1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 #include <linux/lockdep.h> 32 33 #include <asm/isc.h> 34 #include <asm/airq.h> 35 #include <asm/facility.h> 36 #include <asm/pci_insn.h> 37 #include <asm/pci_clp.h> 38 #include <asm/pci_dma.h> 39 40 #include "pci_bus.h" 41 #include "pci_iov.h" 42 43 /* list of all detected zpci devices */ 44 static LIST_HEAD(zpci_list); 45 static DEFINE_SPINLOCK(zpci_list_lock); 46 47 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 48 static DEFINE_SPINLOCK(zpci_domain_lock); 49 50 #define ZPCI_IOMAP_ENTRIES \ 51 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 52 ZPCI_IOMAP_MAX_ENTRIES) 53 54 unsigned int s390_pci_no_rid; 55 56 static DEFINE_SPINLOCK(zpci_iomap_lock); 57 static unsigned long *zpci_iomap_bitmap; 58 struct zpci_iomap_entry *zpci_iomap_start; 59 EXPORT_SYMBOL_GPL(zpci_iomap_start); 60 61 DEFINE_STATIC_KEY_FALSE(have_mio); 62 63 static struct kmem_cache *zdev_fmb_cache; 64 65 /* AEN structures that must be preserved over KVM module re-insertion */ 66 union zpci_sic_iib *zpci_aipb; 67 EXPORT_SYMBOL_GPL(zpci_aipb); 68 struct airq_iv *zpci_aif_sbv; 69 EXPORT_SYMBOL_GPL(zpci_aif_sbv); 70 71 struct zpci_dev *get_zdev_by_fid(u32 fid) 72 { 73 struct zpci_dev *tmp, *zdev = NULL; 74 75 spin_lock(&zpci_list_lock); 76 list_for_each_entry(tmp, &zpci_list, entry) { 77 if (tmp->fid == fid) { 78 zdev = tmp; 79 zpci_zdev_get(zdev); 80 break; 81 } 82 } 83 spin_unlock(&zpci_list_lock); 84 return zdev; 85 } 86 87 void zpci_remove_reserved_devices(void) 88 { 89 struct zpci_dev *tmp, *zdev; 90 enum zpci_state state; 91 LIST_HEAD(remove); 92 93 spin_lock(&zpci_list_lock); 94 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 95 if (zdev->state == ZPCI_FN_STATE_STANDBY && 96 !clp_get_state(zdev->fid, &state) && 97 state == ZPCI_FN_STATE_RESERVED) 98 list_move_tail(&zdev->entry, &remove); 99 } 100 spin_unlock(&zpci_list_lock); 101 102 list_for_each_entry_safe(zdev, tmp, &remove, entry) 103 zpci_device_reserved(zdev); 104 } 105 106 int pci_domain_nr(struct pci_bus *bus) 107 { 108 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 109 } 110 EXPORT_SYMBOL_GPL(pci_domain_nr); 111 112 int pci_proc_domain(struct pci_bus *bus) 113 { 114 return pci_domain_nr(bus); 115 } 116 EXPORT_SYMBOL_GPL(pci_proc_domain); 117 118 /* Modify PCI: Register I/O address translation parameters */ 119 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 120 u64 base, u64 limit, u64 iota, u8 *status) 121 { 122 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 123 struct zpci_fib fib = {0}; 124 u8 cc; 125 126 WARN_ON_ONCE(iota & 0x3fff); 127 fib.pba = base; 128 /* Work around off by one in ISM virt device */ 129 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base) 130 fib.pal = limit + (1 << 12); 131 else 132 fib.pal = limit; 133 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; 134 fib.gd = zdev->gisa; 135 cc = zpci_mod_fc(req, &fib, status); 136 if (cc) 137 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status); 138 return cc; 139 } 140 EXPORT_SYMBOL_GPL(zpci_register_ioat); 141 142 /* Modify PCI: Unregister I/O address translation parameters */ 143 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 144 { 145 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 146 struct zpci_fib fib = {0}; 147 u8 cc, status; 148 149 fib.gd = zdev->gisa; 150 151 cc = zpci_mod_fc(req, &fib, &status); 152 if (cc) 153 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 154 return cc; 155 } 156 157 /* Modify PCI: Set PCI function measurement parameters */ 158 int zpci_fmb_enable_device(struct zpci_dev *zdev) 159 { 160 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 161 struct zpci_iommu_ctrs *ctrs; 162 struct zpci_fib fib = {0}; 163 u8 cc, status; 164 165 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 166 return -EINVAL; 167 168 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 169 if (!zdev->fmb) 170 return -ENOMEM; 171 WARN_ON((u64) zdev->fmb & 0xf); 172 173 /* reset software counters */ 174 ctrs = zpci_get_iommu_ctrs(zdev); 175 if (ctrs) { 176 atomic64_set(&ctrs->mapped_pages, 0); 177 atomic64_set(&ctrs->unmapped_pages, 0); 178 atomic64_set(&ctrs->global_rpcits, 0); 179 atomic64_set(&ctrs->sync_map_rpcits, 0); 180 atomic64_set(&ctrs->sync_rpcits, 0); 181 } 182 183 184 fib.fmb_addr = virt_to_phys(zdev->fmb); 185 fib.gd = zdev->gisa; 186 cc = zpci_mod_fc(req, &fib, &status); 187 if (cc) { 188 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 189 zdev->fmb = NULL; 190 } 191 return cc ? -EIO : 0; 192 } 193 194 /* Modify PCI: Disable PCI function measurement */ 195 int zpci_fmb_disable_device(struct zpci_dev *zdev) 196 { 197 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 198 struct zpci_fib fib = {0}; 199 u8 cc, status; 200 201 if (!zdev->fmb) 202 return -EINVAL; 203 204 fib.gd = zdev->gisa; 205 206 /* Function measurement is disabled if fmb address is zero */ 207 cc = zpci_mod_fc(req, &fib, &status); 208 if (cc == 3) /* Function already gone. */ 209 cc = 0; 210 211 if (!cc) { 212 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 213 zdev->fmb = NULL; 214 } 215 return cc ? -EIO : 0; 216 } 217 218 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 219 { 220 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 221 u64 data; 222 int rc; 223 224 rc = __zpci_load(&data, req, offset); 225 if (!rc) { 226 data = le64_to_cpu((__force __le64) data); 227 data >>= (8 - len) * 8; 228 *val = (u32) data; 229 } else 230 *val = 0xffffffff; 231 return rc; 232 } 233 234 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 235 { 236 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 237 u64 data = val; 238 int rc; 239 240 data <<= (8 - len) * 8; 241 data = (__force u64) cpu_to_le64(data); 242 rc = __zpci_store(data, req, offset); 243 return rc; 244 } 245 246 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 247 resource_size_t size, 248 resource_size_t align) 249 { 250 return 0; 251 } 252 253 /* combine single writes by using store-block insn */ 254 void __iowrite64_copy(void __iomem *to, const void *from, size_t count) 255 { 256 zpci_memcpy_toio(to, from, count * 8); 257 } 258 259 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size, 260 unsigned long prot) 261 { 262 /* 263 * When PCI MIO instructions are unavailable the "physical" address 264 * encodes a hint for accessing the PCI memory space it represents. 265 * Just pass it unchanged such that ioread/iowrite can decode it. 266 */ 267 if (!static_branch_unlikely(&have_mio)) 268 return (void __iomem *)phys_addr; 269 270 return generic_ioremap_prot(phys_addr, size, __pgprot(prot)); 271 } 272 EXPORT_SYMBOL(ioremap_prot); 273 274 void iounmap(volatile void __iomem *addr) 275 { 276 if (static_branch_likely(&have_mio)) 277 generic_iounmap(addr); 278 } 279 EXPORT_SYMBOL(iounmap); 280 281 /* Create a virtual mapping cookie for a PCI BAR */ 282 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 283 unsigned long offset, unsigned long max) 284 { 285 struct zpci_dev *zdev = to_zpci(pdev); 286 int idx; 287 288 idx = zdev->bars[bar].map_idx; 289 spin_lock(&zpci_iomap_lock); 290 /* Detect overrun */ 291 WARN_ON(!++zpci_iomap_start[idx].count); 292 zpci_iomap_start[idx].fh = zdev->fh; 293 zpci_iomap_start[idx].bar = bar; 294 spin_unlock(&zpci_iomap_lock); 295 296 return (void __iomem *) ZPCI_ADDR(idx) + offset; 297 } 298 299 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 300 unsigned long offset, 301 unsigned long max) 302 { 303 unsigned long barsize = pci_resource_len(pdev, bar); 304 struct zpci_dev *zdev = to_zpci(pdev); 305 void __iomem *iova; 306 307 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 308 return iova ? iova + offset : iova; 309 } 310 311 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 312 unsigned long offset, unsigned long max) 313 { 314 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 315 return NULL; 316 317 if (static_branch_likely(&have_mio)) 318 return pci_iomap_range_mio(pdev, bar, offset, max); 319 else 320 return pci_iomap_range_fh(pdev, bar, offset, max); 321 } 322 EXPORT_SYMBOL(pci_iomap_range); 323 324 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 325 { 326 return pci_iomap_range(dev, bar, 0, maxlen); 327 } 328 EXPORT_SYMBOL(pci_iomap); 329 330 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 331 unsigned long offset, unsigned long max) 332 { 333 unsigned long barsize = pci_resource_len(pdev, bar); 334 struct zpci_dev *zdev = to_zpci(pdev); 335 void __iomem *iova; 336 337 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 338 return iova ? iova + offset : iova; 339 } 340 341 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 342 unsigned long offset, unsigned long max) 343 { 344 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 345 return NULL; 346 347 if (static_branch_likely(&have_mio)) 348 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 349 else 350 return pci_iomap_range_fh(pdev, bar, offset, max); 351 } 352 EXPORT_SYMBOL(pci_iomap_wc_range); 353 354 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 355 { 356 return pci_iomap_wc_range(dev, bar, 0, maxlen); 357 } 358 EXPORT_SYMBOL(pci_iomap_wc); 359 360 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 361 { 362 unsigned int idx = ZPCI_IDX(addr); 363 364 spin_lock(&zpci_iomap_lock); 365 /* Detect underrun */ 366 WARN_ON(!zpci_iomap_start[idx].count); 367 if (!--zpci_iomap_start[idx].count) { 368 zpci_iomap_start[idx].fh = 0; 369 zpci_iomap_start[idx].bar = 0; 370 } 371 spin_unlock(&zpci_iomap_lock); 372 } 373 374 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 375 { 376 iounmap(addr); 377 } 378 379 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 380 { 381 if (static_branch_likely(&have_mio)) 382 pci_iounmap_mio(pdev, addr); 383 else 384 pci_iounmap_fh(pdev, addr); 385 } 386 EXPORT_SYMBOL(pci_iounmap); 387 388 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 389 int size, u32 *val) 390 { 391 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 392 393 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 394 } 395 396 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 397 int size, u32 val) 398 { 399 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 400 401 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 402 } 403 404 static struct pci_ops pci_root_ops = { 405 .read = pci_read, 406 .write = pci_write, 407 }; 408 409 static void zpci_map_resources(struct pci_dev *pdev) 410 { 411 struct zpci_dev *zdev = to_zpci(pdev); 412 resource_size_t len; 413 int i; 414 415 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 416 len = pci_resource_len(pdev, i); 417 if (!len) 418 continue; 419 420 if (zpci_use_mio(zdev)) 421 pdev->resource[i].start = 422 (resource_size_t __force) zdev->bars[i].mio_wt; 423 else 424 pdev->resource[i].start = (resource_size_t __force) 425 pci_iomap_range_fh(pdev, i, 0, 0); 426 pdev->resource[i].end = pdev->resource[i].start + len - 1; 427 } 428 429 zpci_iov_map_resources(pdev); 430 } 431 432 static void zpci_unmap_resources(struct pci_dev *pdev) 433 { 434 struct zpci_dev *zdev = to_zpci(pdev); 435 resource_size_t len; 436 int i; 437 438 if (zpci_use_mio(zdev)) 439 return; 440 441 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 442 len = pci_resource_len(pdev, i); 443 if (!len) 444 continue; 445 pci_iounmap_fh(pdev, (void __iomem __force *) 446 pdev->resource[i].start); 447 } 448 } 449 450 static int zpci_alloc_iomap(struct zpci_dev *zdev) 451 { 452 unsigned long entry; 453 454 spin_lock(&zpci_iomap_lock); 455 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 456 if (entry == ZPCI_IOMAP_ENTRIES) { 457 spin_unlock(&zpci_iomap_lock); 458 return -ENOSPC; 459 } 460 set_bit(entry, zpci_iomap_bitmap); 461 spin_unlock(&zpci_iomap_lock); 462 return entry; 463 } 464 465 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 466 { 467 spin_lock(&zpci_iomap_lock); 468 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 469 clear_bit(entry, zpci_iomap_bitmap); 470 spin_unlock(&zpci_iomap_lock); 471 } 472 473 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) 474 { 475 int bar, idx; 476 477 spin_lock(&zpci_iomap_lock); 478 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 479 if (!zdev->bars[bar].size) 480 continue; 481 idx = zdev->bars[bar].map_idx; 482 if (!zpci_iomap_start[idx].count) 483 continue; 484 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); 485 } 486 spin_unlock(&zpci_iomap_lock); 487 } 488 489 void zpci_update_fh(struct zpci_dev *zdev, u32 fh) 490 { 491 if (!fh || zdev->fh == fh) 492 return; 493 494 zdev->fh = fh; 495 if (zpci_use_mio(zdev)) 496 return; 497 if (zdev->has_resources && zdev_enabled(zdev)) 498 zpci_do_update_iomap_fh(zdev, fh); 499 } 500 501 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 502 unsigned long size, unsigned long flags) 503 { 504 struct resource *r; 505 506 r = kzalloc(sizeof(*r), GFP_KERNEL); 507 if (!r) 508 return NULL; 509 510 r->start = start; 511 r->end = r->start + size - 1; 512 r->flags = flags; 513 r->name = zdev->res_name; 514 515 if (request_resource(&iomem_resource, r)) { 516 kfree(r); 517 return NULL; 518 } 519 return r; 520 } 521 522 int zpci_setup_bus_resources(struct zpci_dev *zdev) 523 { 524 unsigned long addr, size, flags; 525 struct resource *res; 526 int i, entry; 527 528 snprintf(zdev->res_name, sizeof(zdev->res_name), 529 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 530 531 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 532 if (!zdev->bars[i].size) 533 continue; 534 entry = zpci_alloc_iomap(zdev); 535 if (entry < 0) 536 return entry; 537 zdev->bars[i].map_idx = entry; 538 539 /* only MMIO is supported */ 540 flags = IORESOURCE_MEM; 541 if (zdev->bars[i].val & 8) 542 flags |= IORESOURCE_PREFETCH; 543 if (zdev->bars[i].val & 4) 544 flags |= IORESOURCE_MEM_64; 545 546 if (zpci_use_mio(zdev)) 547 addr = (unsigned long) zdev->bars[i].mio_wt; 548 else 549 addr = ZPCI_ADDR(entry); 550 size = 1UL << zdev->bars[i].size; 551 552 res = __alloc_res(zdev, addr, size, flags); 553 if (!res) { 554 zpci_free_iomap(zdev, entry); 555 return -ENOMEM; 556 } 557 zdev->bars[i].res = res; 558 } 559 zdev->has_resources = 1; 560 561 return 0; 562 } 563 564 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 565 { 566 struct resource *res; 567 int i; 568 569 pci_lock_rescan_remove(); 570 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 571 res = zdev->bars[i].res; 572 if (!res) 573 continue; 574 575 release_resource(res); 576 pci_bus_remove_resource(zdev->zbus->bus, res); 577 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 578 zdev->bars[i].res = NULL; 579 kfree(res); 580 } 581 zdev->has_resources = 0; 582 pci_unlock_rescan_remove(); 583 } 584 585 int pcibios_device_add(struct pci_dev *pdev) 586 { 587 struct zpci_dev *zdev = to_zpci(pdev); 588 struct resource *res; 589 int i; 590 591 /* The pdev has a reference to the zdev via its bus */ 592 zpci_zdev_get(zdev); 593 if (pdev->is_physfn) 594 pdev->no_vf_scan = 1; 595 596 pdev->dev.groups = zpci_attr_groups; 597 zpci_map_resources(pdev); 598 599 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 600 res = &pdev->resource[i]; 601 if (res->parent || !res->flags) 602 continue; 603 pci_claim_resource(pdev, i); 604 } 605 606 return 0; 607 } 608 609 void pcibios_release_device(struct pci_dev *pdev) 610 { 611 struct zpci_dev *zdev = to_zpci(pdev); 612 613 zpci_unmap_resources(pdev); 614 zpci_zdev_put(zdev); 615 } 616 617 int pcibios_enable_device(struct pci_dev *pdev, int mask) 618 { 619 struct zpci_dev *zdev = to_zpci(pdev); 620 621 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 622 zpci_fmb_enable_device(zdev); 623 624 return pci_enable_resources(pdev, mask); 625 } 626 627 void pcibios_disable_device(struct pci_dev *pdev) 628 { 629 struct zpci_dev *zdev = to_zpci(pdev); 630 631 zpci_fmb_disable_device(zdev); 632 zpci_debug_exit_device(zdev); 633 } 634 635 static int __zpci_register_domain(int domain) 636 { 637 spin_lock(&zpci_domain_lock); 638 if (test_bit(domain, zpci_domain)) { 639 spin_unlock(&zpci_domain_lock); 640 pr_err("Domain %04x is already assigned\n", domain); 641 return -EEXIST; 642 } 643 set_bit(domain, zpci_domain); 644 spin_unlock(&zpci_domain_lock); 645 return domain; 646 } 647 648 static int __zpci_alloc_domain(void) 649 { 650 int domain; 651 652 spin_lock(&zpci_domain_lock); 653 /* 654 * We can always auto allocate domains below ZPCI_NR_DEVICES. 655 * There is either a free domain or we have reached the maximum in 656 * which case we would have bailed earlier. 657 */ 658 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 659 set_bit(domain, zpci_domain); 660 spin_unlock(&zpci_domain_lock); 661 return domain; 662 } 663 664 int zpci_alloc_domain(int domain) 665 { 666 if (zpci_unique_uid) { 667 if (domain) 668 return __zpci_register_domain(domain); 669 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 670 update_uid_checking(false); 671 } 672 return __zpci_alloc_domain(); 673 } 674 675 void zpci_free_domain(int domain) 676 { 677 spin_lock(&zpci_domain_lock); 678 clear_bit(domain, zpci_domain); 679 spin_unlock(&zpci_domain_lock); 680 } 681 682 683 int zpci_enable_device(struct zpci_dev *zdev) 684 { 685 u32 fh = zdev->fh; 686 int rc = 0; 687 688 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) 689 rc = -EIO; 690 else 691 zpci_update_fh(zdev, fh); 692 return rc; 693 } 694 EXPORT_SYMBOL_GPL(zpci_enable_device); 695 696 int zpci_disable_device(struct zpci_dev *zdev) 697 { 698 u32 fh = zdev->fh; 699 int cc, rc = 0; 700 701 cc = clp_disable_fh(zdev, &fh); 702 if (!cc) { 703 zpci_update_fh(zdev, fh); 704 } else if (cc == CLP_RC_SETPCIFN_ALRDY) { 705 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", 706 zdev->fid); 707 /* Function is already disabled - update handle */ 708 rc = clp_refresh_fh(zdev->fid, &fh); 709 if (!rc) { 710 zpci_update_fh(zdev, fh); 711 rc = -EINVAL; 712 } 713 } else { 714 rc = -EIO; 715 } 716 return rc; 717 } 718 EXPORT_SYMBOL_GPL(zpci_disable_device); 719 720 /** 721 * zpci_hot_reset_device - perform a reset of the given zPCI function 722 * @zdev: the slot which should be reset 723 * 724 * Performs a low level reset of the zPCI function. The reset is low level in 725 * the sense that the zPCI function can be reset without detaching it from the 726 * common PCI subsystem. The reset may be performed while under control of 727 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation 728 * table is reinstated at the end of the reset. 729 * 730 * After the reset the functions internal state is reset to an initial state 731 * equivalent to its state during boot when first probing a driver. 732 * Consequently after reset the PCI function requires re-initialization via the 733 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() 734 * and enabling the function via e.g. pci_enable_device_flags(). The caller 735 * must guard against concurrent reset attempts. 736 * 737 * In most cases this function should not be called directly but through 738 * pci_reset_function() or pci_reset_bus() which handle the save/restore and 739 * locking - asserted by lockdep. 740 * 741 * Return: 0 on success and an error value otherwise 742 */ 743 int zpci_hot_reset_device(struct zpci_dev *zdev) 744 { 745 u8 status; 746 int rc; 747 748 lockdep_assert_held(&zdev->state_lock); 749 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); 750 if (zdev_enabled(zdev)) { 751 /* Disables device access, DMAs and IRQs (reset state) */ 752 rc = zpci_disable_device(zdev); 753 /* 754 * Due to a z/VM vs LPAR inconsistency in the error state the 755 * FH may indicate an enabled device but disable says the 756 * device is already disabled don't treat it as an error here. 757 */ 758 if (rc == -EINVAL) 759 rc = 0; 760 if (rc) 761 return rc; 762 } 763 764 rc = zpci_enable_device(zdev); 765 if (rc) 766 return rc; 767 768 if (zdev->dma_table) 769 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, 770 virt_to_phys(zdev->dma_table), &status); 771 if (rc) { 772 zpci_disable_device(zdev); 773 return rc; 774 } 775 776 return 0; 777 } 778 779 /** 780 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 781 * @fid: Function ID of the device to be created 782 * @fh: Current Function Handle of the device to be created 783 * @state: Initial state after creation either Standby or Configured 784 * 785 * Creates a new zpci device and adds it to its, possibly newly created, zbus 786 * as well as zpci_list. 787 * 788 * Returns: the zdev on success or an error pointer otherwise 789 */ 790 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 791 { 792 struct zpci_dev *zdev; 793 int rc; 794 795 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); 796 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 797 if (!zdev) 798 return ERR_PTR(-ENOMEM); 799 800 /* FID and Function Handle are the static/dynamic identifiers */ 801 zdev->fid = fid; 802 zdev->fh = fh; 803 804 /* Query function properties and update zdev */ 805 rc = clp_query_pci_fn(zdev); 806 if (rc) 807 goto error; 808 zdev->state = state; 809 810 kref_init(&zdev->kref); 811 mutex_init(&zdev->state_lock); 812 mutex_init(&zdev->fmb_lock); 813 mutex_init(&zdev->kzdev_lock); 814 815 rc = zpci_init_iommu(zdev); 816 if (rc) 817 goto error; 818 819 rc = zpci_bus_device_register(zdev, &pci_root_ops); 820 if (rc) 821 goto error_destroy_iommu; 822 823 spin_lock(&zpci_list_lock); 824 list_add_tail(&zdev->entry, &zpci_list); 825 spin_unlock(&zpci_list_lock); 826 827 return zdev; 828 829 error_destroy_iommu: 830 zpci_destroy_iommu(zdev); 831 error: 832 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); 833 kfree(zdev); 834 return ERR_PTR(rc); 835 } 836 837 bool zpci_is_device_configured(struct zpci_dev *zdev) 838 { 839 enum zpci_state state = zdev->state; 840 841 return state != ZPCI_FN_STATE_RESERVED && 842 state != ZPCI_FN_STATE_STANDBY; 843 } 844 845 /** 846 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev 847 * @zdev: The zpci_dev to be configured 848 * @fh: The general function handle supplied by the platform 849 * 850 * Given a device in the configuration state Configured, enables, scans and 851 * adds it to the common code PCI subsystem if possible. If any failure occurs, 852 * the zpci_dev is left disabled. 853 * 854 * Return: 0 on success, or an error code otherwise 855 */ 856 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) 857 { 858 zpci_update_fh(zdev, fh); 859 return zpci_bus_scan_device(zdev); 860 } 861 862 /** 863 * zpci_deconfigure_device() - Deconfigure a zpci_dev 864 * @zdev: The zpci_dev to configure 865 * 866 * Deconfigure a zPCI function that is currently configured and possibly known 867 * to the common code PCI subsystem. 868 * If any failure occurs the device is left as is. 869 * 870 * Return: 0 on success, or an error code otherwise 871 */ 872 int zpci_deconfigure_device(struct zpci_dev *zdev) 873 { 874 int rc; 875 876 lockdep_assert_held(&zdev->state_lock); 877 if (zdev->state != ZPCI_FN_STATE_CONFIGURED) 878 return 0; 879 880 if (zdev->zbus->bus) 881 zpci_bus_remove_device(zdev, false); 882 883 if (zdev_enabled(zdev)) { 884 rc = zpci_disable_device(zdev); 885 if (rc) 886 return rc; 887 } 888 889 rc = sclp_pci_deconfigure(zdev->fid); 890 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); 891 if (rc) 892 return rc; 893 zdev->state = ZPCI_FN_STATE_STANDBY; 894 895 return 0; 896 } 897 898 /** 899 * zpci_device_reserved() - Mark device as reserved 900 * @zdev: the zpci_dev that was reserved 901 * 902 * Handle the case that a given zPCI function was reserved by another system. 903 * After a call to this function the zpci_dev can not be found via 904 * get_zdev_by_fid() anymore but may still be accessible via existing 905 * references though it will not be functional anymore. 906 */ 907 void zpci_device_reserved(struct zpci_dev *zdev) 908 { 909 /* 910 * Remove device from zpci_list as it is going away. This also 911 * makes sure we ignore subsequent zPCI events for this device. 912 */ 913 spin_lock(&zpci_list_lock); 914 list_del(&zdev->entry); 915 spin_unlock(&zpci_list_lock); 916 zdev->state = ZPCI_FN_STATE_RESERVED; 917 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 918 zpci_zdev_put(zdev); 919 } 920 921 void zpci_release_device(struct kref *kref) 922 { 923 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 924 int ret; 925 926 if (zdev->has_hp_slot) 927 zpci_exit_slot(zdev); 928 929 if (zdev->zbus->bus) 930 zpci_bus_remove_device(zdev, false); 931 932 if (zdev_enabled(zdev)) 933 zpci_disable_device(zdev); 934 935 switch (zdev->state) { 936 case ZPCI_FN_STATE_CONFIGURED: 937 ret = sclp_pci_deconfigure(zdev->fid); 938 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); 939 fallthrough; 940 case ZPCI_FN_STATE_STANDBY: 941 if (zdev->has_hp_slot) 942 zpci_exit_slot(zdev); 943 spin_lock(&zpci_list_lock); 944 list_del(&zdev->entry); 945 spin_unlock(&zpci_list_lock); 946 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 947 fallthrough; 948 case ZPCI_FN_STATE_RESERVED: 949 if (zdev->has_resources) 950 zpci_cleanup_bus_resources(zdev); 951 zpci_bus_device_unregister(zdev); 952 zpci_destroy_iommu(zdev); 953 fallthrough; 954 default: 955 break; 956 } 957 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 958 kfree_rcu(zdev, rcu); 959 } 960 961 int zpci_report_error(struct pci_dev *pdev, 962 struct zpci_report_error_header *report) 963 { 964 struct zpci_dev *zdev = to_zpci(pdev); 965 966 return sclp_pci_report(report, zdev->fh, zdev->fid); 967 } 968 EXPORT_SYMBOL(zpci_report_error); 969 970 /** 971 * zpci_clear_error_state() - Clears the zPCI error state of the device 972 * @zdev: The zdev for which the zPCI error state should be reset 973 * 974 * Clear the zPCI error state of the device. If clearing the zPCI error state 975 * fails the device is left in the error state. In this case it may make sense 976 * to call zpci_io_perm_failure() on the associated pdev if it exists. 977 * 978 * Returns: 0 on success, -EIO otherwise 979 */ 980 int zpci_clear_error_state(struct zpci_dev *zdev) 981 { 982 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); 983 struct zpci_fib fib = {0}; 984 u8 status; 985 int cc; 986 987 cc = zpci_mod_fc(req, &fib, &status); 988 if (cc) { 989 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 990 return -EIO; 991 } 992 993 return 0; 994 } 995 996 /** 997 * zpci_reset_load_store_blocked() - Re-enables L/S from error state 998 * @zdev: The zdev for which to unblock load/store access 999 * 1000 * Re-enables load/store access for a PCI function in the error state while 1001 * keeping DMA blocked. In this state drivers can poke MMIO space to determine 1002 * if error recovery is possible while catching any rogue DMA access from the 1003 * device. 1004 * 1005 * Returns: 0 on success, -EIO otherwise 1006 */ 1007 int zpci_reset_load_store_blocked(struct zpci_dev *zdev) 1008 { 1009 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); 1010 struct zpci_fib fib = {0}; 1011 u8 status; 1012 int cc; 1013 1014 cc = zpci_mod_fc(req, &fib, &status); 1015 if (cc) { 1016 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1017 return -EIO; 1018 } 1019 1020 return 0; 1021 } 1022 1023 static int zpci_mem_init(void) 1024 { 1025 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 1026 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 1027 1028 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 1029 __alignof__(struct zpci_fmb), 0, NULL); 1030 if (!zdev_fmb_cache) 1031 goto error_fmb; 1032 1033 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 1034 sizeof(*zpci_iomap_start), GFP_KERNEL); 1035 if (!zpci_iomap_start) 1036 goto error_iomap; 1037 1038 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 1039 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 1040 if (!zpci_iomap_bitmap) 1041 goto error_iomap_bitmap; 1042 1043 if (static_branch_likely(&have_mio)) 1044 clp_setup_writeback_mio(); 1045 1046 return 0; 1047 error_iomap_bitmap: 1048 kfree(zpci_iomap_start); 1049 error_iomap: 1050 kmem_cache_destroy(zdev_fmb_cache); 1051 error_fmb: 1052 return -ENOMEM; 1053 } 1054 1055 static void zpci_mem_exit(void) 1056 { 1057 kfree(zpci_iomap_bitmap); 1058 kfree(zpci_iomap_start); 1059 kmem_cache_destroy(zdev_fmb_cache); 1060 } 1061 1062 static unsigned int s390_pci_probe __initdata = 1; 1063 unsigned int s390_pci_force_floating __initdata; 1064 static unsigned int s390_pci_initialized; 1065 1066 char * __init pcibios_setup(char *str) 1067 { 1068 if (!strcmp(str, "off")) { 1069 s390_pci_probe = 0; 1070 return NULL; 1071 } 1072 if (!strcmp(str, "nomio")) { 1073 S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO; 1074 return NULL; 1075 } 1076 if (!strcmp(str, "force_floating")) { 1077 s390_pci_force_floating = 1; 1078 return NULL; 1079 } 1080 if (!strcmp(str, "norid")) { 1081 s390_pci_no_rid = 1; 1082 return NULL; 1083 } 1084 return str; 1085 } 1086 1087 bool zpci_is_enabled(void) 1088 { 1089 return s390_pci_initialized; 1090 } 1091 1092 static int __init pci_base_init(void) 1093 { 1094 int rc; 1095 1096 if (!s390_pci_probe) 1097 return 0; 1098 1099 if (!test_facility(69) || !test_facility(71)) { 1100 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 1101 return 0; 1102 } 1103 1104 if (MACHINE_HAS_PCI_MIO) { 1105 static_branch_enable(&have_mio); 1106 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT); 1107 } 1108 1109 rc = zpci_debug_init(); 1110 if (rc) 1111 goto out; 1112 1113 rc = zpci_mem_init(); 1114 if (rc) 1115 goto out_mem; 1116 1117 rc = zpci_irq_init(); 1118 if (rc) 1119 goto out_irq; 1120 1121 rc = clp_scan_pci_devices(); 1122 if (rc) 1123 goto out_find; 1124 zpci_bus_scan_busses(); 1125 1126 s390_pci_initialized = 1; 1127 return 0; 1128 1129 out_find: 1130 zpci_irq_exit(); 1131 out_irq: 1132 zpci_mem_exit(); 1133 out_mem: 1134 zpci_debug_exit(); 1135 out: 1136 return rc; 1137 } 1138 subsys_initcall_sync(pci_base_init); 1139