xref: /linux/arch/s390/pci/pci.c (revision 0d3b051adbb72ed81956447d0d1e54d5943ee6f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 2012
4  *
5  * Author(s):
6  *   Jan Glauber <jang@linux.vnet.ibm.com>
7  *
8  * The System z PCI code is a rewrite from a prototype by
9  * the following people (Kudoz!):
10  *   Alexander Schmidt
11  *   Christoph Raisch
12  *   Hannes Hering
13  *   Hoang-Nam Nguyen
14  *   Jan-Bernd Themann
15  *   Stefan Roscher
16  *   Thomas Klein
17  */
18 
19 #define KMSG_COMPONENT "zpci"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/err.h>
25 #include <linux/export.h>
26 #include <linux/delay.h>
27 #include <linux/seq_file.h>
28 #include <linux/jump_label.h>
29 #include <linux/pci.h>
30 #include <linux/printk.h>
31 
32 #include <asm/isc.h>
33 #include <asm/airq.h>
34 #include <asm/facility.h>
35 #include <asm/pci_insn.h>
36 #include <asm/pci_clp.h>
37 #include <asm/pci_dma.h>
38 
39 #include "pci_bus.h"
40 #include "pci_iov.h"
41 
42 /* list of all detected zpci devices */
43 static LIST_HEAD(zpci_list);
44 static DEFINE_SPINLOCK(zpci_list_lock);
45 
46 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
47 static DEFINE_SPINLOCK(zpci_domain_lock);
48 
49 #define ZPCI_IOMAP_ENTRIES						\
50 	min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2),	\
51 	    ZPCI_IOMAP_MAX_ENTRIES)
52 
53 unsigned int s390_pci_no_rid;
54 
55 static DEFINE_SPINLOCK(zpci_iomap_lock);
56 static unsigned long *zpci_iomap_bitmap;
57 struct zpci_iomap_entry *zpci_iomap_start;
58 EXPORT_SYMBOL_GPL(zpci_iomap_start);
59 
60 DEFINE_STATIC_KEY_FALSE(have_mio);
61 
62 static struct kmem_cache *zdev_fmb_cache;
63 
64 struct zpci_dev *get_zdev_by_fid(u32 fid)
65 {
66 	struct zpci_dev *tmp, *zdev = NULL;
67 
68 	spin_lock(&zpci_list_lock);
69 	list_for_each_entry(tmp, &zpci_list, entry) {
70 		if (tmp->fid == fid) {
71 			zdev = tmp;
72 			break;
73 		}
74 	}
75 	spin_unlock(&zpci_list_lock);
76 	return zdev;
77 }
78 
79 void zpci_remove_reserved_devices(void)
80 {
81 	struct zpci_dev *tmp, *zdev;
82 	enum zpci_state state;
83 	LIST_HEAD(remove);
84 
85 	spin_lock(&zpci_list_lock);
86 	list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
87 		if (zdev->state == ZPCI_FN_STATE_STANDBY &&
88 		    !clp_get_state(zdev->fid, &state) &&
89 		    state == ZPCI_FN_STATE_RESERVED)
90 			list_move_tail(&zdev->entry, &remove);
91 	}
92 	spin_unlock(&zpci_list_lock);
93 
94 	list_for_each_entry_safe(zdev, tmp, &remove, entry)
95 		zpci_zdev_put(zdev);
96 }
97 
98 int pci_domain_nr(struct pci_bus *bus)
99 {
100 	return ((struct zpci_bus *) bus->sysdata)->domain_nr;
101 }
102 EXPORT_SYMBOL_GPL(pci_domain_nr);
103 
104 int pci_proc_domain(struct pci_bus *bus)
105 {
106 	return pci_domain_nr(bus);
107 }
108 EXPORT_SYMBOL_GPL(pci_proc_domain);
109 
110 /* Modify PCI: Register I/O address translation parameters */
111 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
112 		       u64 base, u64 limit, u64 iota)
113 {
114 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
115 	struct zpci_fib fib = {0};
116 	u8 status;
117 
118 	WARN_ON_ONCE(iota & 0x3fff);
119 	fib.pba = base;
120 	fib.pal = limit;
121 	fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
122 	return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
123 }
124 
125 /* Modify PCI: Unregister I/O address translation parameters */
126 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
127 {
128 	u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
129 	struct zpci_fib fib = {0};
130 	u8 cc, status;
131 
132 	cc = zpci_mod_fc(req, &fib, &status);
133 	if (cc == 3) /* Function already gone. */
134 		cc = 0;
135 	return cc ? -EIO : 0;
136 }
137 
138 /* Modify PCI: Set PCI function measurement parameters */
139 int zpci_fmb_enable_device(struct zpci_dev *zdev)
140 {
141 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
142 	struct zpci_fib fib = {0};
143 	u8 cc, status;
144 
145 	if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
146 		return -EINVAL;
147 
148 	zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
149 	if (!zdev->fmb)
150 		return -ENOMEM;
151 	WARN_ON((u64) zdev->fmb & 0xf);
152 
153 	/* reset software counters */
154 	atomic64_set(&zdev->allocated_pages, 0);
155 	atomic64_set(&zdev->mapped_pages, 0);
156 	atomic64_set(&zdev->unmapped_pages, 0);
157 
158 	fib.fmb_addr = virt_to_phys(zdev->fmb);
159 	cc = zpci_mod_fc(req, &fib, &status);
160 	if (cc) {
161 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
162 		zdev->fmb = NULL;
163 	}
164 	return cc ? -EIO : 0;
165 }
166 
167 /* Modify PCI: Disable PCI function measurement */
168 int zpci_fmb_disable_device(struct zpci_dev *zdev)
169 {
170 	u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
171 	struct zpci_fib fib = {0};
172 	u8 cc, status;
173 
174 	if (!zdev->fmb)
175 		return -EINVAL;
176 
177 	/* Function measurement is disabled if fmb address is zero */
178 	cc = zpci_mod_fc(req, &fib, &status);
179 	if (cc == 3) /* Function already gone. */
180 		cc = 0;
181 
182 	if (!cc) {
183 		kmem_cache_free(zdev_fmb_cache, zdev->fmb);
184 		zdev->fmb = NULL;
185 	}
186 	return cc ? -EIO : 0;
187 }
188 
189 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
190 {
191 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
192 	u64 data;
193 	int rc;
194 
195 	rc = __zpci_load(&data, req, offset);
196 	if (!rc) {
197 		data = le64_to_cpu((__force __le64) data);
198 		data >>= (8 - len) * 8;
199 		*val = (u32) data;
200 	} else
201 		*val = 0xffffffff;
202 	return rc;
203 }
204 
205 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
206 {
207 	u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
208 	u64 data = val;
209 	int rc;
210 
211 	data <<= (8 - len) * 8;
212 	data = (__force u64) cpu_to_le64(data);
213 	rc = __zpci_store(data, req, offset);
214 	return rc;
215 }
216 
217 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
218 				       resource_size_t size,
219 				       resource_size_t align)
220 {
221 	return 0;
222 }
223 
224 /* combine single writes by using store-block insn */
225 void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
226 {
227        zpci_memcpy_toio(to, from, count);
228 }
229 
230 static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot)
231 {
232 	unsigned long offset, vaddr;
233 	struct vm_struct *area;
234 	phys_addr_t last_addr;
235 
236 	last_addr = addr + size - 1;
237 	if (!size || last_addr < addr)
238 		return NULL;
239 
240 	if (!static_branch_unlikely(&have_mio))
241 		return (void __iomem *) addr;
242 
243 	offset = addr & ~PAGE_MASK;
244 	addr &= PAGE_MASK;
245 	size = PAGE_ALIGN(size + offset);
246 	area = get_vm_area(size, VM_IOREMAP);
247 	if (!area)
248 		return NULL;
249 
250 	vaddr = (unsigned long) area->addr;
251 	if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) {
252 		free_vm_area(area);
253 		return NULL;
254 	}
255 	return (void __iomem *) ((unsigned long) area->addr + offset);
256 }
257 
258 void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot)
259 {
260 	return __ioremap(addr, size, __pgprot(prot));
261 }
262 EXPORT_SYMBOL(ioremap_prot);
263 
264 void __iomem *ioremap(phys_addr_t addr, size_t size)
265 {
266 	return __ioremap(addr, size, PAGE_KERNEL);
267 }
268 EXPORT_SYMBOL(ioremap);
269 
270 void __iomem *ioremap_wc(phys_addr_t addr, size_t size)
271 {
272 	return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL));
273 }
274 EXPORT_SYMBOL(ioremap_wc);
275 
276 void __iomem *ioremap_wt(phys_addr_t addr, size_t size)
277 {
278 	return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL));
279 }
280 EXPORT_SYMBOL(ioremap_wt);
281 
282 void iounmap(volatile void __iomem *addr)
283 {
284 	if (static_branch_likely(&have_mio))
285 		vunmap((__force void *) ((unsigned long) addr & PAGE_MASK));
286 }
287 EXPORT_SYMBOL(iounmap);
288 
289 /* Create a virtual mapping cookie for a PCI BAR */
290 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
291 					unsigned long offset, unsigned long max)
292 {
293 	struct zpci_dev *zdev =	to_zpci(pdev);
294 	int idx;
295 
296 	idx = zdev->bars[bar].map_idx;
297 	spin_lock(&zpci_iomap_lock);
298 	/* Detect overrun */
299 	WARN_ON(!++zpci_iomap_start[idx].count);
300 	zpci_iomap_start[idx].fh = zdev->fh;
301 	zpci_iomap_start[idx].bar = bar;
302 	spin_unlock(&zpci_iomap_lock);
303 
304 	return (void __iomem *) ZPCI_ADDR(idx) + offset;
305 }
306 
307 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
308 					 unsigned long offset,
309 					 unsigned long max)
310 {
311 	unsigned long barsize = pci_resource_len(pdev, bar);
312 	struct zpci_dev *zdev = to_zpci(pdev);
313 	void __iomem *iova;
314 
315 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
316 	return iova ? iova + offset : iova;
317 }
318 
319 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
320 			      unsigned long offset, unsigned long max)
321 {
322 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
323 		return NULL;
324 
325 	if (static_branch_likely(&have_mio))
326 		return pci_iomap_range_mio(pdev, bar, offset, max);
327 	else
328 		return pci_iomap_range_fh(pdev, bar, offset, max);
329 }
330 EXPORT_SYMBOL(pci_iomap_range);
331 
332 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
333 {
334 	return pci_iomap_range(dev, bar, 0, maxlen);
335 }
336 EXPORT_SYMBOL(pci_iomap);
337 
338 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
339 					    unsigned long offset, unsigned long max)
340 {
341 	unsigned long barsize = pci_resource_len(pdev, bar);
342 	struct zpci_dev *zdev = to_zpci(pdev);
343 	void __iomem *iova;
344 
345 	iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
346 	return iova ? iova + offset : iova;
347 }
348 
349 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
350 				 unsigned long offset, unsigned long max)
351 {
352 	if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
353 		return NULL;
354 
355 	if (static_branch_likely(&have_mio))
356 		return pci_iomap_wc_range_mio(pdev, bar, offset, max);
357 	else
358 		return pci_iomap_range_fh(pdev, bar, offset, max);
359 }
360 EXPORT_SYMBOL(pci_iomap_wc_range);
361 
362 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
363 {
364 	return pci_iomap_wc_range(dev, bar, 0, maxlen);
365 }
366 EXPORT_SYMBOL(pci_iomap_wc);
367 
368 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
369 {
370 	unsigned int idx = ZPCI_IDX(addr);
371 
372 	spin_lock(&zpci_iomap_lock);
373 	/* Detect underrun */
374 	WARN_ON(!zpci_iomap_start[idx].count);
375 	if (!--zpci_iomap_start[idx].count) {
376 		zpci_iomap_start[idx].fh = 0;
377 		zpci_iomap_start[idx].bar = 0;
378 	}
379 	spin_unlock(&zpci_iomap_lock);
380 }
381 
382 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
383 {
384 	iounmap(addr);
385 }
386 
387 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
388 {
389 	if (static_branch_likely(&have_mio))
390 		pci_iounmap_mio(pdev, addr);
391 	else
392 		pci_iounmap_fh(pdev, addr);
393 }
394 EXPORT_SYMBOL(pci_iounmap);
395 
396 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
397 		    int size, u32 *val)
398 {
399 	struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn);
400 
401 	return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
402 }
403 
404 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
405 		     int size, u32 val)
406 {
407 	struct zpci_dev *zdev = get_zdev_by_bus(bus, devfn);
408 
409 	return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
410 }
411 
412 static struct pci_ops pci_root_ops = {
413 	.read = pci_read,
414 	.write = pci_write,
415 };
416 
417 static void zpci_map_resources(struct pci_dev *pdev)
418 {
419 	struct zpci_dev *zdev = to_zpci(pdev);
420 	resource_size_t len;
421 	int i;
422 
423 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
424 		len = pci_resource_len(pdev, i);
425 		if (!len)
426 			continue;
427 
428 		if (zpci_use_mio(zdev))
429 			pdev->resource[i].start =
430 				(resource_size_t __force) zdev->bars[i].mio_wt;
431 		else
432 			pdev->resource[i].start = (resource_size_t __force)
433 				pci_iomap_range_fh(pdev, i, 0, 0);
434 		pdev->resource[i].end = pdev->resource[i].start + len - 1;
435 	}
436 
437 	zpci_iov_map_resources(pdev);
438 }
439 
440 static void zpci_unmap_resources(struct pci_dev *pdev)
441 {
442 	struct zpci_dev *zdev = to_zpci(pdev);
443 	resource_size_t len;
444 	int i;
445 
446 	if (zpci_use_mio(zdev))
447 		return;
448 
449 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
450 		len = pci_resource_len(pdev, i);
451 		if (!len)
452 			continue;
453 		pci_iounmap_fh(pdev, (void __iomem __force *)
454 			       pdev->resource[i].start);
455 	}
456 }
457 
458 static int zpci_alloc_iomap(struct zpci_dev *zdev)
459 {
460 	unsigned long entry;
461 
462 	spin_lock(&zpci_iomap_lock);
463 	entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
464 	if (entry == ZPCI_IOMAP_ENTRIES) {
465 		spin_unlock(&zpci_iomap_lock);
466 		return -ENOSPC;
467 	}
468 	set_bit(entry, zpci_iomap_bitmap);
469 	spin_unlock(&zpci_iomap_lock);
470 	return entry;
471 }
472 
473 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
474 {
475 	spin_lock(&zpci_iomap_lock);
476 	memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
477 	clear_bit(entry, zpci_iomap_bitmap);
478 	spin_unlock(&zpci_iomap_lock);
479 }
480 
481 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
482 				    unsigned long size, unsigned long flags)
483 {
484 	struct resource *r;
485 
486 	r = kzalloc(sizeof(*r), GFP_KERNEL);
487 	if (!r)
488 		return NULL;
489 
490 	r->start = start;
491 	r->end = r->start + size - 1;
492 	r->flags = flags;
493 	r->name = zdev->res_name;
494 
495 	if (request_resource(&iomem_resource, r)) {
496 		kfree(r);
497 		return NULL;
498 	}
499 	return r;
500 }
501 
502 int zpci_setup_bus_resources(struct zpci_dev *zdev,
503 			     struct list_head *resources)
504 {
505 	unsigned long addr, size, flags;
506 	struct resource *res;
507 	int i, entry;
508 
509 	snprintf(zdev->res_name, sizeof(zdev->res_name),
510 		 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
511 
512 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
513 		if (!zdev->bars[i].size)
514 			continue;
515 		entry = zpci_alloc_iomap(zdev);
516 		if (entry < 0)
517 			return entry;
518 		zdev->bars[i].map_idx = entry;
519 
520 		/* only MMIO is supported */
521 		flags = IORESOURCE_MEM;
522 		if (zdev->bars[i].val & 8)
523 			flags |= IORESOURCE_PREFETCH;
524 		if (zdev->bars[i].val & 4)
525 			flags |= IORESOURCE_MEM_64;
526 
527 		if (zpci_use_mio(zdev))
528 			addr = (unsigned long) zdev->bars[i].mio_wt;
529 		else
530 			addr = ZPCI_ADDR(entry);
531 		size = 1UL << zdev->bars[i].size;
532 
533 		res = __alloc_res(zdev, addr, size, flags);
534 		if (!res) {
535 			zpci_free_iomap(zdev, entry);
536 			return -ENOMEM;
537 		}
538 		zdev->bars[i].res = res;
539 		pci_add_resource(resources, res);
540 	}
541 
542 	return 0;
543 }
544 
545 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
546 {
547 	int i;
548 
549 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
550 		if (!zdev->bars[i].size || !zdev->bars[i].res)
551 			continue;
552 
553 		zpci_free_iomap(zdev, zdev->bars[i].map_idx);
554 		release_resource(zdev->bars[i].res);
555 		kfree(zdev->bars[i].res);
556 	}
557 }
558 
559 int pcibios_add_device(struct pci_dev *pdev)
560 {
561 	struct resource *res;
562 	int i;
563 
564 	if (pdev->is_physfn)
565 		pdev->no_vf_scan = 1;
566 
567 	pdev->dev.groups = zpci_attr_groups;
568 	pdev->dev.dma_ops = &s390_pci_dma_ops;
569 	zpci_map_resources(pdev);
570 
571 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
572 		res = &pdev->resource[i];
573 		if (res->parent || !res->flags)
574 			continue;
575 		pci_claim_resource(pdev, i);
576 	}
577 
578 	return 0;
579 }
580 
581 void pcibios_release_device(struct pci_dev *pdev)
582 {
583 	zpci_unmap_resources(pdev);
584 }
585 
586 int pcibios_enable_device(struct pci_dev *pdev, int mask)
587 {
588 	struct zpci_dev *zdev = to_zpci(pdev);
589 
590 	zpci_debug_init_device(zdev, dev_name(&pdev->dev));
591 	zpci_fmb_enable_device(zdev);
592 
593 	return pci_enable_resources(pdev, mask);
594 }
595 
596 void pcibios_disable_device(struct pci_dev *pdev)
597 {
598 	struct zpci_dev *zdev = to_zpci(pdev);
599 
600 	zpci_fmb_disable_device(zdev);
601 	zpci_debug_exit_device(zdev);
602 }
603 
604 static int __zpci_register_domain(int domain)
605 {
606 	spin_lock(&zpci_domain_lock);
607 	if (test_bit(domain, zpci_domain)) {
608 		spin_unlock(&zpci_domain_lock);
609 		pr_err("Domain %04x is already assigned\n", domain);
610 		return -EEXIST;
611 	}
612 	set_bit(domain, zpci_domain);
613 	spin_unlock(&zpci_domain_lock);
614 	return domain;
615 }
616 
617 static int __zpci_alloc_domain(void)
618 {
619 	int domain;
620 
621 	spin_lock(&zpci_domain_lock);
622 	/*
623 	 * We can always auto allocate domains below ZPCI_NR_DEVICES.
624 	 * There is either a free domain or we have reached the maximum in
625 	 * which case we would have bailed earlier.
626 	 */
627 	domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
628 	set_bit(domain, zpci_domain);
629 	spin_unlock(&zpci_domain_lock);
630 	return domain;
631 }
632 
633 int zpci_alloc_domain(int domain)
634 {
635 	if (zpci_unique_uid) {
636 		if (domain)
637 			return __zpci_register_domain(domain);
638 		pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
639 		update_uid_checking(false);
640 	}
641 	return __zpci_alloc_domain();
642 }
643 
644 void zpci_free_domain(int domain)
645 {
646 	spin_lock(&zpci_domain_lock);
647 	clear_bit(domain, zpci_domain);
648 	spin_unlock(&zpci_domain_lock);
649 }
650 
651 
652 int zpci_enable_device(struct zpci_dev *zdev)
653 {
654 	int rc;
655 
656 	rc = clp_enable_fh(zdev, ZPCI_NR_DMA_SPACES);
657 	if (rc)
658 		goto out;
659 
660 	rc = zpci_dma_init_device(zdev);
661 	if (rc)
662 		goto out_dma;
663 
664 	zdev->state = ZPCI_FN_STATE_ONLINE;
665 	return 0;
666 
667 out_dma:
668 	clp_disable_fh(zdev);
669 out:
670 	return rc;
671 }
672 EXPORT_SYMBOL_GPL(zpci_enable_device);
673 
674 int zpci_disable_device(struct zpci_dev *zdev)
675 {
676 	zpci_dma_exit_device(zdev);
677 	/*
678 	 * The zPCI function may already be disabled by the platform, this is
679 	 * detected in clp_disable_fh() which becomes a no-op.
680 	 */
681 	return clp_disable_fh(zdev);
682 }
683 EXPORT_SYMBOL_GPL(zpci_disable_device);
684 
685 void zpci_remove_device(struct zpci_dev *zdev)
686 {
687 	struct zpci_bus *zbus = zdev->zbus;
688 	struct pci_dev *pdev;
689 
690 	pdev = pci_get_slot(zbus->bus, zdev->devfn);
691 	if (pdev) {
692 		if (pdev->is_virtfn)
693 			return zpci_iov_remove_virtfn(pdev, zdev->vfn);
694 		pci_stop_and_remove_bus_device_locked(pdev);
695 	}
696 }
697 
698 int zpci_create_device(struct zpci_dev *zdev)
699 {
700 	int rc;
701 
702 	kref_init(&zdev->kref);
703 
704 	spin_lock(&zpci_list_lock);
705 	list_add_tail(&zdev->entry, &zpci_list);
706 	spin_unlock(&zpci_list_lock);
707 
708 	rc = zpci_init_iommu(zdev);
709 	if (rc)
710 		goto out;
711 
712 	mutex_init(&zdev->lock);
713 	if (zdev->state == ZPCI_FN_STATE_CONFIGURED) {
714 		rc = zpci_enable_device(zdev);
715 		if (rc)
716 			goto out_destroy_iommu;
717 	}
718 
719 	rc = zpci_bus_device_register(zdev, &pci_root_ops);
720 	if (rc)
721 		goto out_disable;
722 
723 	return 0;
724 
725 out_disable:
726 	if (zdev->state == ZPCI_FN_STATE_ONLINE)
727 		zpci_disable_device(zdev);
728 
729 out_destroy_iommu:
730 	zpci_destroy_iommu(zdev);
731 out:
732 	spin_lock(&zpci_list_lock);
733 	list_del(&zdev->entry);
734 	spin_unlock(&zpci_list_lock);
735 	return rc;
736 }
737 
738 void zpci_release_device(struct kref *kref)
739 {
740 	struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
741 
742 	if (zdev->zbus->bus)
743 		zpci_remove_device(zdev);
744 
745 	switch (zdev->state) {
746 	case ZPCI_FN_STATE_ONLINE:
747 	case ZPCI_FN_STATE_CONFIGURED:
748 		zpci_disable_device(zdev);
749 		fallthrough;
750 	case ZPCI_FN_STATE_STANDBY:
751 		if (zdev->has_hp_slot)
752 			zpci_exit_slot(zdev);
753 		zpci_cleanup_bus_resources(zdev);
754 		zpci_bus_device_unregister(zdev);
755 		zpci_destroy_iommu(zdev);
756 		fallthrough;
757 	default:
758 		break;
759 	}
760 
761 	spin_lock(&zpci_list_lock);
762 	list_del(&zdev->entry);
763 	spin_unlock(&zpci_list_lock);
764 	zpci_dbg(3, "rem fid:%x\n", zdev->fid);
765 	kfree(zdev);
766 }
767 
768 int zpci_report_error(struct pci_dev *pdev,
769 		      struct zpci_report_error_header *report)
770 {
771 	struct zpci_dev *zdev = to_zpci(pdev);
772 
773 	return sclp_pci_report(report, zdev->fh, zdev->fid);
774 }
775 EXPORT_SYMBOL(zpci_report_error);
776 
777 static int zpci_mem_init(void)
778 {
779 	BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
780 		     __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
781 
782 	zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
783 					   __alignof__(struct zpci_fmb), 0, NULL);
784 	if (!zdev_fmb_cache)
785 		goto error_fmb;
786 
787 	zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
788 				   sizeof(*zpci_iomap_start), GFP_KERNEL);
789 	if (!zpci_iomap_start)
790 		goto error_iomap;
791 
792 	zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
793 				    sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
794 	if (!zpci_iomap_bitmap)
795 		goto error_iomap_bitmap;
796 
797 	if (static_branch_likely(&have_mio))
798 		clp_setup_writeback_mio();
799 
800 	return 0;
801 error_iomap_bitmap:
802 	kfree(zpci_iomap_start);
803 error_iomap:
804 	kmem_cache_destroy(zdev_fmb_cache);
805 error_fmb:
806 	return -ENOMEM;
807 }
808 
809 static void zpci_mem_exit(void)
810 {
811 	kfree(zpci_iomap_bitmap);
812 	kfree(zpci_iomap_start);
813 	kmem_cache_destroy(zdev_fmb_cache);
814 }
815 
816 static unsigned int s390_pci_probe __initdata = 1;
817 static unsigned int s390_pci_no_mio __initdata;
818 unsigned int s390_pci_force_floating __initdata;
819 static unsigned int s390_pci_initialized;
820 
821 char * __init pcibios_setup(char *str)
822 {
823 	if (!strcmp(str, "off")) {
824 		s390_pci_probe = 0;
825 		return NULL;
826 	}
827 	if (!strcmp(str, "nomio")) {
828 		s390_pci_no_mio = 1;
829 		return NULL;
830 	}
831 	if (!strcmp(str, "force_floating")) {
832 		s390_pci_force_floating = 1;
833 		return NULL;
834 	}
835 	if (!strcmp(str, "norid")) {
836 		s390_pci_no_rid = 1;
837 		return NULL;
838 	}
839 	return str;
840 }
841 
842 bool zpci_is_enabled(void)
843 {
844 	return s390_pci_initialized;
845 }
846 
847 static int __init pci_base_init(void)
848 {
849 	int rc;
850 
851 	if (!s390_pci_probe)
852 		return 0;
853 
854 	if (!test_facility(69) || !test_facility(71)) {
855 		pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
856 		return 0;
857 	}
858 
859 	if (test_facility(153) && !s390_pci_no_mio) {
860 		static_branch_enable(&have_mio);
861 		ctl_set_bit(2, 5);
862 	}
863 
864 	rc = zpci_debug_init();
865 	if (rc)
866 		goto out;
867 
868 	rc = zpci_mem_init();
869 	if (rc)
870 		goto out_mem;
871 
872 	rc = zpci_irq_init();
873 	if (rc)
874 		goto out_irq;
875 
876 	rc = zpci_dma_init();
877 	if (rc)
878 		goto out_dma;
879 
880 	rc = clp_scan_pci_devices();
881 	if (rc)
882 		goto out_find;
883 
884 	s390_pci_initialized = 1;
885 	return 0;
886 
887 out_find:
888 	zpci_dma_exit();
889 out_dma:
890 	zpci_irq_exit();
891 out_irq:
892 	zpci_mem_exit();
893 out_mem:
894 	zpci_debug_exit();
895 out:
896 	return rc;
897 }
898 subsys_initcall_sync(pci_base_init);
899