1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 #include <linux/lockdep.h> 32 #include <linux/list_sort.h> 33 34 #include <asm/isc.h> 35 #include <asm/airq.h> 36 #include <asm/facility.h> 37 #include <asm/pci_insn.h> 38 #include <asm/pci_clp.h> 39 #include <asm/pci_dma.h> 40 41 #include "pci_bus.h" 42 #include "pci_iov.h" 43 44 /* list of all detected zpci devices */ 45 static LIST_HEAD(zpci_list); 46 static DEFINE_SPINLOCK(zpci_list_lock); 47 48 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 49 static DEFINE_SPINLOCK(zpci_domain_lock); 50 51 #define ZPCI_IOMAP_ENTRIES \ 52 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 53 ZPCI_IOMAP_MAX_ENTRIES) 54 55 unsigned int s390_pci_no_rid; 56 57 static DEFINE_SPINLOCK(zpci_iomap_lock); 58 static unsigned long *zpci_iomap_bitmap; 59 struct zpci_iomap_entry *zpci_iomap_start; 60 EXPORT_SYMBOL_GPL(zpci_iomap_start); 61 62 DEFINE_STATIC_KEY_FALSE(have_mio); 63 64 static struct kmem_cache *zdev_fmb_cache; 65 66 /* AEN structures that must be preserved over KVM module re-insertion */ 67 union zpci_sic_iib *zpci_aipb; 68 EXPORT_SYMBOL_GPL(zpci_aipb); 69 struct airq_iv *zpci_aif_sbv; 70 EXPORT_SYMBOL_GPL(zpci_aif_sbv); 71 72 struct zpci_dev *get_zdev_by_fid(u32 fid) 73 { 74 struct zpci_dev *tmp, *zdev = NULL; 75 76 spin_lock(&zpci_list_lock); 77 list_for_each_entry(tmp, &zpci_list, entry) { 78 if (tmp->fid == fid) { 79 zdev = tmp; 80 zpci_zdev_get(zdev); 81 break; 82 } 83 } 84 spin_unlock(&zpci_list_lock); 85 return zdev; 86 } 87 88 void zpci_remove_reserved_devices(void) 89 { 90 struct zpci_dev *tmp, *zdev; 91 enum zpci_state state; 92 LIST_HEAD(remove); 93 94 spin_lock(&zpci_list_lock); 95 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 96 if (zdev->state == ZPCI_FN_STATE_STANDBY && 97 !clp_get_state(zdev->fid, &state) && 98 state == ZPCI_FN_STATE_RESERVED) 99 list_move_tail(&zdev->entry, &remove); 100 } 101 spin_unlock(&zpci_list_lock); 102 103 list_for_each_entry_safe(zdev, tmp, &remove, entry) 104 zpci_device_reserved(zdev); 105 } 106 107 int pci_domain_nr(struct pci_bus *bus) 108 { 109 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 110 } 111 EXPORT_SYMBOL_GPL(pci_domain_nr); 112 113 int pci_proc_domain(struct pci_bus *bus) 114 { 115 return pci_domain_nr(bus); 116 } 117 EXPORT_SYMBOL_GPL(pci_proc_domain); 118 119 /* Modify PCI: Register I/O address translation parameters */ 120 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 121 u64 base, u64 limit, u64 iota, u8 *status) 122 { 123 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 124 struct zpci_fib fib = {0}; 125 u8 cc; 126 127 WARN_ON_ONCE(iota & 0x3fff); 128 fib.pba = base; 129 /* Work around off by one in ISM virt device */ 130 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base) 131 fib.pal = limit + (1 << 12); 132 else 133 fib.pal = limit; 134 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; 135 fib.gd = zdev->gisa; 136 cc = zpci_mod_fc(req, &fib, status); 137 if (cc) 138 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status); 139 return cc; 140 } 141 EXPORT_SYMBOL_GPL(zpci_register_ioat); 142 143 /* Modify PCI: Unregister I/O address translation parameters */ 144 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 145 { 146 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 147 struct zpci_fib fib = {0}; 148 u8 cc, status; 149 150 fib.gd = zdev->gisa; 151 152 cc = zpci_mod_fc(req, &fib, &status); 153 if (cc) 154 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 155 return cc; 156 } 157 158 /* Modify PCI: Set PCI function measurement parameters */ 159 int zpci_fmb_enable_device(struct zpci_dev *zdev) 160 { 161 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 162 struct zpci_iommu_ctrs *ctrs; 163 struct zpci_fib fib = {0}; 164 unsigned long flags; 165 u8 cc, status; 166 167 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 168 return -EINVAL; 169 170 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 171 if (!zdev->fmb) 172 return -ENOMEM; 173 WARN_ON((u64) zdev->fmb & 0xf); 174 175 /* reset software counters */ 176 spin_lock_irqsave(&zdev->dom_lock, flags); 177 ctrs = zpci_get_iommu_ctrs(zdev); 178 if (ctrs) { 179 atomic64_set(&ctrs->mapped_pages, 0); 180 atomic64_set(&ctrs->unmapped_pages, 0); 181 atomic64_set(&ctrs->global_rpcits, 0); 182 atomic64_set(&ctrs->sync_map_rpcits, 0); 183 atomic64_set(&ctrs->sync_rpcits, 0); 184 } 185 spin_unlock_irqrestore(&zdev->dom_lock, flags); 186 187 188 fib.fmb_addr = virt_to_phys(zdev->fmb); 189 fib.gd = zdev->gisa; 190 cc = zpci_mod_fc(req, &fib, &status); 191 if (cc) { 192 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 193 zdev->fmb = NULL; 194 } 195 return cc ? -EIO : 0; 196 } 197 198 /* Modify PCI: Disable PCI function measurement */ 199 int zpci_fmb_disable_device(struct zpci_dev *zdev) 200 { 201 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 202 struct zpci_fib fib = {0}; 203 u8 cc, status; 204 205 if (!zdev->fmb) 206 return -EINVAL; 207 208 fib.gd = zdev->gisa; 209 210 /* Function measurement is disabled if fmb address is zero */ 211 cc = zpci_mod_fc(req, &fib, &status); 212 if (cc == 3) /* Function already gone. */ 213 cc = 0; 214 215 if (!cc) { 216 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 217 zdev->fmb = NULL; 218 } 219 return cc ? -EIO : 0; 220 } 221 222 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 223 { 224 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 225 u64 data; 226 int rc; 227 228 rc = __zpci_load(&data, req, offset); 229 if (!rc) { 230 data = le64_to_cpu((__force __le64) data); 231 data >>= (8 - len) * 8; 232 *val = (u32) data; 233 } else 234 *val = 0xffffffff; 235 return rc; 236 } 237 238 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 239 { 240 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 241 u64 data = val; 242 int rc; 243 244 data <<= (8 - len) * 8; 245 data = (__force u64) cpu_to_le64(data); 246 rc = __zpci_store(data, req, offset); 247 return rc; 248 } 249 250 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 251 resource_size_t size, 252 resource_size_t align) 253 { 254 return 0; 255 } 256 257 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size, 258 unsigned long prot) 259 { 260 /* 261 * When PCI MIO instructions are unavailable the "physical" address 262 * encodes a hint for accessing the PCI memory space it represents. 263 * Just pass it unchanged such that ioread/iowrite can decode it. 264 */ 265 if (!static_branch_unlikely(&have_mio)) 266 return (void __iomem *)phys_addr; 267 268 return generic_ioremap_prot(phys_addr, size, __pgprot(prot)); 269 } 270 EXPORT_SYMBOL(ioremap_prot); 271 272 void iounmap(volatile void __iomem *addr) 273 { 274 if (static_branch_likely(&have_mio)) 275 generic_iounmap(addr); 276 } 277 EXPORT_SYMBOL(iounmap); 278 279 /* Create a virtual mapping cookie for a PCI BAR */ 280 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 281 unsigned long offset, unsigned long max) 282 { 283 struct zpci_dev *zdev = to_zpci(pdev); 284 int idx; 285 286 idx = zdev->bars[bar].map_idx; 287 spin_lock(&zpci_iomap_lock); 288 /* Detect overrun */ 289 WARN_ON(!++zpci_iomap_start[idx].count); 290 zpci_iomap_start[idx].fh = zdev->fh; 291 zpci_iomap_start[idx].bar = bar; 292 spin_unlock(&zpci_iomap_lock); 293 294 return (void __iomem *) ZPCI_ADDR(idx) + offset; 295 } 296 297 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 298 unsigned long offset, 299 unsigned long max) 300 { 301 unsigned long barsize = pci_resource_len(pdev, bar); 302 struct zpci_dev *zdev = to_zpci(pdev); 303 void __iomem *iova; 304 305 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 306 return iova ? iova + offset : iova; 307 } 308 309 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 310 unsigned long offset, unsigned long max) 311 { 312 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 313 return NULL; 314 315 if (static_branch_likely(&have_mio)) 316 return pci_iomap_range_mio(pdev, bar, offset, max); 317 else 318 return pci_iomap_range_fh(pdev, bar, offset, max); 319 } 320 EXPORT_SYMBOL(pci_iomap_range); 321 322 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 323 { 324 return pci_iomap_range(dev, bar, 0, maxlen); 325 } 326 EXPORT_SYMBOL(pci_iomap); 327 328 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 329 unsigned long offset, unsigned long max) 330 { 331 unsigned long barsize = pci_resource_len(pdev, bar); 332 struct zpci_dev *zdev = to_zpci(pdev); 333 void __iomem *iova; 334 335 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 336 return iova ? iova + offset : iova; 337 } 338 339 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 340 unsigned long offset, unsigned long max) 341 { 342 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 343 return NULL; 344 345 if (static_branch_likely(&have_mio)) 346 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 347 else 348 return pci_iomap_range_fh(pdev, bar, offset, max); 349 } 350 EXPORT_SYMBOL(pci_iomap_wc_range); 351 352 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 353 { 354 return pci_iomap_wc_range(dev, bar, 0, maxlen); 355 } 356 EXPORT_SYMBOL(pci_iomap_wc); 357 358 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 359 { 360 unsigned int idx = ZPCI_IDX(addr); 361 362 spin_lock(&zpci_iomap_lock); 363 /* Detect underrun */ 364 WARN_ON(!zpci_iomap_start[idx].count); 365 if (!--zpci_iomap_start[idx].count) { 366 zpci_iomap_start[idx].fh = 0; 367 zpci_iomap_start[idx].bar = 0; 368 } 369 spin_unlock(&zpci_iomap_lock); 370 } 371 372 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 373 { 374 iounmap(addr); 375 } 376 377 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 378 { 379 if (static_branch_likely(&have_mio)) 380 pci_iounmap_mio(pdev, addr); 381 else 382 pci_iounmap_fh(pdev, addr); 383 } 384 EXPORT_SYMBOL(pci_iounmap); 385 386 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 387 int size, u32 *val) 388 { 389 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 390 391 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 392 } 393 394 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 395 int size, u32 val) 396 { 397 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 398 399 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 400 } 401 402 static struct pci_ops pci_root_ops = { 403 .read = pci_read, 404 .write = pci_write, 405 }; 406 407 static void zpci_map_resources(struct pci_dev *pdev) 408 { 409 struct zpci_dev *zdev = to_zpci(pdev); 410 resource_size_t len; 411 int i; 412 413 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 414 len = pci_resource_len(pdev, i); 415 if (!len) 416 continue; 417 418 if (zpci_use_mio(zdev)) 419 pdev->resource[i].start = 420 (resource_size_t __force) zdev->bars[i].mio_wt; 421 else 422 pdev->resource[i].start = (resource_size_t __force) 423 pci_iomap_range_fh(pdev, i, 0, 0); 424 pdev->resource[i].end = pdev->resource[i].start + len - 1; 425 } 426 427 zpci_iov_map_resources(pdev); 428 } 429 430 static void zpci_unmap_resources(struct pci_dev *pdev) 431 { 432 struct zpci_dev *zdev = to_zpci(pdev); 433 resource_size_t len; 434 int i; 435 436 if (zpci_use_mio(zdev)) 437 return; 438 439 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 440 len = pci_resource_len(pdev, i); 441 if (!len) 442 continue; 443 pci_iounmap_fh(pdev, (void __iomem __force *) 444 pdev->resource[i].start); 445 } 446 } 447 448 static int zpci_alloc_iomap(struct zpci_dev *zdev) 449 { 450 unsigned long entry; 451 452 spin_lock(&zpci_iomap_lock); 453 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 454 if (entry == ZPCI_IOMAP_ENTRIES) { 455 spin_unlock(&zpci_iomap_lock); 456 return -ENOSPC; 457 } 458 set_bit(entry, zpci_iomap_bitmap); 459 spin_unlock(&zpci_iomap_lock); 460 return entry; 461 } 462 463 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 464 { 465 spin_lock(&zpci_iomap_lock); 466 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 467 clear_bit(entry, zpci_iomap_bitmap); 468 spin_unlock(&zpci_iomap_lock); 469 } 470 471 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) 472 { 473 int bar, idx; 474 475 spin_lock(&zpci_iomap_lock); 476 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 477 if (!zdev->bars[bar].size) 478 continue; 479 idx = zdev->bars[bar].map_idx; 480 if (!zpci_iomap_start[idx].count) 481 continue; 482 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); 483 } 484 spin_unlock(&zpci_iomap_lock); 485 } 486 487 void zpci_update_fh(struct zpci_dev *zdev, u32 fh) 488 { 489 if (!fh || zdev->fh == fh) 490 return; 491 492 zdev->fh = fh; 493 if (zpci_use_mio(zdev)) 494 return; 495 if (zdev->has_resources && zdev_enabled(zdev)) 496 zpci_do_update_iomap_fh(zdev, fh); 497 } 498 499 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 500 unsigned long size, unsigned long flags) 501 { 502 struct resource *r; 503 504 r = kzalloc(sizeof(*r), GFP_KERNEL); 505 if (!r) 506 return NULL; 507 508 r->start = start; 509 r->end = r->start + size - 1; 510 r->flags = flags; 511 r->name = zdev->res_name; 512 513 if (request_resource(&iomem_resource, r)) { 514 kfree(r); 515 return NULL; 516 } 517 return r; 518 } 519 520 int zpci_setup_bus_resources(struct zpci_dev *zdev) 521 { 522 unsigned long addr, size, flags; 523 struct resource *res; 524 int i, entry; 525 526 snprintf(zdev->res_name, sizeof(zdev->res_name), 527 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 528 529 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 530 if (!zdev->bars[i].size) 531 continue; 532 entry = zpci_alloc_iomap(zdev); 533 if (entry < 0) 534 return entry; 535 zdev->bars[i].map_idx = entry; 536 537 /* only MMIO is supported */ 538 flags = IORESOURCE_MEM; 539 if (zdev->bars[i].val & 8) 540 flags |= IORESOURCE_PREFETCH; 541 if (zdev->bars[i].val & 4) 542 flags |= IORESOURCE_MEM_64; 543 544 if (zpci_use_mio(zdev)) 545 addr = (unsigned long) zdev->bars[i].mio_wt; 546 else 547 addr = ZPCI_ADDR(entry); 548 size = 1UL << zdev->bars[i].size; 549 550 res = __alloc_res(zdev, addr, size, flags); 551 if (!res) { 552 zpci_free_iomap(zdev, entry); 553 return -ENOMEM; 554 } 555 zdev->bars[i].res = res; 556 } 557 zdev->has_resources = 1; 558 559 return 0; 560 } 561 562 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 563 { 564 struct resource *res; 565 int i; 566 567 pci_lock_rescan_remove(); 568 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 569 res = zdev->bars[i].res; 570 if (!res) 571 continue; 572 573 release_resource(res); 574 pci_bus_remove_resource(zdev->zbus->bus, res); 575 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 576 zdev->bars[i].res = NULL; 577 kfree(res); 578 } 579 zdev->has_resources = 0; 580 pci_unlock_rescan_remove(); 581 } 582 583 int pcibios_device_add(struct pci_dev *pdev) 584 { 585 struct zpci_dev *zdev = to_zpci(pdev); 586 struct resource *res; 587 int i; 588 589 /* The pdev has a reference to the zdev via its bus */ 590 zpci_zdev_get(zdev); 591 if (pdev->is_physfn) 592 pdev->no_vf_scan = 1; 593 594 zpci_map_resources(pdev); 595 596 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 597 res = &pdev->resource[i]; 598 if (res->parent || !res->flags) 599 continue; 600 pci_claim_resource(pdev, i); 601 } 602 603 return 0; 604 } 605 606 void pcibios_release_device(struct pci_dev *pdev) 607 { 608 struct zpci_dev *zdev = to_zpci(pdev); 609 610 zpci_unmap_resources(pdev); 611 zpci_zdev_put(zdev); 612 } 613 614 int pcibios_enable_device(struct pci_dev *pdev, int mask) 615 { 616 struct zpci_dev *zdev = to_zpci(pdev); 617 618 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 619 zpci_fmb_enable_device(zdev); 620 621 return pci_enable_resources(pdev, mask); 622 } 623 624 void pcibios_disable_device(struct pci_dev *pdev) 625 { 626 struct zpci_dev *zdev = to_zpci(pdev); 627 628 zpci_fmb_disable_device(zdev); 629 zpci_debug_exit_device(zdev); 630 } 631 632 static int __zpci_register_domain(int domain) 633 { 634 spin_lock(&zpci_domain_lock); 635 if (test_bit(domain, zpci_domain)) { 636 spin_unlock(&zpci_domain_lock); 637 pr_err("Domain %04x is already assigned\n", domain); 638 return -EEXIST; 639 } 640 set_bit(domain, zpci_domain); 641 spin_unlock(&zpci_domain_lock); 642 return domain; 643 } 644 645 static int __zpci_alloc_domain(void) 646 { 647 int domain; 648 649 spin_lock(&zpci_domain_lock); 650 /* 651 * We can always auto allocate domains below ZPCI_NR_DEVICES. 652 * There is either a free domain or we have reached the maximum in 653 * which case we would have bailed earlier. 654 */ 655 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 656 set_bit(domain, zpci_domain); 657 spin_unlock(&zpci_domain_lock); 658 return domain; 659 } 660 661 int zpci_alloc_domain(int domain) 662 { 663 if (zpci_unique_uid) { 664 if (domain) 665 return __zpci_register_domain(domain); 666 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 667 update_uid_checking(false); 668 } 669 return __zpci_alloc_domain(); 670 } 671 672 void zpci_free_domain(int domain) 673 { 674 spin_lock(&zpci_domain_lock); 675 clear_bit(domain, zpci_domain); 676 spin_unlock(&zpci_domain_lock); 677 } 678 679 680 int zpci_enable_device(struct zpci_dev *zdev) 681 { 682 u32 fh = zdev->fh; 683 int rc = 0; 684 685 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) 686 rc = -EIO; 687 else 688 zpci_update_fh(zdev, fh); 689 return rc; 690 } 691 EXPORT_SYMBOL_GPL(zpci_enable_device); 692 693 int zpci_disable_device(struct zpci_dev *zdev) 694 { 695 u32 fh = zdev->fh; 696 int cc, rc = 0; 697 698 cc = clp_disable_fh(zdev, &fh); 699 if (!cc) { 700 zpci_update_fh(zdev, fh); 701 } else if (cc == CLP_RC_SETPCIFN_ALRDY) { 702 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", 703 zdev->fid); 704 /* Function is already disabled - update handle */ 705 rc = clp_refresh_fh(zdev->fid, &fh); 706 if (!rc) { 707 zpci_update_fh(zdev, fh); 708 rc = -EINVAL; 709 } 710 } else { 711 rc = -EIO; 712 } 713 return rc; 714 } 715 EXPORT_SYMBOL_GPL(zpci_disable_device); 716 717 /** 718 * zpci_hot_reset_device - perform a reset of the given zPCI function 719 * @zdev: the slot which should be reset 720 * 721 * Performs a low level reset of the zPCI function. The reset is low level in 722 * the sense that the zPCI function can be reset without detaching it from the 723 * common PCI subsystem. The reset may be performed while under control of 724 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation 725 * table is reinstated at the end of the reset. 726 * 727 * After the reset the functions internal state is reset to an initial state 728 * equivalent to its state during boot when first probing a driver. 729 * Consequently after reset the PCI function requires re-initialization via the 730 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() 731 * and enabling the function via e.g. pci_enable_device_flags(). The caller 732 * must guard against concurrent reset attempts. 733 * 734 * In most cases this function should not be called directly but through 735 * pci_reset_function() or pci_reset_bus() which handle the save/restore and 736 * locking - asserted by lockdep. 737 * 738 * Return: 0 on success and an error value otherwise 739 */ 740 int zpci_hot_reset_device(struct zpci_dev *zdev) 741 { 742 u8 status; 743 int rc; 744 745 lockdep_assert_held(&zdev->state_lock); 746 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); 747 if (zdev_enabled(zdev)) { 748 /* Disables device access, DMAs and IRQs (reset state) */ 749 rc = zpci_disable_device(zdev); 750 /* 751 * Due to a z/VM vs LPAR inconsistency in the error state the 752 * FH may indicate an enabled device but disable says the 753 * device is already disabled don't treat it as an error here. 754 */ 755 if (rc == -EINVAL) 756 rc = 0; 757 if (rc) 758 return rc; 759 } 760 761 rc = zpci_enable_device(zdev); 762 if (rc) 763 return rc; 764 765 if (zdev->dma_table) 766 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, 767 virt_to_phys(zdev->dma_table), &status); 768 if (rc) { 769 zpci_disable_device(zdev); 770 return rc; 771 } 772 773 return 0; 774 } 775 776 /** 777 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 778 * @fid: Function ID of the device to be created 779 * @fh: Current Function Handle of the device to be created 780 * @state: Initial state after creation either Standby or Configured 781 * 782 * Allocates a new struct zpci_dev and queries the platform for its details. 783 * If successful the device can subsequently be added to the zPCI subsystem 784 * using zpci_add_device(). 785 * 786 * Returns: the zdev on success or an error pointer otherwise 787 */ 788 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 789 { 790 struct zpci_dev *zdev; 791 int rc; 792 793 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 794 if (!zdev) 795 return ERR_PTR(-ENOMEM); 796 797 /* FID and Function Handle are the static/dynamic identifiers */ 798 zdev->fid = fid; 799 zdev->fh = fh; 800 801 /* Query function properties and update zdev */ 802 rc = clp_query_pci_fn(zdev); 803 if (rc) 804 goto error; 805 zdev->state = state; 806 807 mutex_init(&zdev->state_lock); 808 mutex_init(&zdev->fmb_lock); 809 mutex_init(&zdev->kzdev_lock); 810 811 return zdev; 812 813 error: 814 zpci_dbg(0, "crt fid:%x, rc:%d\n", fid, rc); 815 kfree(zdev); 816 return ERR_PTR(rc); 817 } 818 819 /** 820 * zpci_add_device() - Add a previously created zPCI device to the zPCI subsystem 821 * @zdev: The zPCI device to be added 822 * 823 * A struct zpci_dev is added to the zPCI subsystem and to a virtual PCI bus creating 824 * a new one as necessary. A hotplug slot is created and events start to be handled. 825 * If successful from this point on zpci_zdev_get() and zpci_zdev_put() must be used. 826 * If adding the struct zpci_dev fails the device was not added and should be freed. 827 * 828 * Return: 0 on success, or an error code otherwise 829 */ 830 int zpci_add_device(struct zpci_dev *zdev) 831 { 832 int rc; 833 834 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", zdev->fid, zdev->fh, zdev->state); 835 rc = zpci_init_iommu(zdev); 836 if (rc) 837 goto error; 838 839 rc = zpci_bus_device_register(zdev, &pci_root_ops); 840 if (rc) 841 goto error_destroy_iommu; 842 843 kref_init(&zdev->kref); 844 spin_lock(&zpci_list_lock); 845 list_add_tail(&zdev->entry, &zpci_list); 846 spin_unlock(&zpci_list_lock); 847 return 0; 848 849 error_destroy_iommu: 850 zpci_destroy_iommu(zdev); 851 error: 852 zpci_dbg(0, "add fid:%x, rc:%d\n", zdev->fid, rc); 853 return rc; 854 } 855 856 bool zpci_is_device_configured(struct zpci_dev *zdev) 857 { 858 enum zpci_state state = zdev->state; 859 860 return state != ZPCI_FN_STATE_RESERVED && 861 state != ZPCI_FN_STATE_STANDBY; 862 } 863 864 /** 865 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev 866 * @zdev: The zpci_dev to be configured 867 * @fh: The general function handle supplied by the platform 868 * 869 * Given a device in the configuration state Configured, enables, scans and 870 * adds it to the common code PCI subsystem if possible. If any failure occurs, 871 * the zpci_dev is left disabled. 872 * 873 * Return: 0 on success, or an error code otherwise 874 */ 875 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) 876 { 877 zpci_update_fh(zdev, fh); 878 return zpci_bus_scan_device(zdev); 879 } 880 881 /** 882 * zpci_deconfigure_device() - Deconfigure a zpci_dev 883 * @zdev: The zpci_dev to configure 884 * 885 * Deconfigure a zPCI function that is currently configured and possibly known 886 * to the common code PCI subsystem. 887 * If any failure occurs the device is left as is. 888 * 889 * Return: 0 on success, or an error code otherwise 890 */ 891 int zpci_deconfigure_device(struct zpci_dev *zdev) 892 { 893 int rc; 894 895 lockdep_assert_held(&zdev->state_lock); 896 if (zdev->state != ZPCI_FN_STATE_CONFIGURED) 897 return 0; 898 899 if (zdev->zbus->bus) 900 zpci_bus_remove_device(zdev, false); 901 902 if (zdev_enabled(zdev)) { 903 rc = zpci_disable_device(zdev); 904 if (rc) 905 return rc; 906 } 907 908 rc = sclp_pci_deconfigure(zdev->fid); 909 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); 910 if (rc) 911 return rc; 912 zdev->state = ZPCI_FN_STATE_STANDBY; 913 914 return 0; 915 } 916 917 /** 918 * zpci_device_reserved() - Mark device as reserved 919 * @zdev: the zpci_dev that was reserved 920 * 921 * Handle the case that a given zPCI function was reserved by another system. 922 * After a call to this function the zpci_dev can not be found via 923 * get_zdev_by_fid() anymore but may still be accessible via existing 924 * references though it will not be functional anymore. 925 */ 926 void zpci_device_reserved(struct zpci_dev *zdev) 927 { 928 /* 929 * Remove device from zpci_list as it is going away. This also 930 * makes sure we ignore subsequent zPCI events for this device. 931 */ 932 spin_lock(&zpci_list_lock); 933 list_del(&zdev->entry); 934 spin_unlock(&zpci_list_lock); 935 zdev->state = ZPCI_FN_STATE_RESERVED; 936 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 937 zpci_zdev_put(zdev); 938 } 939 940 void zpci_release_device(struct kref *kref) 941 { 942 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 943 944 WARN_ON(zdev->state != ZPCI_FN_STATE_RESERVED); 945 946 if (zdev->zbus->bus) 947 zpci_bus_remove_device(zdev, false); 948 949 if (zdev_enabled(zdev)) 950 zpci_disable_device(zdev); 951 952 if (zdev->has_hp_slot) 953 zpci_exit_slot(zdev); 954 955 if (zdev->has_resources) 956 zpci_cleanup_bus_resources(zdev); 957 958 zpci_bus_device_unregister(zdev); 959 zpci_destroy_iommu(zdev); 960 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 961 kfree_rcu(zdev, rcu); 962 } 963 964 int zpci_report_error(struct pci_dev *pdev, 965 struct zpci_report_error_header *report) 966 { 967 struct zpci_dev *zdev = to_zpci(pdev); 968 969 return sclp_pci_report(report, zdev->fh, zdev->fid); 970 } 971 EXPORT_SYMBOL(zpci_report_error); 972 973 /** 974 * zpci_clear_error_state() - Clears the zPCI error state of the device 975 * @zdev: The zdev for which the zPCI error state should be reset 976 * 977 * Clear the zPCI error state of the device. If clearing the zPCI error state 978 * fails the device is left in the error state. In this case it may make sense 979 * to call zpci_io_perm_failure() on the associated pdev if it exists. 980 * 981 * Returns: 0 on success, -EIO otherwise 982 */ 983 int zpci_clear_error_state(struct zpci_dev *zdev) 984 { 985 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); 986 struct zpci_fib fib = {0}; 987 u8 status; 988 int cc; 989 990 cc = zpci_mod_fc(req, &fib, &status); 991 if (cc) { 992 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 993 return -EIO; 994 } 995 996 return 0; 997 } 998 999 /** 1000 * zpci_reset_load_store_blocked() - Re-enables L/S from error state 1001 * @zdev: The zdev for which to unblock load/store access 1002 * 1003 * Re-enables load/store access for a PCI function in the error state while 1004 * keeping DMA blocked. In this state drivers can poke MMIO space to determine 1005 * if error recovery is possible while catching any rogue DMA access from the 1006 * device. 1007 * 1008 * Returns: 0 on success, -EIO otherwise 1009 */ 1010 int zpci_reset_load_store_blocked(struct zpci_dev *zdev) 1011 { 1012 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); 1013 struct zpci_fib fib = {0}; 1014 u8 status; 1015 int cc; 1016 1017 cc = zpci_mod_fc(req, &fib, &status); 1018 if (cc) { 1019 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1020 return -EIO; 1021 } 1022 1023 return 0; 1024 } 1025 1026 static int zpci_mem_init(void) 1027 { 1028 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 1029 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 1030 1031 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 1032 __alignof__(struct zpci_fmb), 0, NULL); 1033 if (!zdev_fmb_cache) 1034 goto error_fmb; 1035 1036 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 1037 sizeof(*zpci_iomap_start), GFP_KERNEL); 1038 if (!zpci_iomap_start) 1039 goto error_iomap; 1040 1041 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 1042 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 1043 if (!zpci_iomap_bitmap) 1044 goto error_iomap_bitmap; 1045 1046 if (static_branch_likely(&have_mio)) 1047 clp_setup_writeback_mio(); 1048 1049 return 0; 1050 error_iomap_bitmap: 1051 kfree(zpci_iomap_start); 1052 error_iomap: 1053 kmem_cache_destroy(zdev_fmb_cache); 1054 error_fmb: 1055 return -ENOMEM; 1056 } 1057 1058 static void zpci_mem_exit(void) 1059 { 1060 kfree(zpci_iomap_bitmap); 1061 kfree(zpci_iomap_start); 1062 kmem_cache_destroy(zdev_fmb_cache); 1063 } 1064 1065 static unsigned int s390_pci_probe __initdata = 1; 1066 unsigned int s390_pci_force_floating __initdata; 1067 static unsigned int s390_pci_initialized; 1068 1069 char * __init pcibios_setup(char *str) 1070 { 1071 if (!strcmp(str, "off")) { 1072 s390_pci_probe = 0; 1073 return NULL; 1074 } 1075 if (!strcmp(str, "nomio")) { 1076 get_lowcore()->machine_flags &= ~MACHINE_FLAG_PCI_MIO; 1077 return NULL; 1078 } 1079 if (!strcmp(str, "force_floating")) { 1080 s390_pci_force_floating = 1; 1081 return NULL; 1082 } 1083 if (!strcmp(str, "norid")) { 1084 s390_pci_no_rid = 1; 1085 return NULL; 1086 } 1087 return str; 1088 } 1089 1090 bool zpci_is_enabled(void) 1091 { 1092 return s390_pci_initialized; 1093 } 1094 1095 static int zpci_cmp_rid(void *priv, const struct list_head *a, 1096 const struct list_head *b) 1097 { 1098 struct zpci_dev *za = container_of(a, struct zpci_dev, entry); 1099 struct zpci_dev *zb = container_of(b, struct zpci_dev, entry); 1100 1101 /* 1102 * PCI functions without RID available maintain original order 1103 * between themselves but sort before those with RID. 1104 */ 1105 if (za->rid == zb->rid) 1106 return za->rid_available > zb->rid_available; 1107 /* 1108 * PCI functions with RID sort by RID ascending. 1109 */ 1110 return za->rid > zb->rid; 1111 } 1112 1113 static void zpci_add_devices(struct list_head *scan_list) 1114 { 1115 struct zpci_dev *zdev, *tmp; 1116 1117 list_sort(NULL, scan_list, &zpci_cmp_rid); 1118 list_for_each_entry_safe(zdev, tmp, scan_list, entry) { 1119 list_del_init(&zdev->entry); 1120 if (zpci_add_device(zdev)) 1121 kfree(zdev); 1122 } 1123 } 1124 1125 int zpci_scan_devices(void) 1126 { 1127 LIST_HEAD(scan_list); 1128 int rc; 1129 1130 rc = clp_scan_pci_devices(&scan_list); 1131 if (rc) 1132 return rc; 1133 1134 zpci_add_devices(&scan_list); 1135 zpci_bus_scan_busses(); 1136 return 0; 1137 } 1138 1139 static int __init pci_base_init(void) 1140 { 1141 int rc; 1142 1143 if (!s390_pci_probe) 1144 return 0; 1145 1146 if (!test_facility(69) || !test_facility(71)) { 1147 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 1148 return 0; 1149 } 1150 1151 if (MACHINE_HAS_PCI_MIO) { 1152 static_branch_enable(&have_mio); 1153 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT); 1154 } 1155 1156 rc = zpci_debug_init(); 1157 if (rc) 1158 goto out; 1159 1160 rc = zpci_mem_init(); 1161 if (rc) 1162 goto out_mem; 1163 1164 rc = zpci_irq_init(); 1165 if (rc) 1166 goto out_irq; 1167 1168 rc = zpci_scan_devices(); 1169 if (rc) 1170 goto out_find; 1171 1172 s390_pci_initialized = 1; 1173 return 0; 1174 1175 out_find: 1176 zpci_irq_exit(); 1177 out_irq: 1178 zpci_mem_exit(); 1179 out_mem: 1180 zpci_debug_exit(); 1181 out: 1182 return rc; 1183 } 1184 subsys_initcall_sync(pci_base_init); 1185