) 1088 return 0; 1089 1090 if (!test_facility(69) || !test_facility(71)) { 1091 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 1092 return 0; 1093 } 1094 1095 if (MACHINE_HAS_PCI_MIO) { 1096 static_branch_enable(&have_mio); 1097 ctl_set_bit(2, 5); 1098 } 1099 1100 rc = zpci_debug_init(); 1101 if (rc) 1102 goto out; 1103 1104 rc = zpci_mem_init(); 1105 if (rc) 1106 goto out_mem; 1107 1108 rc = zpci_irq_init(); 1109 if (rc) 1110 goto out_irq; 1111 1112 rc = zpci_dma_init(); 1113 if (rc) 1114 goto out_dma; 1115 1116 rc = clp_scan_pci_devices(); 1117 if (rc) 1118 goto out_find; 1119 zpci_bus_scan_busses(); 1120 1121 s390_pci_initialized = 1; 1122 return 0; 1123 1124 out_find: 1125 zpci_dma_exit(); 1126 out_dma: 1127 zpci_irq_exit(); 1128 out_irq: 1129 zpci_mem_exit(); 1130 out_mem: 1131 zpci_debug_exit(); 1132 out: 1133 return rc; 1134 } 1135 subsys_initcall_sync(pci_base_init); 1136