1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corp. 2012 4 * 5 * Author(s): 6 * Jan Glauber <jang@linux.vnet.ibm.com> 7 * 8 * The System z PCI code is a rewrite from a prototype by 9 * the following people (Kudoz!): 10 * Alexander Schmidt 11 * Christoph Raisch 12 * Hannes Hering 13 * Hoang-Nam Nguyen 14 * Jan-Bernd Themann 15 * Stefan Roscher 16 * Thomas Klein 17 */ 18 19 #define KMSG_COMPONENT "zpci" 20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/slab.h> 24 #include <linux/err.h> 25 #include <linux/export.h> 26 #include <linux/delay.h> 27 #include <linux/seq_file.h> 28 #include <linux/jump_label.h> 29 #include <linux/pci.h> 30 #include <linux/printk.h> 31 #include <linux/lockdep.h> 32 33 #include <asm/isc.h> 34 #include <asm/airq.h> 35 #include <asm/facility.h> 36 #include <asm/pci_insn.h> 37 #include <asm/pci_clp.h> 38 #include <asm/pci_dma.h> 39 40 #include "pci_bus.h" 41 #include "pci_iov.h" 42 43 /* list of all detected zpci devices */ 44 static LIST_HEAD(zpci_list); 45 static DEFINE_SPINLOCK(zpci_list_lock); 46 47 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); 48 static DEFINE_SPINLOCK(zpci_domain_lock); 49 50 #define ZPCI_IOMAP_ENTRIES \ 51 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ 52 ZPCI_IOMAP_MAX_ENTRIES) 53 54 unsigned int s390_pci_no_rid; 55 56 static DEFINE_SPINLOCK(zpci_iomap_lock); 57 static unsigned long *zpci_iomap_bitmap; 58 struct zpci_iomap_entry *zpci_iomap_start; 59 EXPORT_SYMBOL_GPL(zpci_iomap_start); 60 61 DEFINE_STATIC_KEY_FALSE(have_mio); 62 63 static struct kmem_cache *zdev_fmb_cache; 64 65 /* AEN structures that must be preserved over KVM module re-insertion */ 66 union zpci_sic_iib *zpci_aipb; 67 EXPORT_SYMBOL_GPL(zpci_aipb); 68 struct airq_iv *zpci_aif_sbv; 69 EXPORT_SYMBOL_GPL(zpci_aif_sbv); 70 71 struct zpci_dev *get_zdev_by_fid(u32 fid) 72 { 73 struct zpci_dev *tmp, *zdev = NULL; 74 75 spin_lock(&zpci_list_lock); 76 list_for_each_entry(tmp, &zpci_list, entry) { 77 if (tmp->fid == fid) { 78 zdev = tmp; 79 zpci_zdev_get(zdev); 80 break; 81 } 82 } 83 spin_unlock(&zpci_list_lock); 84 return zdev; 85 } 86 87 void zpci_remove_reserved_devices(void) 88 { 89 struct zpci_dev *tmp, *zdev; 90 enum zpci_state state; 91 LIST_HEAD(remove); 92 93 spin_lock(&zpci_list_lock); 94 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { 95 if (zdev->state == ZPCI_FN_STATE_STANDBY && 96 !clp_get_state(zdev->fid, &state) && 97 state == ZPCI_FN_STATE_RESERVED) 98 list_move_tail(&zdev->entry, &remove); 99 } 100 spin_unlock(&zpci_list_lock); 101 102 list_for_each_entry_safe(zdev, tmp, &remove, entry) 103 zpci_device_reserved(zdev); 104 } 105 106 int pci_domain_nr(struct pci_bus *bus) 107 { 108 return ((struct zpci_bus *) bus->sysdata)->domain_nr; 109 } 110 EXPORT_SYMBOL_GPL(pci_domain_nr); 111 112 int pci_proc_domain(struct pci_bus *bus) 113 { 114 return pci_domain_nr(bus); 115 } 116 EXPORT_SYMBOL_GPL(pci_proc_domain); 117 118 /* Modify PCI: Register I/O address translation parameters */ 119 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, 120 u64 base, u64 limit, u64 iota, u8 *status) 121 { 122 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); 123 struct zpci_fib fib = {0}; 124 u8 cc; 125 126 WARN_ON_ONCE(iota & 0x3fff); 127 fib.pba = base; 128 /* Work around off by one in ISM virt device */ 129 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base) 130 fib.pal = limit + (1 << 12); 131 else 132 fib.pal = limit; 133 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; 134 fib.gd = zdev->gisa; 135 cc = zpci_mod_fc(req, &fib, status); 136 if (cc) 137 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status); 138 return cc; 139 } 140 EXPORT_SYMBOL_GPL(zpci_register_ioat); 141 142 /* Modify PCI: Unregister I/O address translation parameters */ 143 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) 144 { 145 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); 146 struct zpci_fib fib = {0}; 147 u8 cc, status; 148 149 fib.gd = zdev->gisa; 150 151 cc = zpci_mod_fc(req, &fib, &status); 152 if (cc) 153 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); 154 return cc; 155 } 156 157 /* Modify PCI: Set PCI function measurement parameters */ 158 int zpci_fmb_enable_device(struct zpci_dev *zdev) 159 { 160 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 161 struct zpci_iommu_ctrs *ctrs; 162 struct zpci_fib fib = {0}; 163 u8 cc, status; 164 165 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) 166 return -EINVAL; 167 168 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); 169 if (!zdev->fmb) 170 return -ENOMEM; 171 WARN_ON((u64) zdev->fmb & 0xf); 172 173 /* reset software counters */ 174 ctrs = zpci_get_iommu_ctrs(zdev); 175 if (ctrs) { 176 atomic64_set(&ctrs->mapped_pages, 0); 177 atomic64_set(&ctrs->unmapped_pages, 0); 178 atomic64_set(&ctrs->global_rpcits, 0); 179 atomic64_set(&ctrs->sync_map_rpcits, 0); 180 atomic64_set(&ctrs->sync_rpcits, 0); 181 } 182 183 184 fib.fmb_addr = virt_to_phys(zdev->fmb); 185 fib.gd = zdev->gisa; 186 cc = zpci_mod_fc(req, &fib, &status); 187 if (cc) { 188 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 189 zdev->fmb = NULL; 190 } 191 return cc ? -EIO : 0; 192 } 193 194 /* Modify PCI: Disable PCI function measurement */ 195 int zpci_fmb_disable_device(struct zpci_dev *zdev) 196 { 197 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); 198 struct zpci_fib fib = {0}; 199 u8 cc, status; 200 201 if (!zdev->fmb) 202 return -EINVAL; 203 204 fib.gd = zdev->gisa; 205 206 /* Function measurement is disabled if fmb address is zero */ 207 cc = zpci_mod_fc(req, &fib, &status); 208 if (cc == 3) /* Function already gone. */ 209 cc = 0; 210 211 if (!cc) { 212 kmem_cache_free(zdev_fmb_cache, zdev->fmb); 213 zdev->fmb = NULL; 214 } 215 return cc ? -EIO : 0; 216 } 217 218 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) 219 { 220 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 221 u64 data; 222 int rc; 223 224 rc = __zpci_load(&data, req, offset); 225 if (!rc) { 226 data = le64_to_cpu((__force __le64) data); 227 data >>= (8 - len) * 8; 228 *val = (u32) data; 229 } else 230 *val = 0xffffffff; 231 return rc; 232 } 233 234 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) 235 { 236 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); 237 u64 data = val; 238 int rc; 239 240 data <<= (8 - len) * 8; 241 data = (__force u64) cpu_to_le64(data); 242 rc = __zpci_store(data, req, offset); 243 return rc; 244 } 245 246 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 247 resource_size_t size, 248 resource_size_t align) 249 { 250 return 0; 251 } 252 253 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size, 254 unsigned long prot) 255 { 256 /* 257 * When PCI MIO instructions are unavailable the "physical" address 258 * encodes a hint for accessing the PCI memory space it represents. 259 * Just pass it unchanged such that ioread/iowrite can decode it. 260 */ 261 if (!static_branch_unlikely(&have_mio)) 262 return (void __iomem *)phys_addr; 263 264 return generic_ioremap_prot(phys_addr, size, __pgprot(prot)); 265 } 266 EXPORT_SYMBOL(ioremap_prot); 267 268 void iounmap(volatile void __iomem *addr) 269 { 270 if (static_branch_likely(&have_mio)) 271 generic_iounmap(addr); 272 } 273 EXPORT_SYMBOL(iounmap); 274 275 /* Create a virtual mapping cookie for a PCI BAR */ 276 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, 277 unsigned long offset, unsigned long max) 278 { 279 struct zpci_dev *zdev = to_zpci(pdev); 280 int idx; 281 282 idx = zdev->bars[bar].map_idx; 283 spin_lock(&zpci_iomap_lock); 284 /* Detect overrun */ 285 WARN_ON(!++zpci_iomap_start[idx].count); 286 zpci_iomap_start[idx].fh = zdev->fh; 287 zpci_iomap_start[idx].bar = bar; 288 spin_unlock(&zpci_iomap_lock); 289 290 return (void __iomem *) ZPCI_ADDR(idx) + offset; 291 } 292 293 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, 294 unsigned long offset, 295 unsigned long max) 296 { 297 unsigned long barsize = pci_resource_len(pdev, bar); 298 struct zpci_dev *zdev = to_zpci(pdev); 299 void __iomem *iova; 300 301 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); 302 return iova ? iova + offset : iova; 303 } 304 305 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, 306 unsigned long offset, unsigned long max) 307 { 308 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 309 return NULL; 310 311 if (static_branch_likely(&have_mio)) 312 return pci_iomap_range_mio(pdev, bar, offset, max); 313 else 314 return pci_iomap_range_fh(pdev, bar, offset, max); 315 } 316 EXPORT_SYMBOL(pci_iomap_range); 317 318 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) 319 { 320 return pci_iomap_range(dev, bar, 0, maxlen); 321 } 322 EXPORT_SYMBOL(pci_iomap); 323 324 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, 325 unsigned long offset, unsigned long max) 326 { 327 unsigned long barsize = pci_resource_len(pdev, bar); 328 struct zpci_dev *zdev = to_zpci(pdev); 329 void __iomem *iova; 330 331 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); 332 return iova ? iova + offset : iova; 333 } 334 335 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, 336 unsigned long offset, unsigned long max) 337 { 338 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) 339 return NULL; 340 341 if (static_branch_likely(&have_mio)) 342 return pci_iomap_wc_range_mio(pdev, bar, offset, max); 343 else 344 return pci_iomap_range_fh(pdev, bar, offset, max); 345 } 346 EXPORT_SYMBOL(pci_iomap_wc_range); 347 348 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) 349 { 350 return pci_iomap_wc_range(dev, bar, 0, maxlen); 351 } 352 EXPORT_SYMBOL(pci_iomap_wc); 353 354 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) 355 { 356 unsigned int idx = ZPCI_IDX(addr); 357 358 spin_lock(&zpci_iomap_lock); 359 /* Detect underrun */ 360 WARN_ON(!zpci_iomap_start[idx].count); 361 if (!--zpci_iomap_start[idx].count) { 362 zpci_iomap_start[idx].fh = 0; 363 zpci_iomap_start[idx].bar = 0; 364 } 365 spin_unlock(&zpci_iomap_lock); 366 } 367 368 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) 369 { 370 iounmap(addr); 371 } 372 373 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) 374 { 375 if (static_branch_likely(&have_mio)) 376 pci_iounmap_mio(pdev, addr); 377 else 378 pci_iounmap_fh(pdev, addr); 379 } 380 EXPORT_SYMBOL(pci_iounmap); 381 382 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, 383 int size, u32 *val) 384 { 385 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 386 387 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; 388 } 389 390 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, 391 int size, u32 val) 392 { 393 struct zpci_dev *zdev = zdev_from_bus(bus, devfn); 394 395 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; 396 } 397 398 static struct pci_ops pci_root_ops = { 399 .read = pci_read, 400 .write = pci_write, 401 }; 402 403 static void zpci_map_resources(struct pci_dev *pdev) 404 { 405 struct zpci_dev *zdev = to_zpci(pdev); 406 resource_size_t len; 407 int i; 408 409 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 410 len = pci_resource_len(pdev, i); 411 if (!len) 412 continue; 413 414 if (zpci_use_mio(zdev)) 415 pdev->resource[i].start = 416 (resource_size_t __force) zdev->bars[i].mio_wt; 417 else 418 pdev->resource[i].start = (resource_size_t __force) 419 pci_iomap_range_fh(pdev, i, 0, 0); 420 pdev->resource[i].end = pdev->resource[i].start + len - 1; 421 } 422 423 zpci_iov_map_resources(pdev); 424 } 425 426 static void zpci_unmap_resources(struct pci_dev *pdev) 427 { 428 struct zpci_dev *zdev = to_zpci(pdev); 429 resource_size_t len; 430 int i; 431 432 if (zpci_use_mio(zdev)) 433 return; 434 435 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 436 len = pci_resource_len(pdev, i); 437 if (!len) 438 continue; 439 pci_iounmap_fh(pdev, (void __iomem __force *) 440 pdev->resource[i].start); 441 } 442 } 443 444 static int zpci_alloc_iomap(struct zpci_dev *zdev) 445 { 446 unsigned long entry; 447 448 spin_lock(&zpci_iomap_lock); 449 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); 450 if (entry == ZPCI_IOMAP_ENTRIES) { 451 spin_unlock(&zpci_iomap_lock); 452 return -ENOSPC; 453 } 454 set_bit(entry, zpci_iomap_bitmap); 455 spin_unlock(&zpci_iomap_lock); 456 return entry; 457 } 458 459 static void zpci_free_iomap(struct zpci_dev *zdev, int entry) 460 { 461 spin_lock(&zpci_iomap_lock); 462 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); 463 clear_bit(entry, zpci_iomap_bitmap); 464 spin_unlock(&zpci_iomap_lock); 465 } 466 467 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) 468 { 469 int bar, idx; 470 471 spin_lock(&zpci_iomap_lock); 472 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 473 if (!zdev->bars[bar].size) 474 continue; 475 idx = zdev->bars[bar].map_idx; 476 if (!zpci_iomap_start[idx].count) 477 continue; 478 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); 479 } 480 spin_unlock(&zpci_iomap_lock); 481 } 482 483 void zpci_update_fh(struct zpci_dev *zdev, u32 fh) 484 { 485 if (!fh || zdev->fh == fh) 486 return; 487 488 zdev->fh = fh; 489 if (zpci_use_mio(zdev)) 490 return; 491 if (zdev->has_resources && zdev_enabled(zdev)) 492 zpci_do_update_iomap_fh(zdev, fh); 493 } 494 495 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, 496 unsigned long size, unsigned long flags) 497 { 498 struct resource *r; 499 500 r = kzalloc(sizeof(*r), GFP_KERNEL); 501 if (!r) 502 return NULL; 503 504 r->start = start; 505 r->end = r->start + size - 1; 506 r->flags = flags; 507 r->name = zdev->res_name; 508 509 if (request_resource(&iomem_resource, r)) { 510 kfree(r); 511 return NULL; 512 } 513 return r; 514 } 515 516 int zpci_setup_bus_resources(struct zpci_dev *zdev) 517 { 518 unsigned long addr, size, flags; 519 struct resource *res; 520 int i, entry; 521 522 snprintf(zdev->res_name, sizeof(zdev->res_name), 523 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); 524 525 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 526 if (!zdev->bars[i].size) 527 continue; 528 entry = zpci_alloc_iomap(zdev); 529 if (entry < 0) 530 return entry; 531 zdev->bars[i].map_idx = entry; 532 533 /* only MMIO is supported */ 534 flags = IORESOURCE_MEM; 535 if (zdev->bars[i].val & 8) 536 flags |= IORESOURCE_PREFETCH; 537 if (zdev->bars[i].val & 4) 538 flags |= IORESOURCE_MEM_64; 539 540 if (zpci_use_mio(zdev)) 541 addr = (unsigned long) zdev->bars[i].mio_wt; 542 else 543 addr = ZPCI_ADDR(entry); 544 size = 1UL << zdev->bars[i].size; 545 546 res = __alloc_res(zdev, addr, size, flags); 547 if (!res) { 548 zpci_free_iomap(zdev, entry); 549 return -ENOMEM; 550 } 551 zdev->bars[i].res = res; 552 } 553 zdev->has_resources = 1; 554 555 return 0; 556 } 557 558 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) 559 { 560 struct resource *res; 561 int i; 562 563 pci_lock_rescan_remove(); 564 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 565 res = zdev->bars[i].res; 566 if (!res) 567 continue; 568 569 release_resource(res); 570 pci_bus_remove_resource(zdev->zbus->bus, res); 571 zpci_free_iomap(zdev, zdev->bars[i].map_idx); 572 zdev->bars[i].res = NULL; 573 kfree(res); 574 } 575 zdev->has_resources = 0; 576 pci_unlock_rescan_remove(); 577 } 578 579 int pcibios_device_add(struct pci_dev *pdev) 580 { 581 struct zpci_dev *zdev = to_zpci(pdev); 582 struct resource *res; 583 int i; 584 585 /* The pdev has a reference to the zdev via its bus */ 586 zpci_zdev_get(zdev); 587 if (pdev->is_physfn) 588 pdev->no_vf_scan = 1; 589 590 zpci_map_resources(pdev); 591 592 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 593 res = &pdev->resource[i]; 594 if (res->parent || !res->flags) 595 continue; 596 pci_claim_resource(pdev, i); 597 } 598 599 return 0; 600 } 601 602 void pcibios_release_device(struct pci_dev *pdev) 603 { 604 struct zpci_dev *zdev = to_zpci(pdev); 605 606 zpci_unmap_resources(pdev); 607 zpci_zdev_put(zdev); 608 } 609 610 int pcibios_enable_device(struct pci_dev *pdev, int mask) 611 { 612 struct zpci_dev *zdev = to_zpci(pdev); 613 614 zpci_debug_init_device(zdev, dev_name(&pdev->dev)); 615 zpci_fmb_enable_device(zdev); 616 617 return pci_enable_resources(pdev, mask); 618 } 619 620 void pcibios_disable_device(struct pci_dev *pdev) 621 { 622 struct zpci_dev *zdev = to_zpci(pdev); 623 624 zpci_fmb_disable_device(zdev); 625 zpci_debug_exit_device(zdev); 626 } 627 628 static int __zpci_register_domain(int domain) 629 { 630 spin_lock(&zpci_domain_lock); 631 if (test_bit(domain, zpci_domain)) { 632 spin_unlock(&zpci_domain_lock); 633 pr_err("Domain %04x is already assigned\n", domain); 634 return -EEXIST; 635 } 636 set_bit(domain, zpci_domain); 637 spin_unlock(&zpci_domain_lock); 638 return domain; 639 } 640 641 static int __zpci_alloc_domain(void) 642 { 643 int domain; 644 645 spin_lock(&zpci_domain_lock); 646 /* 647 * We can always auto allocate domains below ZPCI_NR_DEVICES. 648 * There is either a free domain or we have reached the maximum in 649 * which case we would have bailed earlier. 650 */ 651 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); 652 set_bit(domain, zpci_domain); 653 spin_unlock(&zpci_domain_lock); 654 return domain; 655 } 656 657 int zpci_alloc_domain(int domain) 658 { 659 if (zpci_unique_uid) { 660 if (domain) 661 return __zpci_register_domain(domain); 662 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); 663 update_uid_checking(false); 664 } 665 return __zpci_alloc_domain(); 666 } 667 668 void zpci_free_domain(int domain) 669 { 670 spin_lock(&zpci_domain_lock); 671 clear_bit(domain, zpci_domain); 672 spin_unlock(&zpci_domain_lock); 673 } 674 675 676 int zpci_enable_device(struct zpci_dev *zdev) 677 { 678 u32 fh = zdev->fh; 679 int rc = 0; 680 681 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) 682 rc = -EIO; 683 else 684 zpci_update_fh(zdev, fh); 685 return rc; 686 } 687 EXPORT_SYMBOL_GPL(zpci_enable_device); 688 689 int zpci_disable_device(struct zpci_dev *zdev) 690 { 691 u32 fh = zdev->fh; 692 int cc, rc = 0; 693 694 cc = clp_disable_fh(zdev, &fh); 695 if (!cc) { 696 zpci_update_fh(zdev, fh); 697 } else if (cc == CLP_RC_SETPCIFN_ALRDY) { 698 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", 699 zdev->fid); 700 /* Function is already disabled - update handle */ 701 rc = clp_refresh_fh(zdev->fid, &fh); 702 if (!rc) { 703 zpci_update_fh(zdev, fh); 704 rc = -EINVAL; 705 } 706 } else { 707 rc = -EIO; 708 } 709 return rc; 710 } 711 EXPORT_SYMBOL_GPL(zpci_disable_device); 712 713 /** 714 * zpci_hot_reset_device - perform a reset of the given zPCI function 715 * @zdev: the slot which should be reset 716 * 717 * Performs a low level reset of the zPCI function. The reset is low level in 718 * the sense that the zPCI function can be reset without detaching it from the 719 * common PCI subsystem. The reset may be performed while under control of 720 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation 721 * table is reinstated at the end of the reset. 722 * 723 * After the reset the functions internal state is reset to an initial state 724 * equivalent to its state during boot when first probing a driver. 725 * Consequently after reset the PCI function requires re-initialization via the 726 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() 727 * and enabling the function via e.g. pci_enable_device_flags(). The caller 728 * must guard against concurrent reset attempts. 729 * 730 * In most cases this function should not be called directly but through 731 * pci_reset_function() or pci_reset_bus() which handle the save/restore and 732 * locking - asserted by lockdep. 733 * 734 * Return: 0 on success and an error value otherwise 735 */ 736 int zpci_hot_reset_device(struct zpci_dev *zdev) 737 { 738 u8 status; 739 int rc; 740 741 lockdep_assert_held(&zdev->state_lock); 742 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); 743 if (zdev_enabled(zdev)) { 744 /* Disables device access, DMAs and IRQs (reset state) */ 745 rc = zpci_disable_device(zdev); 746 /* 747 * Due to a z/VM vs LPAR inconsistency in the error state the 748 * FH may indicate an enabled device but disable says the 749 * device is already disabled don't treat it as an error here. 750 */ 751 if (rc == -EINVAL) 752 rc = 0; 753 if (rc) 754 return rc; 755 } 756 757 rc = zpci_enable_device(zdev); 758 if (rc) 759 return rc; 760 761 if (zdev->dma_table) 762 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, 763 virt_to_phys(zdev->dma_table), &status); 764 if (rc) { 765 zpci_disable_device(zdev); 766 return rc; 767 } 768 769 return 0; 770 } 771 772 /** 773 * zpci_create_device() - Create a new zpci_dev and add it to the zbus 774 * @fid: Function ID of the device to be created 775 * @fh: Current Function Handle of the device to be created 776 * @state: Initial state after creation either Standby or Configured 777 * 778 * Creates a new zpci device and adds it to its, possibly newly created, zbus 779 * as well as zpci_list. 780 * 781 * Returns: the zdev on success or an error pointer otherwise 782 */ 783 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) 784 { 785 struct zpci_dev *zdev; 786 int rc; 787 788 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); 789 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); 790 if (!zdev) 791 return ERR_PTR(-ENOMEM); 792 793 /* FID and Function Handle are the static/dynamic identifiers */ 794 zdev->fid = fid; 795 zdev->fh = fh; 796 797 /* Query function properties and update zdev */ 798 rc = clp_query_pci_fn(zdev); 799 if (rc) 800 goto error; 801 zdev->state = state; 802 803 kref_init(&zdev->kref); 804 mutex_init(&zdev->state_lock); 805 mutex_init(&zdev->fmb_lock); 806 mutex_init(&zdev->kzdev_lock); 807 808 rc = zpci_init_iommu(zdev); 809 if (rc) 810 goto error; 811 812 rc = zpci_bus_device_register(zdev, &pci_root_ops); 813 if (rc) 814 goto error_destroy_iommu; 815 816 spin_lock(&zpci_list_lock); 817 list_add_tail(&zdev->entry, &zpci_list); 818 spin_unlock(&zpci_list_lock); 819 820 return zdev; 821 822 error_destroy_iommu: 823 zpci_destroy_iommu(zdev); 824 error: 825 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); 826 kfree(zdev); 827 return ERR_PTR(rc); 828 } 829 830 bool zpci_is_device_configured(struct zpci_dev *zdev) 831 { 832 enum zpci_state state = zdev->state; 833 834 return state != ZPCI_FN_STATE_RESERVED && 835 state != ZPCI_FN_STATE_STANDBY; 836 } 837 838 /** 839 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev 840 * @zdev: The zpci_dev to be configured 841 * @fh: The general function handle supplied by the platform 842 * 843 * Given a device in the configuration state Configured, enables, scans and 844 * adds it to the common code PCI subsystem if possible. If any failure occurs, 845 * the zpci_dev is left disabled. 846 * 847 * Return: 0 on success, or an error code otherwise 848 */ 849 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) 850 { 851 zpci_update_fh(zdev, fh); 852 return zpci_bus_scan_device(zdev); 853 } 854 855 /** 856 * zpci_deconfigure_device() - Deconfigure a zpci_dev 857 * @zdev: The zpci_dev to configure 858 * 859 * Deconfigure a zPCI function that is currently configured and possibly known 860 * to the common code PCI subsystem. 861 * If any failure occurs the device is left as is. 862 * 863 * Return: 0 on success, or an error code otherwise 864 */ 865 int zpci_deconfigure_device(struct zpci_dev *zdev) 866 { 867 int rc; 868 869 lockdep_assert_held(&zdev->state_lock); 870 if (zdev->state != ZPCI_FN_STATE_CONFIGURED) 871 return 0; 872 873 if (zdev->zbus->bus) 874 zpci_bus_remove_device(zdev, false); 875 876 if (zdev_enabled(zdev)) { 877 rc = zpci_disable_device(zdev); 878 if (rc) 879 return rc; 880 } 881 882 rc = sclp_pci_deconfigure(zdev->fid); 883 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); 884 if (rc) 885 return rc; 886 zdev->state = ZPCI_FN_STATE_STANDBY; 887 888 return 0; 889 } 890 891 /** 892 * zpci_device_reserved() - Mark device as reserved 893 * @zdev: the zpci_dev that was reserved 894 * 895 * Handle the case that a given zPCI function was reserved by another system. 896 * After a call to this function the zpci_dev can not be found via 897 * get_zdev_by_fid() anymore but may still be accessible via existing 898 * references though it will not be functional anymore. 899 */ 900 void zpci_device_reserved(struct zpci_dev *zdev) 901 { 902 /* 903 * Remove device from zpci_list as it is going away. This also 904 * makes sure we ignore subsequent zPCI events for this device. 905 */ 906 spin_lock(&zpci_list_lock); 907 list_del(&zdev->entry); 908 spin_unlock(&zpci_list_lock); 909 zdev->state = ZPCI_FN_STATE_RESERVED; 910 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 911 zpci_zdev_put(zdev); 912 } 913 914 void zpci_release_device(struct kref *kref) 915 { 916 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); 917 int ret; 918 919 if (zdev->has_hp_slot) 920 zpci_exit_slot(zdev); 921 922 if (zdev->zbus->bus) 923 zpci_bus_remove_device(zdev, false); 924 925 if (zdev_enabled(zdev)) 926 zpci_disable_device(zdev); 927 928 switch (zdev->state) { 929 case ZPCI_FN_STATE_CONFIGURED: 930 ret = sclp_pci_deconfigure(zdev->fid); 931 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); 932 fallthrough; 933 case ZPCI_FN_STATE_STANDBY: 934 if (zdev->has_hp_slot) 935 zpci_exit_slot(zdev); 936 spin_lock(&zpci_list_lock); 937 list_del(&zdev->entry); 938 spin_unlock(&zpci_list_lock); 939 zpci_dbg(3, "rsv fid:%x\n", zdev->fid); 940 fallthrough; 941 case ZPCI_FN_STATE_RESERVED: 942 if (zdev->has_resources) 943 zpci_cleanup_bus_resources(zdev); 944 zpci_bus_device_unregister(zdev); 945 zpci_destroy_iommu(zdev); 946 fallthrough; 947 default: 948 break; 949 } 950 zpci_dbg(3, "rem fid:%x\n", zdev->fid); 951 kfree_rcu(zdev, rcu); 952 } 953 954 int zpci_report_error(struct pci_dev *pdev, 955 struct zpci_report_error_header *report) 956 { 957 struct zpci_dev *zdev = to_zpci(pdev); 958 959 return sclp_pci_report(report, zdev->fh, zdev->fid); 960 } 961 EXPORT_SYMBOL(zpci_report_error); 962 963 /** 964 * zpci_clear_error_state() - Clears the zPCI error state of the device 965 * @zdev: The zdev for which the zPCI error state should be reset 966 * 967 * Clear the zPCI error state of the device. If clearing the zPCI error state 968 * fails the device is left in the error state. In this case it may make sense 969 * to call zpci_io_perm_failure() on the associated pdev if it exists. 970 * 971 * Returns: 0 on success, -EIO otherwise 972 */ 973 int zpci_clear_error_state(struct zpci_dev *zdev) 974 { 975 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); 976 struct zpci_fib fib = {0}; 977 u8 status; 978 int cc; 979 980 cc = zpci_mod_fc(req, &fib, &status); 981 if (cc) { 982 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 983 return -EIO; 984 } 985 986 return 0; 987 } 988 989 /** 990 * zpci_reset_load_store_blocked() - Re-enables L/S from error state 991 * @zdev: The zdev for which to unblock load/store access 992 * 993 * Re-enables load/store access for a PCI function in the error state while 994 * keeping DMA blocked. In this state drivers can poke MMIO space to determine 995 * if error recovery is possible while catching any rogue DMA access from the 996 * device. 997 * 998 * Returns: 0 on success, -EIO otherwise 999 */ 1000 int zpci_reset_load_store_blocked(struct zpci_dev *zdev) 1001 { 1002 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); 1003 struct zpci_fib fib = {0}; 1004 u8 status; 1005 int cc; 1006 1007 cc = zpci_mod_fc(req, &fib, &status); 1008 if (cc) { 1009 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); 1010 return -EIO; 1011 } 1012 1013 return 0; 1014 } 1015 1016 static int zpci_mem_init(void) 1017 { 1018 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || 1019 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); 1020 1021 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), 1022 __alignof__(struct zpci_fmb), 0, NULL); 1023 if (!zdev_fmb_cache) 1024 goto error_fmb; 1025 1026 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, 1027 sizeof(*zpci_iomap_start), GFP_KERNEL); 1028 if (!zpci_iomap_start) 1029 goto error_iomap; 1030 1031 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), 1032 sizeof(*zpci_iomap_bitmap), GFP_KERNEL); 1033 if (!zpci_iomap_bitmap) 1034 goto error_iomap_bitmap; 1035 1036 if (static_branch_likely(&have_mio)) 1037 clp_setup_writeback_mio(); 1038 1039 return 0; 1040 error_iomap_bitmap: 1041 kfree(zpci_iomap_start); 1042 error_iomap: 1043 kmem_cache_destroy(zdev_fmb_cache); 1044 error_fmb: 1045 return -ENOMEM; 1046 } 1047 1048 static void zpci_mem_exit(void) 1049 { 1050 kfree(zpci_iomap_bitmap); 1051 kfree(zpci_iomap_start); 1052 kmem_cache_destroy(zdev_fmb_cache); 1053 } 1054 1055 static unsigned int s390_pci_probe __initdata = 1; 1056 unsigned int s390_pci_force_floating __initdata; 1057 static unsigned int s390_pci_initialized; 1058 1059 char * __init pcibios_setup(char *str) 1060 { 1061 if (!strcmp(str, "off")) { 1062 s390_pci_probe = 0; 1063 return NULL; 1064 } 1065 if (!strcmp(str, "nomio")) { 1066 get_lowcore()->machine_flags &= ~MACHINE_FLAG_PCI_MIO; 1067 return NULL; 1068 } 1069 if (!strcmp(str, "force_floating")) { 1070 s390_pci_force_floating = 1; 1071 return NULL; 1072 } 1073 if (!strcmp(str, "norid")) { 1074 s390_pci_no_rid = 1; 1075 return NULL; 1076 } 1077 return str; 1078 } 1079 1080 bool zpci_is_enabled(void) 1081 { 1082 return s390_pci_initialized; 1083 } 1084 1085 static int __init pci_base_init(void) 1086 { 1087 int rc; 1088 1089 if (!s390_pci_probe) 1090 return 0; 1091 1092 if (!test_facility(69) || !test_facility(71)) { 1093 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); 1094 return 0; 1095 } 1096 1097 if (MACHINE_HAS_PCI_MIO) { 1098 static_branch_enable(&have_mio); 1099 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT); 1100 } 1101 1102 rc = zpci_debug_init(); 1103 if (rc) 1104 goto out; 1105 1106 rc = zpci_mem_init(); 1107 if (rc) 1108 goto out_mem; 1109 1110 rc = zpci_irq_init(); 1111 if (rc) 1112 goto out_irq; 1113 1114 rc = clp_scan_pci_devices(); 1115 if (rc) 1116 goto out_find; 1117 zpci_bus_scan_busses(); 1118 1119 s390_pci_initialized = 1; 1120 return 0; 1121 1122 out_find: 1123 zpci_irq_exit(); 1124 out_irq: 1125 zpci_mem_exit(); 1126 out_mem: 1127 zpci_debug_exit(); 1128 out: 1129 return rc; 1130 } 1131 subsys_initcall_sync(pci_base_init); 1132