xref: /linux/arch/s390/net/bpf_jit_comp.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include <asm/unwind.h>
35 #include "bpf_jit.h"
36 
37 struct bpf_jit {
38 	u32 seen;		/* Flags to remember seen eBPF instructions */
39 	u16 seen_regs;		/* Mask to remember which registers are used */
40 	u32 *addrs;		/* Array with relative instruction addresses */
41 	u8 *prg_buf;		/* Start of program */
42 	int size;		/* Size of program and literal pool */
43 	int size_prg;		/* Size of program */
44 	int prg;		/* Current position in program */
45 	int lit32_start;	/* Start of 32-bit literal pool */
46 	int lit32;		/* Current position in 32-bit literal pool */
47 	int lit64_start;	/* Start of 64-bit literal pool */
48 	int lit64;		/* Current position in 64-bit literal pool */
49 	int base_ip;		/* Base address for literal pool */
50 	int exit_ip;		/* Address of exit */
51 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
52 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
53 	int tail_call_start;	/* Tail call start offset */
54 	int excnt;		/* Number of exception table entries */
55 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
56 	int prologue_plt;	/* Start of prologue hotpatch PLT */
57 	int kern_arena;		/* Pool offset of kernel arena address */
58 	u64 user_arena;		/* User arena address */
59 };
60 
61 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
62 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
63 #define SEEN_FUNC	BIT(2)		/* calls C functions */
64 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
65 
66 #define NVREGS		0xffc0		/* %r6-%r15 */
67 
68 /*
69  * s390 registers
70  */
71 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
72 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
73 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
74 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
75 #define REG_0		REG_W0			/* Register 0 */
76 #define REG_1		REG_W1			/* Register 1 */
77 #define REG_2		BPF_REG_1		/* Register 2 */
78 #define REG_3		BPF_REG_2		/* Register 3 */
79 #define REG_4		BPF_REG_3		/* Register 4 */
80 #define REG_7		BPF_REG_6		/* Register 7 */
81 #define REG_8		BPF_REG_7		/* Register 8 */
82 #define REG_14		BPF_REG_0		/* Register 14 */
83 
84 /*
85  * Mapping of BPF registers to s390 registers
86  */
87 static const int reg2hex[] = {
88 	/* Return code */
89 	[BPF_REG_0]	= 14,
90 	/* Function parameters */
91 	[BPF_REG_1]	= 2,
92 	[BPF_REG_2]	= 3,
93 	[BPF_REG_3]	= 4,
94 	[BPF_REG_4]	= 5,
95 	[BPF_REG_5]	= 6,
96 	/* Call saved registers */
97 	[BPF_REG_6]	= 7,
98 	[BPF_REG_7]	= 8,
99 	[BPF_REG_8]	= 9,
100 	[BPF_REG_9]	= 10,
101 	/* BPF stack pointer */
102 	[BPF_REG_FP]	= 13,
103 	/* Register for blinding */
104 	[BPF_REG_AX]	= 12,
105 	/* Work registers for s390x backend */
106 	[REG_W0]	= 0,
107 	[REG_W1]	= 1,
108 	[REG_L]		= 11,
109 	[REG_15]	= 15,
110 };
111 
112 static inline u32 reg(u32 dst_reg, u32 src_reg)
113 {
114 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
115 }
116 
117 static inline u32 reg_high(u32 reg)
118 {
119 	return reg2hex[reg] << 4;
120 }
121 
122 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
123 {
124 	u32 r1 = reg2hex[b1];
125 
126 	if (r1 >= 6 && r1 <= 15)
127 		jit->seen_regs |= (1 << r1);
128 }
129 
130 #define REG_SET_SEEN(b1)					\
131 ({								\
132 	reg_set_seen(jit, b1);					\
133 })
134 
135 /*
136  * EMIT macros for code generation
137  */
138 
139 #define _EMIT2(op)						\
140 ({								\
141 	if (jit->prg_buf)					\
142 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
143 	jit->prg += 2;						\
144 })
145 
146 #define EMIT2(op, b1, b2)					\
147 ({								\
148 	_EMIT2((op) | reg(b1, b2));				\
149 	REG_SET_SEEN(b1);					\
150 	REG_SET_SEEN(b2);					\
151 })
152 
153 #define _EMIT4(op)						\
154 ({								\
155 	if (jit->prg_buf)					\
156 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
157 	jit->prg += 4;						\
158 })
159 
160 #define EMIT4(op, b1, b2)					\
161 ({								\
162 	_EMIT4((op) | reg(b1, b2));				\
163 	REG_SET_SEEN(b1);					\
164 	REG_SET_SEEN(b2);					\
165 })
166 
167 #define EMIT4_RRF(op, b1, b2, b3)				\
168 ({								\
169 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
170 	REG_SET_SEEN(b1);					\
171 	REG_SET_SEEN(b2);					\
172 	REG_SET_SEEN(b3);					\
173 })
174 
175 #define _EMIT4_DISP(op, disp)					\
176 ({								\
177 	unsigned int __disp = (disp) & 0xfff;			\
178 	_EMIT4((op) | __disp);					\
179 })
180 
181 #define EMIT4_DISP(op, b1, b2, disp)				\
182 ({								\
183 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
184 		    reg_high(b2) << 8, (disp));			\
185 	REG_SET_SEEN(b1);					\
186 	REG_SET_SEEN(b2);					\
187 })
188 
189 #define EMIT4_IMM(op, b1, imm)					\
190 ({								\
191 	unsigned int __imm = (imm) & 0xffff;			\
192 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
193 	REG_SET_SEEN(b1);					\
194 })
195 
196 #define EMIT4_PCREL(op, pcrel)					\
197 ({								\
198 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
199 	_EMIT4((op) | __pcrel);					\
200 })
201 
202 #define EMIT4_PCREL_RIC(op, mask, target)			\
203 ({								\
204 	int __rel = ((target) - jit->prg) / 2;			\
205 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
206 })
207 
208 #define _EMIT6(op1, op2)					\
209 ({								\
210 	if (jit->prg_buf) {					\
211 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
212 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
213 	}							\
214 	jit->prg += 6;						\
215 })
216 
217 #define _EMIT6_DISP(op1, op2, disp)				\
218 ({								\
219 	unsigned int __disp = (disp) & 0xfff;			\
220 	_EMIT6((op1) | __disp, op2);				\
221 })
222 
223 #define _EMIT6_DISP_LH(op1, op2, disp)				\
224 ({								\
225 	u32 _disp = (u32) (disp);				\
226 	unsigned int __disp_h = _disp & 0xff000;		\
227 	unsigned int __disp_l = _disp & 0x00fff;		\
228 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
229 })
230 
231 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
232 ({								\
233 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
234 		       reg_high(b3) << 8, op2, disp);		\
235 	REG_SET_SEEN(b1);					\
236 	REG_SET_SEEN(b2);					\
237 	REG_SET_SEEN(b3);					\
238 })
239 
240 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
241 ({								\
242 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
243 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
244 	       (op2) | (mask) << 12);				\
245 	REG_SET_SEEN(b1);					\
246 	REG_SET_SEEN(b2);					\
247 })
248 
249 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
250 ({								\
251 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
252 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
253 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
254 	REG_SET_SEEN(b1);					\
255 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
256 })
257 
258 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
259 ({								\
260 	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
261 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
262 	REG_SET_SEEN(b1);					\
263 	REG_SET_SEEN(b2);					\
264 })
265 
266 #define EMIT6_PCREL_RILB(op, b, target)				\
267 ({								\
268 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
269 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
270 	REG_SET_SEEN(b);					\
271 })
272 
273 #define EMIT6_PCREL_RIL(op, target)				\
274 ({								\
275 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
276 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
277 })
278 
279 #define EMIT6_PCREL_RILC(op, mask, target)			\
280 ({								\
281 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
282 })
283 
284 #define _EMIT6_IMM(op, imm)					\
285 ({								\
286 	unsigned int __imm = (imm);				\
287 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
288 })
289 
290 #define EMIT6_IMM(op, b1, imm)					\
291 ({								\
292 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
293 	REG_SET_SEEN(b1);					\
294 })
295 
296 #define _EMIT_CONST_U32(val)					\
297 ({								\
298 	unsigned int ret;					\
299 	ret = jit->lit32;					\
300 	if (jit->prg_buf)					\
301 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
302 	jit->lit32 += 4;					\
303 	ret;							\
304 })
305 
306 #define EMIT_CONST_U32(val)					\
307 ({								\
308 	jit->seen |= SEEN_LITERAL;				\
309 	_EMIT_CONST_U32(val) - jit->base_ip;			\
310 })
311 
312 #define _EMIT_CONST_U64(val)					\
313 ({								\
314 	unsigned int ret;					\
315 	ret = jit->lit64;					\
316 	if (jit->prg_buf)					\
317 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
318 	jit->lit64 += 8;					\
319 	ret;							\
320 })
321 
322 #define EMIT_CONST_U64(val)					\
323 ({								\
324 	jit->seen |= SEEN_LITERAL;				\
325 	_EMIT_CONST_U64(val) - jit->base_ip;			\
326 })
327 
328 #define EMIT_ZERO(b1)						\
329 ({								\
330 	if (!fp->aux->verifier_zext) {				\
331 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
332 		EMIT4(0xb9160000, b1, b1);			\
333 		REG_SET_SEEN(b1);				\
334 	}							\
335 })
336 
337 /*
338  * Return whether this is the first pass. The first pass is special, since we
339  * don't know any sizes yet, and thus must be conservative.
340  */
341 static bool is_first_pass(struct bpf_jit *jit)
342 {
343 	return jit->size == 0;
344 }
345 
346 /*
347  * Return whether this is the code generation pass. The code generation pass is
348  * special, since we should change as little as possible.
349  */
350 static bool is_codegen_pass(struct bpf_jit *jit)
351 {
352 	return jit->prg_buf;
353 }
354 
355 /*
356  * Return whether "rel" can be encoded as a short PC-relative offset
357  */
358 static bool is_valid_rel(int rel)
359 {
360 	return rel >= -65536 && rel <= 65534;
361 }
362 
363 /*
364  * Return whether "off" can be reached using a short PC-relative offset
365  */
366 static bool can_use_rel(struct bpf_jit *jit, int off)
367 {
368 	return is_valid_rel(off - jit->prg);
369 }
370 
371 /*
372  * Return whether given displacement can be encoded using
373  * Long-Displacement Facility
374  */
375 static bool is_valid_ldisp(int disp)
376 {
377 	return disp >= -524288 && disp <= 524287;
378 }
379 
380 /*
381  * Return whether the next 32-bit literal pool entry can be referenced using
382  * Long-Displacement Facility
383  */
384 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
385 {
386 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
387 }
388 
389 /*
390  * Return whether the next 64-bit literal pool entry can be referenced using
391  * Long-Displacement Facility
392  */
393 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
394 {
395 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
396 }
397 
398 /*
399  * Fill whole space with illegal instructions
400  */
401 static void jit_fill_hole(void *area, unsigned int size)
402 {
403 	memset(area, 0, size);
404 }
405 
406 /*
407  * Save registers from "rs" (register start) to "re" (register end) on stack
408  */
409 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
410 {
411 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
412 
413 	if (rs == re)
414 		/* stg %rs,off(%r15) */
415 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
416 	else
417 		/* stmg %rs,%re,off(%r15) */
418 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
419 }
420 
421 /*
422  * Restore registers from "rs" (register start) to "re" (register end) on stack
423  */
424 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
425 {
426 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
427 
428 	if (jit->seen & SEEN_STACK)
429 		off += STK_OFF + stack_depth;
430 
431 	if (rs == re)
432 		/* lg %rs,off(%r15) */
433 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
434 	else
435 		/* lmg %rs,%re,off(%r15) */
436 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
437 }
438 
439 /*
440  * Return first seen register (from start)
441  */
442 static int get_start(u16 seen_regs, int start)
443 {
444 	int i;
445 
446 	for (i = start; i <= 15; i++) {
447 		if (seen_regs & (1 << i))
448 			return i;
449 	}
450 	return 0;
451 }
452 
453 /*
454  * Return last seen register (from start) (gap >= 2)
455  */
456 static int get_end(u16 seen_regs, int start)
457 {
458 	int i;
459 
460 	for (i = start; i < 15; i++) {
461 		if (!(seen_regs & (3 << i)))
462 			return i - 1;
463 	}
464 	return (seen_regs & (1 << 15)) ? 15 : 14;
465 }
466 
467 #define REGS_SAVE	1
468 #define REGS_RESTORE	0
469 /*
470  * Save and restore clobbered registers (6-15) on stack.
471  * We save/restore registers in chunks with gap >= 2 registers.
472  */
473 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth,
474 			      u16 extra_regs)
475 {
476 	u16 seen_regs = jit->seen_regs | extra_regs;
477 	const int last = 15, save_restore_size = 6;
478 	int re = 6, rs;
479 
480 	if (is_first_pass(jit)) {
481 		/*
482 		 * We don't know yet which registers are used. Reserve space
483 		 * conservatively.
484 		 */
485 		jit->prg += (last - re + 1) * save_restore_size;
486 		return;
487 	}
488 
489 	do {
490 		rs = get_start(seen_regs, re);
491 		if (!rs)
492 			break;
493 		re = get_end(seen_regs, rs + 1);
494 		if (op == REGS_SAVE)
495 			save_regs(jit, rs, re);
496 		else
497 			restore_regs(jit, rs, re, stack_depth);
498 		re++;
499 	} while (re <= last);
500 }
501 
502 static void bpf_skip(struct bpf_jit *jit, int size)
503 {
504 	if (size >= 6 && !is_valid_rel(size)) {
505 		/* brcl 0xf,size */
506 		EMIT6_PCREL_RIL(0xc0f4000000, size);
507 		size -= 6;
508 	} else if (size >= 4 && is_valid_rel(size)) {
509 		/* brc 0xf,size */
510 		EMIT4_PCREL(0xa7f40000, size);
511 		size -= 4;
512 	}
513 	while (size >= 2) {
514 		/* bcr 0,%0 */
515 		_EMIT2(0x0700);
516 		size -= 2;
517 	}
518 }
519 
520 /*
521  * PLT for hotpatchable calls. The calling convention is the same as for the
522  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
523  */
524 struct bpf_plt {
525 	char code[16];
526 	void *ret;
527 	void *target;
528 } __packed;
529 extern const struct bpf_plt bpf_plt;
530 asm(
531 	".pushsection .rodata\n"
532 	"	.balign 8\n"
533 	"bpf_plt:\n"
534 	"	lgrl %r0,bpf_plt_ret\n"
535 	"	lgrl %r1,bpf_plt_target\n"
536 	"	br %r1\n"
537 	"	.balign 8\n"
538 	"bpf_plt_ret: .quad 0\n"
539 	"bpf_plt_target: .quad 0\n"
540 	"	.popsection\n"
541 );
542 
543 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
544 {
545 	memcpy(plt, &bpf_plt, sizeof(*plt));
546 	plt->ret = ret;
547 	plt->target = target;
548 }
549 
550 /*
551  * Emit function prologue
552  *
553  * Save registers and create stack frame if necessary.
554  * See stack frame layout description in "bpf_jit.h"!
555  */
556 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
557 			     u32 stack_depth)
558 {
559 	/* No-op for hotpatching */
560 	/* brcl 0,prologue_plt */
561 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
562 	jit->prologue_plt_ret = jit->prg;
563 
564 	if (!bpf_is_subprog(fp)) {
565 		/* Initialize the tail call counter in the main program. */
566 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
567 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
568 	} else {
569 		/*
570 		 * Skip the tail call counter initialization in subprograms.
571 		 * Insert nops in order to have tail_call_start at a
572 		 * predictable offset.
573 		 */
574 		bpf_skip(jit, 6);
575 	}
576 	/* Tail calls have to skip above initialization */
577 	jit->tail_call_start = jit->prg;
578 	if (fp->aux->exception_cb) {
579 		/*
580 		 * Switch stack, the new address is in the 2nd parameter.
581 		 *
582 		 * Arrange the restoration of %r6-%r15 in the epilogue.
583 		 * Do not restore them now, the prog does not need them.
584 		 */
585 		/* lgr %r15,%r3 */
586 		EMIT4(0xb9040000, REG_15, REG_3);
587 		jit->seen_regs |= NVREGS;
588 	} else {
589 		/* Save registers */
590 		save_restore_regs(jit, REGS_SAVE, stack_depth,
591 				  fp->aux->exception_boundary ? NVREGS : 0);
592 	}
593 	/* Setup literal pool */
594 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
595 		if (!is_first_pass(jit) &&
596 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
597 			/* basr %l,0 */
598 			EMIT2(0x0d00, REG_L, REG_0);
599 			jit->base_ip = jit->prg;
600 		} else {
601 			/* larl %l,lit32_start */
602 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
603 			jit->base_ip = jit->lit32_start;
604 		}
605 	}
606 	/* Setup stack and backchain */
607 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
608 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
609 			/* lgr %w1,%r15 (backchain) */
610 			EMIT4(0xb9040000, REG_W1, REG_15);
611 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
612 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
613 		/* aghi %r15,-STK_OFF */
614 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
615 		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
616 			/* stg %w1,152(%r15) (backchain) */
617 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
618 				      REG_15, 152);
619 	}
620 }
621 
622 /*
623  * Emit an expoline for a jump that follows
624  */
625 static void emit_expoline(struct bpf_jit *jit)
626 {
627 	/* exrl %r0,.+10 */
628 	EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
629 	/* j . */
630 	EMIT4_PCREL(0xa7f40000, 0);
631 }
632 
633 /*
634  * Emit __s390_indirect_jump_r1 thunk if necessary
635  */
636 static void emit_r1_thunk(struct bpf_jit *jit)
637 {
638 	if (nospec_uses_trampoline()) {
639 		jit->r1_thunk_ip = jit->prg;
640 		emit_expoline(jit);
641 		/* br %r1 */
642 		_EMIT2(0x07f1);
643 	}
644 }
645 
646 /*
647  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
648  */
649 static void call_r1(struct bpf_jit *jit)
650 {
651 	if (nospec_uses_trampoline())
652 		/* brasl %r14,__s390_indirect_jump_r1 */
653 		EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
654 	else
655 		/* basr %r14,%r1 */
656 		EMIT2(0x0d00, REG_14, REG_1);
657 }
658 
659 /*
660  * Function epilogue
661  */
662 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
663 {
664 	jit->exit_ip = jit->prg;
665 	/* Load exit code: lgr %r2,%b0 */
666 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
667 	/* Restore registers */
668 	save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
669 	if (nospec_uses_trampoline()) {
670 		jit->r14_thunk_ip = jit->prg;
671 		/* Generate __s390_indirect_jump_r14 thunk */
672 		emit_expoline(jit);
673 	}
674 	/* br %r14 */
675 	_EMIT2(0x07fe);
676 
677 	if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
678 		emit_r1_thunk(jit);
679 
680 	jit->prg = ALIGN(jit->prg, 8);
681 	jit->prologue_plt = jit->prg;
682 	if (jit->prg_buf)
683 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
684 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
685 	jit->prg += sizeof(struct bpf_plt);
686 }
687 
688 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
689 {
690 	regs->psw.addr = extable_fixup(x);
691 	if (x->data != -1)
692 		regs->gprs[x->data] = 0;
693 	return true;
694 }
695 
696 /*
697  * A single BPF probe instruction
698  */
699 struct bpf_jit_probe {
700 	int prg;	/* JITed instruction offset */
701 	int nop_prg;	/* JITed nop offset */
702 	int reg;	/* Register to clear on exception */
703 	int arena_reg;	/* Register to use for arena addressing */
704 };
705 
706 static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
707 {
708 	probe->prg = -1;
709 	probe->nop_prg = -1;
710 	probe->reg = -1;
711 	probe->arena_reg = REG_0;
712 }
713 
714 /*
715  * Handlers of certain exceptions leave psw.addr pointing to the instruction
716  * directly after the failing one. Therefore, create two exception table
717  * entries and also add a nop in case two probing instructions come directly
718  * after each other.
719  */
720 static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
721 				   struct bpf_jit_probe *probe)
722 {
723 	if (probe->prg == -1 || probe->nop_prg != -1)
724 		/* The probe is not armed or nop is already emitted. */
725 		return;
726 
727 	probe->nop_prg = jit->prg;
728 	/* bcr 0,%0 */
729 	_EMIT2(0x0700);
730 }
731 
732 static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
733 				   struct bpf_jit_probe *probe)
734 {
735 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
736 	    BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
737 	    BPF_MODE(insn->code) != BPF_PROBE_MEM32)
738 		return;
739 
740 	if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
741 		/* lgrl %r1,kern_arena */
742 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
743 		probe->arena_reg = REG_W1;
744 	}
745 	probe->prg = jit->prg;
746 	probe->reg = reg2hex[insn->dst_reg];
747 }
748 
749 static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
750 				    struct bpf_jit_probe *probe)
751 {
752 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
753 		return;
754 
755 	/* lgrl %r1,kern_arena */
756 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
757 	probe->arena_reg = REG_W1;
758 	probe->prg = jit->prg;
759 }
760 
761 static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
762 				     struct bpf_insn *insn,
763 				     struct bpf_jit_probe *probe)
764 {
765 	if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
766 		return;
767 
768 	/* lgrl %r1,kern_arena */
769 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
770 	/* agr %r1,%dst */
771 	EMIT4(0xb9080000, REG_W1, insn->dst_reg);
772 	probe->arena_reg = REG_W1;
773 	probe->prg = jit->prg;
774 }
775 
776 static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
777 			      struct bpf_jit_probe *probe)
778 {
779 	struct exception_table_entry *ex;
780 	int i, prg;
781 	s64 delta;
782 	u8 *insn;
783 
784 	if (probe->prg == -1)
785 		/* The probe is not armed. */
786 		return 0;
787 	bpf_jit_probe_emit_nop(jit, probe);
788 	if (!fp->aux->extable)
789 		/* Do nothing during early JIT passes. */
790 		return 0;
791 	insn = jit->prg_buf + probe->prg;
792 	if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
793 		/* JIT bug - gap between probe and nop instructions. */
794 		return -1;
795 	for (i = 0; i < 2; i++) {
796 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
797 			/* Verifier bug - not enough entries. */
798 			return -1;
799 		ex = &fp->aux->extable[jit->excnt];
800 		/* Add extable entries for probe and nop instructions. */
801 		prg = i == 0 ? probe->prg : probe->nop_prg;
802 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
803 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
804 			/* JIT bug - code and extable must be close. */
805 			return -1;
806 		ex->insn = delta;
807 		/*
808 		 * Land on the current instruction. Note that the extable
809 		 * infrastructure ignores the fixup field; it is handled by
810 		 * ex_handler_bpf().
811 		 */
812 		delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
813 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
814 			/* JIT bug - landing pad and extable must be close. */
815 			return -1;
816 		ex->fixup = delta;
817 		ex->type = EX_TYPE_BPF;
818 		ex->data = probe->reg;
819 		jit->excnt++;
820 	}
821 	return 0;
822 }
823 
824 /*
825  * Sign-extend the register if necessary
826  */
827 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
828 {
829 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
830 		return 0;
831 
832 	switch (size) {
833 	case 1:
834 		/* lgbr %r,%r */
835 		EMIT4(0xb9060000, r, r);
836 		return 0;
837 	case 2:
838 		/* lghr %r,%r */
839 		EMIT4(0xb9070000, r, r);
840 		return 0;
841 	case 4:
842 		/* lgfr %r,%r */
843 		EMIT4(0xb9140000, r, r);
844 		return 0;
845 	case 8:
846 		return 0;
847 	default:
848 		return -1;
849 	}
850 }
851 
852 /*
853  * Compile one eBPF instruction into s390x code
854  *
855  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
856  * stack space for the large switch statement.
857  */
858 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
859 				 int i, bool extra_pass, u32 stack_depth)
860 {
861 	struct bpf_insn *insn = &fp->insnsi[i];
862 	s32 branch_oc_off = insn->off;
863 	u32 dst_reg = insn->dst_reg;
864 	u32 src_reg = insn->src_reg;
865 	struct bpf_jit_probe probe;
866 	int last, insn_count = 1;
867 	u32 *addrs = jit->addrs;
868 	s32 imm = insn->imm;
869 	s16 off = insn->off;
870 	unsigned int mask;
871 	int err;
872 
873 	bpf_jit_probe_init(&probe);
874 
875 	switch (insn->code) {
876 	/*
877 	 * BPF_MOV
878 	 */
879 	case BPF_ALU | BPF_MOV | BPF_X:
880 		switch (insn->off) {
881 		case 0: /* DST = (u32) SRC */
882 			/* llgfr %dst,%src */
883 			EMIT4(0xb9160000, dst_reg, src_reg);
884 			if (insn_is_zext(&insn[1]))
885 				insn_count = 2;
886 			break;
887 		case 8: /* DST = (u32)(s8) SRC */
888 			/* lbr %dst,%src */
889 			EMIT4(0xb9260000, dst_reg, src_reg);
890 			/* llgfr %dst,%dst */
891 			EMIT4(0xb9160000, dst_reg, dst_reg);
892 			break;
893 		case 16: /* DST = (u32)(s16) SRC */
894 			/* lhr %dst,%src */
895 			EMIT4(0xb9270000, dst_reg, src_reg);
896 			/* llgfr %dst,%dst */
897 			EMIT4(0xb9160000, dst_reg, dst_reg);
898 			break;
899 		}
900 		break;
901 	case BPF_ALU64 | BPF_MOV | BPF_X:
902 		if (insn_is_cast_user(insn)) {
903 			int patch_brc;
904 
905 			/* ltgr %dst,%src */
906 			EMIT4(0xb9020000, dst_reg, src_reg);
907 			/* brc 8,0f */
908 			patch_brc = jit->prg;
909 			EMIT4_PCREL_RIC(0xa7040000, 8, 0);
910 			/* iihf %dst,user_arena>>32 */
911 			EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
912 			/* 0: */
913 			if (jit->prg_buf)
914 				*(u16 *)(jit->prg_buf + patch_brc + 2) =
915 					(jit->prg - patch_brc) >> 1;
916 			break;
917 		}
918 		switch (insn->off) {
919 		case 0: /* DST = SRC */
920 			/* lgr %dst,%src */
921 			EMIT4(0xb9040000, dst_reg, src_reg);
922 			break;
923 		case 8: /* DST = (s8) SRC */
924 			/* lgbr %dst,%src */
925 			EMIT4(0xb9060000, dst_reg, src_reg);
926 			break;
927 		case 16: /* DST = (s16) SRC */
928 			/* lghr %dst,%src */
929 			EMIT4(0xb9070000, dst_reg, src_reg);
930 			break;
931 		case 32: /* DST = (s32) SRC */
932 			/* lgfr %dst,%src */
933 			EMIT4(0xb9140000, dst_reg, src_reg);
934 			break;
935 		}
936 		break;
937 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
938 		/* llilf %dst,imm */
939 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
940 		if (insn_is_zext(&insn[1]))
941 			insn_count = 2;
942 		break;
943 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
944 		/* lgfi %dst,imm */
945 		EMIT6_IMM(0xc0010000, dst_reg, imm);
946 		break;
947 	/*
948 	 * BPF_LD 64
949 	 */
950 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
951 	{
952 		/* 16 byte instruction that uses two 'struct bpf_insn' */
953 		u64 imm64;
954 
955 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
956 		/* lgrl %dst,imm */
957 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
958 		insn_count = 2;
959 		break;
960 	}
961 	/*
962 	 * BPF_ADD
963 	 */
964 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
965 		/* ar %dst,%src */
966 		EMIT2(0x1a00, dst_reg, src_reg);
967 		EMIT_ZERO(dst_reg);
968 		break;
969 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
970 		/* agr %dst,%src */
971 		EMIT4(0xb9080000, dst_reg, src_reg);
972 		break;
973 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
974 		if (imm != 0) {
975 			/* alfi %dst,imm */
976 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
977 		}
978 		EMIT_ZERO(dst_reg);
979 		break;
980 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
981 		if (!imm)
982 			break;
983 		/* agfi %dst,imm */
984 		EMIT6_IMM(0xc2080000, dst_reg, imm);
985 		break;
986 	/*
987 	 * BPF_SUB
988 	 */
989 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
990 		/* sr %dst,%src */
991 		EMIT2(0x1b00, dst_reg, src_reg);
992 		EMIT_ZERO(dst_reg);
993 		break;
994 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
995 		/* sgr %dst,%src */
996 		EMIT4(0xb9090000, dst_reg, src_reg);
997 		break;
998 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
999 		if (imm != 0) {
1000 			/* alfi %dst,-imm */
1001 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1002 		}
1003 		EMIT_ZERO(dst_reg);
1004 		break;
1005 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1006 		if (!imm)
1007 			break;
1008 		if (imm == -0x80000000) {
1009 			/* algfi %dst,0x80000000 */
1010 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1011 		} else {
1012 			/* agfi %dst,-imm */
1013 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
1014 		}
1015 		break;
1016 	/*
1017 	 * BPF_MUL
1018 	 */
1019 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1020 		/* msr %dst,%src */
1021 		EMIT4(0xb2520000, dst_reg, src_reg);
1022 		EMIT_ZERO(dst_reg);
1023 		break;
1024 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1025 		/* msgr %dst,%src */
1026 		EMIT4(0xb90c0000, dst_reg, src_reg);
1027 		break;
1028 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1029 		if (imm != 1) {
1030 			/* msfi %r5,imm */
1031 			EMIT6_IMM(0xc2010000, dst_reg, imm);
1032 		}
1033 		EMIT_ZERO(dst_reg);
1034 		break;
1035 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1036 		if (imm == 1)
1037 			break;
1038 		/* msgfi %dst,imm */
1039 		EMIT6_IMM(0xc2000000, dst_reg, imm);
1040 		break;
1041 	/*
1042 	 * BPF_DIV / BPF_MOD
1043 	 */
1044 	case BPF_ALU | BPF_DIV | BPF_X:
1045 	case BPF_ALU | BPF_MOD | BPF_X:
1046 	{
1047 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1048 
1049 		switch (off) {
1050 		case 0: /* dst = (u32) dst {/,%} (u32) src */
1051 			/* xr %w0,%w0 */
1052 			EMIT2(0x1700, REG_W0, REG_W0);
1053 			/* lr %w1,%dst */
1054 			EMIT2(0x1800, REG_W1, dst_reg);
1055 			/* dlr %w0,%src */
1056 			EMIT4(0xb9970000, REG_W0, src_reg);
1057 			break;
1058 		case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1059 			/* lgfr %r1,%dst */
1060 			EMIT4(0xb9140000, REG_W1, dst_reg);
1061 			/* dsgfr %r0,%src */
1062 			EMIT4(0xb91d0000, REG_W0, src_reg);
1063 			break;
1064 		}
1065 		/* llgfr %dst,%rc */
1066 		EMIT4(0xb9160000, dst_reg, rc_reg);
1067 		if (insn_is_zext(&insn[1]))
1068 			insn_count = 2;
1069 		break;
1070 	}
1071 	case BPF_ALU64 | BPF_DIV | BPF_X:
1072 	case BPF_ALU64 | BPF_MOD | BPF_X:
1073 	{
1074 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1075 
1076 		switch (off) {
1077 		case 0: /* dst = dst {/,%} src */
1078 			/* lghi %w0,0 */
1079 			EMIT4_IMM(0xa7090000, REG_W0, 0);
1080 			/* lgr %w1,%dst */
1081 			EMIT4(0xb9040000, REG_W1, dst_reg);
1082 			/* dlgr %w0,%src */
1083 			EMIT4(0xb9870000, REG_W0, src_reg);
1084 			break;
1085 		case 1: /* dst = (s64) dst {/,%} (s64) src */
1086 			/* lgr %w1,%dst */
1087 			EMIT4(0xb9040000, REG_W1, dst_reg);
1088 			/* dsgr %w0,%src */
1089 			EMIT4(0xb90d0000, REG_W0, src_reg);
1090 			break;
1091 		}
1092 		/* lgr %dst,%rc */
1093 		EMIT4(0xb9040000, dst_reg, rc_reg);
1094 		break;
1095 	}
1096 	case BPF_ALU | BPF_DIV | BPF_K:
1097 	case BPF_ALU | BPF_MOD | BPF_K:
1098 	{
1099 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1100 
1101 		if (imm == 1) {
1102 			if (BPF_OP(insn->code) == BPF_MOD)
1103 				/* lghi %dst,0 */
1104 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1105 			else
1106 				EMIT_ZERO(dst_reg);
1107 			break;
1108 		}
1109 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1110 			switch (off) {
1111 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1112 				/* xr %w0,%w0 */
1113 				EMIT2(0x1700, REG_W0, REG_W0);
1114 				/* lr %w1,%dst */
1115 				EMIT2(0x1800, REG_W1, dst_reg);
1116 				/* dl %w0,<d(imm)>(%l) */
1117 				EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1118 					      REG_L, EMIT_CONST_U32(imm));
1119 				break;
1120 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1121 				/* lgfr %r1,%dst */
1122 				EMIT4(0xb9140000, REG_W1, dst_reg);
1123 				/* dsgf %r0,<d(imm)>(%l) */
1124 				EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1125 					      REG_L, EMIT_CONST_U32(imm));
1126 				break;
1127 			}
1128 		} else {
1129 			switch (off) {
1130 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1131 				/* xr %w0,%w0 */
1132 				EMIT2(0x1700, REG_W0, REG_W0);
1133 				/* lr %w1,%dst */
1134 				EMIT2(0x1800, REG_W1, dst_reg);
1135 				/* lrl %dst,imm */
1136 				EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1137 						 _EMIT_CONST_U32(imm));
1138 				jit->seen |= SEEN_LITERAL;
1139 				/* dlr %w0,%dst */
1140 				EMIT4(0xb9970000, REG_W0, dst_reg);
1141 				break;
1142 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1143 				/* lgfr %w1,%dst */
1144 				EMIT4(0xb9140000, REG_W1, dst_reg);
1145 				/* lgfrl %dst,imm */
1146 				EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1147 						 _EMIT_CONST_U32(imm));
1148 				jit->seen |= SEEN_LITERAL;
1149 				/* dsgr %w0,%dst */
1150 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1151 				break;
1152 			}
1153 		}
1154 		/* llgfr %dst,%rc */
1155 		EMIT4(0xb9160000, dst_reg, rc_reg);
1156 		if (insn_is_zext(&insn[1]))
1157 			insn_count = 2;
1158 		break;
1159 	}
1160 	case BPF_ALU64 | BPF_DIV | BPF_K:
1161 	case BPF_ALU64 | BPF_MOD | BPF_K:
1162 	{
1163 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1164 
1165 		if (imm == 1) {
1166 			if (BPF_OP(insn->code) == BPF_MOD)
1167 				/* lhgi %dst,0 */
1168 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1169 			break;
1170 		}
1171 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1172 			switch (off) {
1173 			case 0: /* dst = dst {/,%} imm */
1174 				/* lghi %w0,0 */
1175 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1176 				/* lgr %w1,%dst */
1177 				EMIT4(0xb9040000, REG_W1, dst_reg);
1178 				/* dlg %w0,<d(imm)>(%l) */
1179 				EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1180 					      REG_L, EMIT_CONST_U64(imm));
1181 				break;
1182 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1183 				/* lgr %w1,%dst */
1184 				EMIT4(0xb9040000, REG_W1, dst_reg);
1185 				/* dsg %w0,<d(imm)>(%l) */
1186 				EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1187 					      REG_L, EMIT_CONST_U64(imm));
1188 				break;
1189 			}
1190 		} else {
1191 			switch (off) {
1192 			case 0: /* dst = dst {/,%} imm */
1193 				/* lghi %w0,0 */
1194 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1195 				/* lgr %w1,%dst */
1196 				EMIT4(0xb9040000, REG_W1, dst_reg);
1197 				/* lgrl %dst,imm */
1198 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1199 						 _EMIT_CONST_U64(imm));
1200 				jit->seen |= SEEN_LITERAL;
1201 				/* dlgr %w0,%dst */
1202 				EMIT4(0xb9870000, REG_W0, dst_reg);
1203 				break;
1204 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1205 				/* lgr %w1,%dst */
1206 				EMIT4(0xb9040000, REG_W1, dst_reg);
1207 				/* lgrl %dst,imm */
1208 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1209 						 _EMIT_CONST_U64(imm));
1210 				jit->seen |= SEEN_LITERAL;
1211 				/* dsgr %w0,%dst */
1212 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1213 				break;
1214 			}
1215 		}
1216 		/* lgr %dst,%rc */
1217 		EMIT4(0xb9040000, dst_reg, rc_reg);
1218 		break;
1219 	}
1220 	/*
1221 	 * BPF_AND
1222 	 */
1223 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1224 		/* nr %dst,%src */
1225 		EMIT2(0x1400, dst_reg, src_reg);
1226 		EMIT_ZERO(dst_reg);
1227 		break;
1228 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1229 		/* ngr %dst,%src */
1230 		EMIT4(0xb9800000, dst_reg, src_reg);
1231 		break;
1232 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1233 		/* nilf %dst,imm */
1234 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1235 		EMIT_ZERO(dst_reg);
1236 		break;
1237 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1238 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1239 			/* ng %dst,<d(imm)>(%l) */
1240 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1241 				      dst_reg, REG_0, REG_L,
1242 				      EMIT_CONST_U64(imm));
1243 		} else {
1244 			/* lgrl %w0,imm */
1245 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1246 					 _EMIT_CONST_U64(imm));
1247 			jit->seen |= SEEN_LITERAL;
1248 			/* ngr %dst,%w0 */
1249 			EMIT4(0xb9800000, dst_reg, REG_W0);
1250 		}
1251 		break;
1252 	/*
1253 	 * BPF_OR
1254 	 */
1255 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1256 		/* or %dst,%src */
1257 		EMIT2(0x1600, dst_reg, src_reg);
1258 		EMIT_ZERO(dst_reg);
1259 		break;
1260 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1261 		/* ogr %dst,%src */
1262 		EMIT4(0xb9810000, dst_reg, src_reg);
1263 		break;
1264 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1265 		/* oilf %dst,imm */
1266 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1267 		EMIT_ZERO(dst_reg);
1268 		break;
1269 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1270 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1271 			/* og %dst,<d(imm)>(%l) */
1272 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1273 				      dst_reg, REG_0, REG_L,
1274 				      EMIT_CONST_U64(imm));
1275 		} else {
1276 			/* lgrl %w0,imm */
1277 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1278 					 _EMIT_CONST_U64(imm));
1279 			jit->seen |= SEEN_LITERAL;
1280 			/* ogr %dst,%w0 */
1281 			EMIT4(0xb9810000, dst_reg, REG_W0);
1282 		}
1283 		break;
1284 	/*
1285 	 * BPF_XOR
1286 	 */
1287 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1288 		/* xr %dst,%src */
1289 		EMIT2(0x1700, dst_reg, src_reg);
1290 		EMIT_ZERO(dst_reg);
1291 		break;
1292 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1293 		/* xgr %dst,%src */
1294 		EMIT4(0xb9820000, dst_reg, src_reg);
1295 		break;
1296 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1297 		if (imm != 0) {
1298 			/* xilf %dst,imm */
1299 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1300 		}
1301 		EMIT_ZERO(dst_reg);
1302 		break;
1303 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1304 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1305 			/* xg %dst,<d(imm)>(%l) */
1306 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1307 				      dst_reg, REG_0, REG_L,
1308 				      EMIT_CONST_U64(imm));
1309 		} else {
1310 			/* lgrl %w0,imm */
1311 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1312 					 _EMIT_CONST_U64(imm));
1313 			jit->seen |= SEEN_LITERAL;
1314 			/* xgr %dst,%w0 */
1315 			EMIT4(0xb9820000, dst_reg, REG_W0);
1316 		}
1317 		break;
1318 	/*
1319 	 * BPF_LSH
1320 	 */
1321 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1322 		/* sll %dst,0(%src) */
1323 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1324 		EMIT_ZERO(dst_reg);
1325 		break;
1326 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1327 		/* sllg %dst,%dst,0(%src) */
1328 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1329 		break;
1330 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1331 		if (imm != 0) {
1332 			/* sll %dst,imm(%r0) */
1333 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1334 		}
1335 		EMIT_ZERO(dst_reg);
1336 		break;
1337 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1338 		if (imm == 0)
1339 			break;
1340 		/* sllg %dst,%dst,imm(%r0) */
1341 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1342 		break;
1343 	/*
1344 	 * BPF_RSH
1345 	 */
1346 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1347 		/* srl %dst,0(%src) */
1348 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1349 		EMIT_ZERO(dst_reg);
1350 		break;
1351 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1352 		/* srlg %dst,%dst,0(%src) */
1353 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1354 		break;
1355 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1356 		if (imm != 0) {
1357 			/* srl %dst,imm(%r0) */
1358 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1359 		}
1360 		EMIT_ZERO(dst_reg);
1361 		break;
1362 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1363 		if (imm == 0)
1364 			break;
1365 		/* srlg %dst,%dst,imm(%r0) */
1366 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1367 		break;
1368 	/*
1369 	 * BPF_ARSH
1370 	 */
1371 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1372 		/* sra %dst,%dst,0(%src) */
1373 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1374 		EMIT_ZERO(dst_reg);
1375 		break;
1376 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1377 		/* srag %dst,%dst,0(%src) */
1378 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1379 		break;
1380 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1381 		if (imm != 0) {
1382 			/* sra %dst,imm(%r0) */
1383 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1384 		}
1385 		EMIT_ZERO(dst_reg);
1386 		break;
1387 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1388 		if (imm == 0)
1389 			break;
1390 		/* srag %dst,%dst,imm(%r0) */
1391 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1392 		break;
1393 	/*
1394 	 * BPF_NEG
1395 	 */
1396 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1397 		/* lcr %dst,%dst */
1398 		EMIT2(0x1300, dst_reg, dst_reg);
1399 		EMIT_ZERO(dst_reg);
1400 		break;
1401 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1402 		/* lcgr %dst,%dst */
1403 		EMIT4(0xb9030000, dst_reg, dst_reg);
1404 		break;
1405 	/*
1406 	 * BPF_FROM_BE/LE
1407 	 */
1408 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1409 		/* s390 is big endian, therefore only clear high order bytes */
1410 		switch (imm) {
1411 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1412 			/* llghr %dst,%dst */
1413 			EMIT4(0xb9850000, dst_reg, dst_reg);
1414 			if (insn_is_zext(&insn[1]))
1415 				insn_count = 2;
1416 			break;
1417 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1418 			if (!fp->aux->verifier_zext)
1419 				/* llgfr %dst,%dst */
1420 				EMIT4(0xb9160000, dst_reg, dst_reg);
1421 			break;
1422 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1423 			break;
1424 		}
1425 		break;
1426 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1427 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1428 		switch (imm) {
1429 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1430 			/* lrvr %dst,%dst */
1431 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1432 			/* srl %dst,16(%r0) */
1433 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1434 			/* llghr %dst,%dst */
1435 			EMIT4(0xb9850000, dst_reg, dst_reg);
1436 			if (insn_is_zext(&insn[1]))
1437 				insn_count = 2;
1438 			break;
1439 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1440 			/* lrvr %dst,%dst */
1441 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1442 			if (!fp->aux->verifier_zext)
1443 				/* llgfr %dst,%dst */
1444 				EMIT4(0xb9160000, dst_reg, dst_reg);
1445 			break;
1446 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1447 			/* lrvgr %dst,%dst */
1448 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1449 			break;
1450 		}
1451 		break;
1452 	/*
1453 	 * BPF_NOSPEC (speculation barrier)
1454 	 */
1455 	case BPF_ST | BPF_NOSPEC:
1456 		break;
1457 	/*
1458 	 * BPF_ST(X)
1459 	 */
1460 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1461 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1462 		bpf_jit_probe_store_pre(jit, insn, &probe);
1463 		/* stcy %src,off(%dst,%arena) */
1464 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1465 			      probe.arena_reg, off);
1466 		err = bpf_jit_probe_post(jit, fp, &probe);
1467 		if (err < 0)
1468 			return err;
1469 		jit->seen |= SEEN_MEM;
1470 		break;
1471 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1472 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1473 		bpf_jit_probe_store_pre(jit, insn, &probe);
1474 		/* sthy %src,off(%dst,%arena) */
1475 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1476 			      probe.arena_reg, off);
1477 		err = bpf_jit_probe_post(jit, fp, &probe);
1478 		if (err < 0)
1479 			return err;
1480 		jit->seen |= SEEN_MEM;
1481 		break;
1482 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1483 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1484 		bpf_jit_probe_store_pre(jit, insn, &probe);
1485 		/* sty %src,off(%dst,%arena) */
1486 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1487 			      probe.arena_reg, off);
1488 		err = bpf_jit_probe_post(jit, fp, &probe);
1489 		if (err < 0)
1490 			return err;
1491 		jit->seen |= SEEN_MEM;
1492 		break;
1493 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1494 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1495 		bpf_jit_probe_store_pre(jit, insn, &probe);
1496 		/* stg %src,off(%dst,%arena) */
1497 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1498 			      probe.arena_reg, off);
1499 		err = bpf_jit_probe_post(jit, fp, &probe);
1500 		if (err < 0)
1501 			return err;
1502 		jit->seen |= SEEN_MEM;
1503 		break;
1504 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1505 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1506 		/* lhi %w0,imm */
1507 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1508 		bpf_jit_probe_store_pre(jit, insn, &probe);
1509 		/* stcy %w0,off(%dst,%arena) */
1510 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1511 			      probe.arena_reg, off);
1512 		err = bpf_jit_probe_post(jit, fp, &probe);
1513 		if (err < 0)
1514 			return err;
1515 		jit->seen |= SEEN_MEM;
1516 		break;
1517 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1518 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1519 		/* lhi %w0,imm */
1520 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1521 		bpf_jit_probe_store_pre(jit, insn, &probe);
1522 		/* sthy %w0,off(%dst,%arena) */
1523 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1524 			      probe.arena_reg, off);
1525 		err = bpf_jit_probe_post(jit, fp, &probe);
1526 		if (err < 0)
1527 			return err;
1528 		jit->seen |= SEEN_MEM;
1529 		break;
1530 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1531 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1532 		/* llilf %w0,imm  */
1533 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1534 		bpf_jit_probe_store_pre(jit, insn, &probe);
1535 		/* sty %w0,off(%dst,%arena) */
1536 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1537 			      probe.arena_reg, off);
1538 		err = bpf_jit_probe_post(jit, fp, &probe);
1539 		if (err < 0)
1540 			return err;
1541 		jit->seen |= SEEN_MEM;
1542 		break;
1543 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1544 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1545 		/* lgfi %w0,imm */
1546 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1547 		bpf_jit_probe_store_pre(jit, insn, &probe);
1548 		/* stg %w0,off(%dst,%arena) */
1549 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1550 			      probe.arena_reg, off);
1551 		err = bpf_jit_probe_post(jit, fp, &probe);
1552 		if (err < 0)
1553 			return err;
1554 		jit->seen |= SEEN_MEM;
1555 		break;
1556 	/*
1557 	 * BPF_ATOMIC
1558 	 */
1559 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1560 	case BPF_STX | BPF_ATOMIC | BPF_W:
1561 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1562 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1563 	{
1564 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1565 
1566 		/*
1567 		 * Unlike loads and stores, atomics have only a base register,
1568 		 * but no index register. For the non-arena case, simply use
1569 		 * %dst as a base. For the arena case, use the work register
1570 		 * %r1: first, load the arena base into it, and then add %dst
1571 		 * to it.
1572 		 */
1573 		probe.arena_reg = dst_reg;
1574 
1575 		switch (insn->imm) {
1576 #define EMIT_ATOMIC(op32, op64) do {					\
1577 	bpf_jit_probe_atomic_pre(jit, insn, &probe);			\
1578 	/* {op32|op64} {%w0|%src},%src,off(%arena) */			\
1579 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1580 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1581 		      src_reg, probe.arena_reg, off);			\
1582 	err = bpf_jit_probe_post(jit, fp, &probe);			\
1583 	if (err < 0)							\
1584 		return err;						\
1585 	if (insn->imm & BPF_FETCH) {					\
1586 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1587 		_EMIT2(0x07e0);						\
1588 		if (is32)                                               \
1589 			EMIT_ZERO(src_reg);				\
1590 	}								\
1591 } while (0)
1592 		case BPF_ADD:
1593 		case BPF_ADD | BPF_FETCH:
1594 			/* {laal|laalg} */
1595 			EMIT_ATOMIC(0x00fa, 0x00ea);
1596 			break;
1597 		case BPF_AND:
1598 		case BPF_AND | BPF_FETCH:
1599 			/* {lan|lang} */
1600 			EMIT_ATOMIC(0x00f4, 0x00e4);
1601 			break;
1602 		case BPF_OR:
1603 		case BPF_OR | BPF_FETCH:
1604 			/* {lao|laog} */
1605 			EMIT_ATOMIC(0x00f6, 0x00e6);
1606 			break;
1607 		case BPF_XOR:
1608 		case BPF_XOR | BPF_FETCH:
1609 			/* {lax|laxg} */
1610 			EMIT_ATOMIC(0x00f7, 0x00e7);
1611 			break;
1612 #undef EMIT_ATOMIC
1613 		case BPF_XCHG: {
1614 			struct bpf_jit_probe load_probe = probe;
1615 			int loop_start;
1616 
1617 			bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1618 			/* {ly|lg} %w0,off(%arena) */
1619 			EMIT6_DISP_LH(0xe3000000,
1620 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1621 				      load_probe.arena_reg, off);
1622 			bpf_jit_probe_emit_nop(jit, &load_probe);
1623 			/* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1624 			if (load_probe.prg != -1) {
1625 				probe.prg = jit->prg;
1626 				probe.arena_reg = load_probe.arena_reg;
1627 			}
1628 			loop_start = jit->prg;
1629 			/* 0: {csy|csg} %w0,%src,off(%arena) */
1630 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1631 				      REG_W0, src_reg, probe.arena_reg, off);
1632 			bpf_jit_probe_emit_nop(jit, &probe);
1633 			/* brc 4,0b */
1634 			EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1635 			/* {llgfr|lgr} %src,%w0 */
1636 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1637 			/* Both probes should land here on exception. */
1638 			err = bpf_jit_probe_post(jit, fp, &load_probe);
1639 			if (err < 0)
1640 				return err;
1641 			err = bpf_jit_probe_post(jit, fp, &probe);
1642 			if (err < 0)
1643 				return err;
1644 			if (is32 && insn_is_zext(&insn[1]))
1645 				insn_count = 2;
1646 			break;
1647 		}
1648 		case BPF_CMPXCHG:
1649 			bpf_jit_probe_atomic_pre(jit, insn, &probe);
1650 			/* 0: {csy|csg} %b0,%src,off(%arena) */
1651 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1652 				      BPF_REG_0, src_reg,
1653 				      probe.arena_reg, off);
1654 			err = bpf_jit_probe_post(jit, fp, &probe);
1655 			if (err < 0)
1656 				return err;
1657 			break;
1658 		default:
1659 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1660 			return -1;
1661 		}
1662 
1663 		jit->seen |= SEEN_MEM;
1664 		break;
1665 	}
1666 	/*
1667 	 * BPF_LDX
1668 	 */
1669 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1670 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1671 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1672 		bpf_jit_probe_load_pre(jit, insn, &probe);
1673 		/* llgc %dst,off(%src,%arena) */
1674 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1675 			      probe.arena_reg, off);
1676 		err = bpf_jit_probe_post(jit, fp, &probe);
1677 		if (err < 0)
1678 			return err;
1679 		jit->seen |= SEEN_MEM;
1680 		if (insn_is_zext(&insn[1]))
1681 			insn_count = 2;
1682 		break;
1683 	case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1684 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1685 		bpf_jit_probe_load_pre(jit, insn, &probe);
1686 		/* lgb %dst,off(%src) */
1687 		EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1688 		err = bpf_jit_probe_post(jit, fp, &probe);
1689 		if (err < 0)
1690 			return err;
1691 		jit->seen |= SEEN_MEM;
1692 		break;
1693 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1694 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1695 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1696 		bpf_jit_probe_load_pre(jit, insn, &probe);
1697 		/* llgh %dst,off(%src,%arena) */
1698 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1699 			      probe.arena_reg, off);
1700 		err = bpf_jit_probe_post(jit, fp, &probe);
1701 		if (err < 0)
1702 			return err;
1703 		jit->seen |= SEEN_MEM;
1704 		if (insn_is_zext(&insn[1]))
1705 			insn_count = 2;
1706 		break;
1707 	case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1708 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1709 		bpf_jit_probe_load_pre(jit, insn, &probe);
1710 		/* lgh %dst,off(%src) */
1711 		EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1712 		err = bpf_jit_probe_post(jit, fp, &probe);
1713 		if (err < 0)
1714 			return err;
1715 		jit->seen |= SEEN_MEM;
1716 		break;
1717 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1718 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1719 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1720 		bpf_jit_probe_load_pre(jit, insn, &probe);
1721 		/* llgf %dst,off(%src) */
1722 		jit->seen |= SEEN_MEM;
1723 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1724 			      probe.arena_reg, off);
1725 		err = bpf_jit_probe_post(jit, fp, &probe);
1726 		if (err < 0)
1727 			return err;
1728 		if (insn_is_zext(&insn[1]))
1729 			insn_count = 2;
1730 		break;
1731 	case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1732 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1733 		bpf_jit_probe_load_pre(jit, insn, &probe);
1734 		/* lgf %dst,off(%src) */
1735 		jit->seen |= SEEN_MEM;
1736 		EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1737 		err = bpf_jit_probe_post(jit, fp, &probe);
1738 		if (err < 0)
1739 			return err;
1740 		break;
1741 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1742 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1743 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1744 		bpf_jit_probe_load_pre(jit, insn, &probe);
1745 		/* lg %dst,off(%src,%arena) */
1746 		jit->seen |= SEEN_MEM;
1747 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1748 			      probe.arena_reg, off);
1749 		err = bpf_jit_probe_post(jit, fp, &probe);
1750 		if (err < 0)
1751 			return err;
1752 		break;
1753 	/*
1754 	 * BPF_JMP / CALL
1755 	 */
1756 	case BPF_JMP | BPF_CALL:
1757 	{
1758 		const struct btf_func_model *m;
1759 		bool func_addr_fixed;
1760 		int j, ret;
1761 		u64 func;
1762 
1763 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1764 					    &func, &func_addr_fixed);
1765 		if (ret < 0)
1766 			return -1;
1767 
1768 		REG_SET_SEEN(BPF_REG_5);
1769 		jit->seen |= SEEN_FUNC;
1770 		/*
1771 		 * Copy the tail call counter to where the callee expects it.
1772 		 *
1773 		 * Note 1: The callee can increment the tail call counter, but
1774 		 * we do not load it back, since the x86 JIT does not do this
1775 		 * either.
1776 		 *
1777 		 * Note 2: We assume that the verifier does not let us call the
1778 		 * main program, which clears the tail call counter on entry.
1779 		 */
1780 		/* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1781 		_EMIT6(0xd203f000 | STK_OFF_TCCNT,
1782 		       0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1783 
1784 		/* Sign-extend the kfunc arguments. */
1785 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1786 			m = bpf_jit_find_kfunc_model(fp, insn);
1787 			if (!m)
1788 				return -1;
1789 
1790 			for (j = 0; j < m->nr_args; j++) {
1791 				if (sign_extend(jit, BPF_REG_1 + j,
1792 						m->arg_size[j],
1793 						m->arg_flags[j]))
1794 					return -1;
1795 			}
1796 		}
1797 
1798 		/* lgrl %w1,func */
1799 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1800 		/* %r1() */
1801 		call_r1(jit);
1802 		/* lgr %b0,%r2: load return value into %b0 */
1803 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1804 		break;
1805 	}
1806 	case BPF_JMP | BPF_TAIL_CALL: {
1807 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1808 
1809 		/*
1810 		 * Implicit input:
1811 		 *  B1: pointer to ctx
1812 		 *  B2: pointer to bpf_array
1813 		 *  B3: index in bpf_array
1814 		 *
1815 		 * if (index >= array->map.max_entries)
1816 		 *         goto out;
1817 		 */
1818 
1819 		/* llgf %w1,map.max_entries(%b2) */
1820 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1821 			      offsetof(struct bpf_array, map.max_entries));
1822 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1823 		/* clrj %b3,%w1,0xa,out */
1824 		patch_1_clrj = jit->prg;
1825 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1826 				 jit->prg);
1827 
1828 		/*
1829 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1830 		 *         goto out;
1831 		 */
1832 
1833 		if (jit->seen & SEEN_STACK)
1834 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1835 		else
1836 			off = STK_OFF_TCCNT;
1837 		/* lhi %w0,1 */
1838 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1839 		/* laal %w1,%w0,off(%r15) */
1840 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1841 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1842 		patch_2_clij = jit->prg;
1843 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1844 				 2, jit->prg);
1845 
1846 		/*
1847 		 * prog = array->ptrs[index];
1848 		 * if (prog == NULL)
1849 		 *         goto out;
1850 		 */
1851 
1852 		/* llgfr %r1,%b3: %r1 = (u32) index */
1853 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1854 		/* sllg %r1,%r1,3: %r1 *= 8 */
1855 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1856 		/* ltg %r1,prog(%b2,%r1) */
1857 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1858 			      REG_1, offsetof(struct bpf_array, ptrs));
1859 		/* brc 0x8,out */
1860 		patch_3_brc = jit->prg;
1861 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1862 
1863 		/*
1864 		 * Restore registers before calling function
1865 		 */
1866 		save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
1867 
1868 		/*
1869 		 * goto *(prog->bpf_func + tail_call_start);
1870 		 */
1871 
1872 		/* lg %r1,bpf_func(%r1) */
1873 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1874 			      offsetof(struct bpf_prog, bpf_func));
1875 		if (nospec_uses_trampoline()) {
1876 			jit->seen |= SEEN_FUNC;
1877 			/* aghi %r1,tail_call_start */
1878 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1879 			/* brcl 0xf,__s390_indirect_jump_r1 */
1880 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1881 		} else {
1882 			/* bc 0xf,tail_call_start(%r1) */
1883 			_EMIT4(0x47f01000 + jit->tail_call_start);
1884 		}
1885 		/* out: */
1886 		if (jit->prg_buf) {
1887 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1888 				(jit->prg - patch_1_clrj) >> 1;
1889 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1890 				(jit->prg - patch_2_clij) >> 1;
1891 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1892 				(jit->prg - patch_3_brc) >> 1;
1893 		}
1894 		break;
1895 	}
1896 	case BPF_JMP | BPF_EXIT: /* return b0 */
1897 		last = (i == fp->len - 1) ? 1 : 0;
1898 		if (last)
1899 			break;
1900 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1901 			/* brc 0xf, <exit> */
1902 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1903 		else
1904 			/* brcl 0xf, <exit> */
1905 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1906 		break;
1907 	/*
1908 	 * Branch relative (number of skipped instructions) to offset on
1909 	 * condition.
1910 	 *
1911 	 * Condition code to mask mapping:
1912 	 *
1913 	 * CC | Description	   | Mask
1914 	 * ------------------------------
1915 	 * 0  | Operands equal	   |	8
1916 	 * 1  | First operand low  |	4
1917 	 * 2  | First operand high |	2
1918 	 * 3  | Unused		   |	1
1919 	 *
1920 	 * For s390x relative branches: ip = ip + off_bytes
1921 	 * For BPF relative branches:	insn = insn + off_insns + 1
1922 	 *
1923 	 * For example for s390x with offset 0 we jump to the branch
1924 	 * instruction itself (loop) and for BPF with offset 0 we
1925 	 * branch to the instruction behind the branch.
1926 	 */
1927 	case BPF_JMP32 | BPF_JA: /* if (true) */
1928 		branch_oc_off = imm;
1929 		fallthrough;
1930 	case BPF_JMP | BPF_JA: /* if (true) */
1931 		mask = 0xf000; /* j */
1932 		goto branch_oc;
1933 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1934 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1935 		mask = 0x2000; /* jh */
1936 		goto branch_ks;
1937 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1938 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1939 		mask = 0x4000; /* jl */
1940 		goto branch_ks;
1941 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1942 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1943 		mask = 0xa000; /* jhe */
1944 		goto branch_ks;
1945 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1946 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1947 		mask = 0xc000; /* jle */
1948 		goto branch_ks;
1949 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1950 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1951 		mask = 0x2000; /* jh */
1952 		goto branch_ku;
1953 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1954 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1955 		mask = 0x4000; /* jl */
1956 		goto branch_ku;
1957 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1958 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1959 		mask = 0xa000; /* jhe */
1960 		goto branch_ku;
1961 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1962 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1963 		mask = 0xc000; /* jle */
1964 		goto branch_ku;
1965 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1966 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1967 		mask = 0x7000; /* jne */
1968 		goto branch_ku;
1969 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1970 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1971 		mask = 0x8000; /* je */
1972 		goto branch_ku;
1973 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1974 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1975 		mask = 0x7000; /* jnz */
1976 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1977 			/* llilf %w1,imm (load zero extend imm) */
1978 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1979 			/* nr %w1,%dst */
1980 			EMIT2(0x1400, REG_W1, dst_reg);
1981 		} else {
1982 			/* lgfi %w1,imm (load sign extend imm) */
1983 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1984 			/* ngr %w1,%dst */
1985 			EMIT4(0xb9800000, REG_W1, dst_reg);
1986 		}
1987 		goto branch_oc;
1988 
1989 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1990 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1991 		mask = 0x2000; /* jh */
1992 		goto branch_xs;
1993 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1994 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1995 		mask = 0x4000; /* jl */
1996 		goto branch_xs;
1997 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1998 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1999 		mask = 0xa000; /* jhe */
2000 		goto branch_xs;
2001 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2002 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2003 		mask = 0xc000; /* jle */
2004 		goto branch_xs;
2005 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2006 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2007 		mask = 0x2000; /* jh */
2008 		goto branch_xu;
2009 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2010 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2011 		mask = 0x4000; /* jl */
2012 		goto branch_xu;
2013 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2014 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2015 		mask = 0xa000; /* jhe */
2016 		goto branch_xu;
2017 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2018 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2019 		mask = 0xc000; /* jle */
2020 		goto branch_xu;
2021 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2022 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2023 		mask = 0x7000; /* jne */
2024 		goto branch_xu;
2025 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2026 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2027 		mask = 0x8000; /* je */
2028 		goto branch_xu;
2029 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2030 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2031 	{
2032 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2033 
2034 		mask = 0x7000; /* jnz */
2035 		/* nrk or ngrk %w1,%dst,%src */
2036 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2037 			  REG_W1, dst_reg, src_reg);
2038 		goto branch_oc;
2039 branch_ks:
2040 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2041 		/* cfi or cgfi %dst,imm */
2042 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2043 			  dst_reg, imm);
2044 		if (!is_first_pass(jit) &&
2045 		    can_use_rel(jit, addrs[i + off + 1])) {
2046 			/* brc mask,off */
2047 			EMIT4_PCREL_RIC(0xa7040000,
2048 					mask >> 12, addrs[i + off + 1]);
2049 		} else {
2050 			/* brcl mask,off */
2051 			EMIT6_PCREL_RILC(0xc0040000,
2052 					 mask >> 12, addrs[i + off + 1]);
2053 		}
2054 		break;
2055 branch_ku:
2056 		/* lgfi %w1,imm (load sign extend imm) */
2057 		src_reg = REG_1;
2058 		EMIT6_IMM(0xc0010000, src_reg, imm);
2059 		goto branch_xu;
2060 branch_xs:
2061 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2062 		if (!is_first_pass(jit) &&
2063 		    can_use_rel(jit, addrs[i + off + 1])) {
2064 			/* crj or cgrj %dst,%src,mask,off */
2065 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2066 				    dst_reg, src_reg, i, off, mask);
2067 		} else {
2068 			/* cr or cgr %dst,%src */
2069 			if (is_jmp32)
2070 				EMIT2(0x1900, dst_reg, src_reg);
2071 			else
2072 				EMIT4(0xb9200000, dst_reg, src_reg);
2073 			/* brcl mask,off */
2074 			EMIT6_PCREL_RILC(0xc0040000,
2075 					 mask >> 12, addrs[i + off + 1]);
2076 		}
2077 		break;
2078 branch_xu:
2079 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2080 		if (!is_first_pass(jit) &&
2081 		    can_use_rel(jit, addrs[i + off + 1])) {
2082 			/* clrj or clgrj %dst,%src,mask,off */
2083 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2084 				    dst_reg, src_reg, i, off, mask);
2085 		} else {
2086 			/* clr or clgr %dst,%src */
2087 			if (is_jmp32)
2088 				EMIT2(0x1500, dst_reg, src_reg);
2089 			else
2090 				EMIT4(0xb9210000, dst_reg, src_reg);
2091 			/* brcl mask,off */
2092 			EMIT6_PCREL_RILC(0xc0040000,
2093 					 mask >> 12, addrs[i + off + 1]);
2094 		}
2095 		break;
2096 branch_oc:
2097 		if (!is_first_pass(jit) &&
2098 		    can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2099 			/* brc mask,off */
2100 			EMIT4_PCREL_RIC(0xa7040000,
2101 					mask >> 12,
2102 					addrs[i + branch_oc_off + 1]);
2103 		} else {
2104 			/* brcl mask,off */
2105 			EMIT6_PCREL_RILC(0xc0040000,
2106 					 mask >> 12,
2107 					 addrs[i + branch_oc_off + 1]);
2108 		}
2109 		break;
2110 	}
2111 	default: /* too complex, give up */
2112 		pr_err("Unknown opcode %02x\n", insn->code);
2113 		return -1;
2114 	}
2115 
2116 	return insn_count;
2117 }
2118 
2119 /*
2120  * Return whether new i-th instruction address does not violate any invariant
2121  */
2122 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2123 {
2124 	/* On the first pass anything goes */
2125 	if (is_first_pass(jit))
2126 		return true;
2127 
2128 	/* The codegen pass must not change anything */
2129 	if (is_codegen_pass(jit))
2130 		return jit->addrs[i] == jit->prg;
2131 
2132 	/* Passes in between must not increase code size */
2133 	return jit->addrs[i] >= jit->prg;
2134 }
2135 
2136 /*
2137  * Update the address of i-th instruction
2138  */
2139 static int bpf_set_addr(struct bpf_jit *jit, int i)
2140 {
2141 	int delta;
2142 
2143 	if (is_codegen_pass(jit)) {
2144 		delta = jit->prg - jit->addrs[i];
2145 		if (delta < 0)
2146 			bpf_skip(jit, -delta);
2147 	}
2148 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2149 		return -1;
2150 	jit->addrs[i] = jit->prg;
2151 	return 0;
2152 }
2153 
2154 /*
2155  * Compile eBPF program into s390x code
2156  */
2157 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2158 			bool extra_pass, u32 stack_depth)
2159 {
2160 	int i, insn_count, lit32_size, lit64_size;
2161 	u64 kern_arena;
2162 
2163 	jit->lit32 = jit->lit32_start;
2164 	jit->lit64 = jit->lit64_start;
2165 	jit->prg = 0;
2166 	jit->excnt = 0;
2167 
2168 	kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2169 	if (kern_arena)
2170 		jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2171 	jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2172 
2173 	bpf_jit_prologue(jit, fp, stack_depth);
2174 	if (bpf_set_addr(jit, 0) < 0)
2175 		return -1;
2176 	for (i = 0; i < fp->len; i += insn_count) {
2177 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
2178 		if (insn_count < 0)
2179 			return -1;
2180 		/* Next instruction address */
2181 		if (bpf_set_addr(jit, i + insn_count) < 0)
2182 			return -1;
2183 	}
2184 	bpf_jit_epilogue(jit, stack_depth);
2185 
2186 	lit32_size = jit->lit32 - jit->lit32_start;
2187 	lit64_size = jit->lit64 - jit->lit64_start;
2188 	jit->lit32_start = jit->prg;
2189 	if (lit32_size)
2190 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
2191 	jit->lit64_start = jit->lit32_start + lit32_size;
2192 	if (lit64_size)
2193 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
2194 	jit->size = jit->lit64_start + lit64_size;
2195 	jit->size_prg = jit->prg;
2196 
2197 	if (WARN_ON_ONCE(fp->aux->extable &&
2198 			 jit->excnt != fp->aux->num_exentries))
2199 		/* Verifier bug - too many entries. */
2200 		return -1;
2201 
2202 	return 0;
2203 }
2204 
2205 bool bpf_jit_needs_zext(void)
2206 {
2207 	return true;
2208 }
2209 
2210 struct s390_jit_data {
2211 	struct bpf_binary_header *header;
2212 	struct bpf_jit ctx;
2213 	int pass;
2214 };
2215 
2216 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2217 					       struct bpf_prog *fp)
2218 {
2219 	struct bpf_binary_header *header;
2220 	struct bpf_insn *insn;
2221 	u32 extable_size;
2222 	u32 code_size;
2223 	int i;
2224 
2225 	for (i = 0; i < fp->len; i++) {
2226 		insn = &fp->insnsi[i];
2227 
2228 		if (BPF_CLASS(insn->code) == BPF_STX &&
2229 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2230 		    (BPF_SIZE(insn->code) == BPF_DW ||
2231 		     BPF_SIZE(insn->code) == BPF_W) &&
2232 		    insn->imm == BPF_XCHG)
2233 			/*
2234 			 * bpf_jit_insn() emits a load and a compare-and-swap,
2235 			 * both of which need to be probed.
2236 			 */
2237 			fp->aux->num_exentries += 1;
2238 	}
2239 	/* We need two entries per insn. */
2240 	fp->aux->num_exentries *= 2;
2241 
2242 	code_size = roundup(jit->size,
2243 			    __alignof__(struct exception_table_entry));
2244 	extable_size = fp->aux->num_exentries *
2245 		sizeof(struct exception_table_entry);
2246 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2247 				      8, jit_fill_hole);
2248 	if (!header)
2249 		return NULL;
2250 	fp->aux->extable = (struct exception_table_entry *)
2251 		(jit->prg_buf + code_size);
2252 	return header;
2253 }
2254 
2255 /*
2256  * Compile eBPF program "fp"
2257  */
2258 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2259 {
2260 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
2261 	struct bpf_prog *tmp, *orig_fp = fp;
2262 	struct bpf_binary_header *header;
2263 	struct s390_jit_data *jit_data;
2264 	bool tmp_blinded = false;
2265 	bool extra_pass = false;
2266 	struct bpf_jit jit;
2267 	int pass;
2268 
2269 	if (!fp->jit_requested)
2270 		return orig_fp;
2271 
2272 	tmp = bpf_jit_blind_constants(fp);
2273 	/*
2274 	 * If blinding was requested and we failed during blinding,
2275 	 * we must fall back to the interpreter.
2276 	 */
2277 	if (IS_ERR(tmp))
2278 		return orig_fp;
2279 	if (tmp != fp) {
2280 		tmp_blinded = true;
2281 		fp = tmp;
2282 	}
2283 
2284 	jit_data = fp->aux->jit_data;
2285 	if (!jit_data) {
2286 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2287 		if (!jit_data) {
2288 			fp = orig_fp;
2289 			goto out;
2290 		}
2291 		fp->aux->jit_data = jit_data;
2292 	}
2293 	if (jit_data->ctx.addrs) {
2294 		jit = jit_data->ctx;
2295 		header = jit_data->header;
2296 		extra_pass = true;
2297 		pass = jit_data->pass + 1;
2298 		goto skip_init_ctx;
2299 	}
2300 
2301 	memset(&jit, 0, sizeof(jit));
2302 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2303 	if (jit.addrs == NULL) {
2304 		fp = orig_fp;
2305 		goto free_addrs;
2306 	}
2307 	/*
2308 	 * Three initial passes:
2309 	 *   - 1/2: Determine clobbered registers
2310 	 *   - 3:   Calculate program size and addrs array
2311 	 */
2312 	for (pass = 1; pass <= 3; pass++) {
2313 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2314 			fp = orig_fp;
2315 			goto free_addrs;
2316 		}
2317 	}
2318 	/*
2319 	 * Final pass: Allocate and generate program
2320 	 */
2321 	header = bpf_jit_alloc(&jit, fp);
2322 	if (!header) {
2323 		fp = orig_fp;
2324 		goto free_addrs;
2325 	}
2326 skip_init_ctx:
2327 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2328 		bpf_jit_binary_free(header);
2329 		fp = orig_fp;
2330 		goto free_addrs;
2331 	}
2332 	if (bpf_jit_enable > 1) {
2333 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2334 		print_fn_code(jit.prg_buf, jit.size_prg);
2335 	}
2336 	if (!fp->is_func || extra_pass) {
2337 		if (bpf_jit_binary_lock_ro(header)) {
2338 			bpf_jit_binary_free(header);
2339 			fp = orig_fp;
2340 			goto free_addrs;
2341 		}
2342 	} else {
2343 		jit_data->header = header;
2344 		jit_data->ctx = jit;
2345 		jit_data->pass = pass;
2346 	}
2347 	fp->bpf_func = (void *) jit.prg_buf;
2348 	fp->jited = 1;
2349 	fp->jited_len = jit.size;
2350 
2351 	if (!fp->is_func || extra_pass) {
2352 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2353 free_addrs:
2354 		kvfree(jit.addrs);
2355 		kfree(jit_data);
2356 		fp->aux->jit_data = NULL;
2357 	}
2358 out:
2359 	if (tmp_blinded)
2360 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
2361 					   tmp : orig_fp);
2362 	return fp;
2363 }
2364 
2365 bool bpf_jit_supports_kfunc_call(void)
2366 {
2367 	return true;
2368 }
2369 
2370 bool bpf_jit_supports_far_kfunc_call(void)
2371 {
2372 	return true;
2373 }
2374 
2375 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2376 		       void *old_addr, void *new_addr)
2377 {
2378 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2379 	struct {
2380 		u16 opc;
2381 		s32 disp;
2382 	} __packed insn;
2383 	char *ret;
2384 	int err;
2385 
2386 	/* Verify the branch to be patched. */
2387 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2388 	if (err < 0)
2389 		return err;
2390 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2391 		return -EINVAL;
2392 
2393 	if (t == BPF_MOD_JUMP &&
2394 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2395 		/*
2396 		 * The branch already points to the destination,
2397 		 * there is no PLT.
2398 		 */
2399 	} else {
2400 		/* Verify the PLT. */
2401 		plt = ip + (insn.disp << 1);
2402 		err = copy_from_kernel_nofault(&current_plt, plt,
2403 					       sizeof(current_plt));
2404 		if (err < 0)
2405 			return err;
2406 		ret = (char *)ip + 6;
2407 		bpf_jit_plt(&expected_plt, ret, old_addr);
2408 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2409 			return -EINVAL;
2410 		/* Adjust the call address. */
2411 		bpf_jit_plt(&new_plt, ret, new_addr);
2412 		s390_kernel_write(&plt->target, &new_plt.target,
2413 				  sizeof(void *));
2414 	}
2415 
2416 	/* Adjust the mask of the branch. */
2417 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2418 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2419 
2420 	/* Make the new code visible to the other CPUs. */
2421 	text_poke_sync_lock();
2422 
2423 	return 0;
2424 }
2425 
2426 struct bpf_tramp_jit {
2427 	struct bpf_jit common;
2428 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2429 				 * func_addr's original caller
2430 				 */
2431 	int stack_size;		/* Trampoline stack size */
2432 	int backchain_off;	/* Offset of backchain */
2433 	int stack_args_off;	/* Offset of stack arguments for calling
2434 				 * func_addr, has to be at the top
2435 				 */
2436 	int reg_args_off;	/* Offset of register arguments for calling
2437 				 * func_addr
2438 				 */
2439 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2440 				 * (ctx - 16)
2441 				 */
2442 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2443 				 * (ctx - 8)
2444 				 */
2445 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2446 				 * of BPF arguments followed by return value
2447 				 */
2448 	int retval_off;		/* Offset of return value (see above) */
2449 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2450 				 * for __bpf_prog_enter() return value and
2451 				 * func_addr respectively
2452 				 */
2453 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2454 	int tccnt_off;		/* Offset of saved tailcall counter */
2455 	int r14_off;		/* Offset of saved %r14, has to be at the
2456 				 * bottom */
2457 	int do_fexit;		/* do_fexit: label */
2458 };
2459 
2460 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2461 {
2462 	/* llihf %dst_reg,val_hi */
2463 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2464 	/* oilf %rdst_reg,val_lo */
2465 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2466 }
2467 
2468 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2469 			   const struct btf_func_model *m,
2470 			   struct bpf_tramp_link *tlink, bool save_ret)
2471 {
2472 	struct bpf_jit *jit = &tjit->common;
2473 	int cookie_off = tjit->run_ctx_off +
2474 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2475 	struct bpf_prog *p = tlink->link.prog;
2476 	int patch;
2477 
2478 	/*
2479 	 * run_ctx.cookie = tlink->cookie;
2480 	 */
2481 
2482 	/* %r0 = tlink->cookie */
2483 	load_imm64(jit, REG_W0, tlink->cookie);
2484 	/* stg %r0,cookie_off(%r15) */
2485 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2486 
2487 	/*
2488 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2489 	 *         goto skip;
2490 	 */
2491 
2492 	/* %r1 = __bpf_prog_enter */
2493 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2494 	/* %r2 = p */
2495 	load_imm64(jit, REG_2, (u64)p);
2496 	/* la %r3,run_ctx_off(%r15) */
2497 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2498 	/* %r1() */
2499 	call_r1(jit);
2500 	/* ltgr %r7,%r2 */
2501 	EMIT4(0xb9020000, REG_7, REG_2);
2502 	/* brcl 8,skip */
2503 	patch = jit->prg;
2504 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2505 
2506 	/*
2507 	 * retval = bpf_func(args, p->insnsi);
2508 	 */
2509 
2510 	/* %r1 = p->bpf_func */
2511 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2512 	/* la %r2,bpf_args_off(%r15) */
2513 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2514 	/* %r3 = p->insnsi */
2515 	if (!p->jited)
2516 		load_imm64(jit, REG_3, (u64)p->insnsi);
2517 	/* %r1() */
2518 	call_r1(jit);
2519 	/* stg %r2,retval_off(%r15) */
2520 	if (save_ret) {
2521 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2522 			return -1;
2523 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2524 			      tjit->retval_off);
2525 	}
2526 
2527 	/* skip: */
2528 	if (jit->prg_buf)
2529 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2530 
2531 	/*
2532 	 * __bpf_prog_exit(p, start, &run_ctx);
2533 	 */
2534 
2535 	/* %r1 = __bpf_prog_exit */
2536 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2537 	/* %r2 = p */
2538 	load_imm64(jit, REG_2, (u64)p);
2539 	/* lgr %r3,%r7 */
2540 	EMIT4(0xb9040000, REG_3, REG_7);
2541 	/* la %r4,run_ctx_off(%r15) */
2542 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2543 	/* %r1() */
2544 	call_r1(jit);
2545 
2546 	return 0;
2547 }
2548 
2549 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2550 {
2551 	int stack_offset = tjit->stack_size;
2552 
2553 	tjit->stack_size += size;
2554 	return stack_offset;
2555 }
2556 
2557 /* ABI uses %r2 - %r6 for parameter passing. */
2558 #define MAX_NR_REG_ARGS 5
2559 
2560 /* The "L" field of the "mvc" instruction is 8 bits. */
2561 #define MAX_MVC_SIZE 256
2562 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2563 
2564 /* -mfentry generates a 6-byte nop on s390x. */
2565 #define S390X_PATCH_SIZE 6
2566 
2567 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2568 					 struct bpf_tramp_jit *tjit,
2569 					 const struct btf_func_model *m,
2570 					 u32 flags,
2571 					 struct bpf_tramp_links *tlinks,
2572 					 void *func_addr)
2573 {
2574 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2575 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2576 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2577 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2578 	struct bpf_jit *jit = &tjit->common;
2579 	int arg, bpf_arg_off;
2580 	int i, j;
2581 
2582 	/* Support as many stack arguments as "mvc" instruction can handle. */
2583 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2584 	nr_stack_args = m->nr_args - nr_reg_args;
2585 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2586 		return -ENOTSUPP;
2587 
2588 	/* Return to %r14, since func_addr and %r0 are not available. */
2589 	if ((!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK)) ||
2590 	    (flags & BPF_TRAMP_F_INDIRECT))
2591 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2592 
2593 	/*
2594 	 * Compute how many arguments we need to pass to BPF programs.
2595 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2596 	 * smaller are packed into 1 or 2 registers; larger arguments are
2597 	 * passed via pointers.
2598 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2599 	 * a register; larger arguments are passed via pointers.
2600 	 * We need to deal with this difference.
2601 	 */
2602 	nr_bpf_args = 0;
2603 	for (i = 0; i < m->nr_args; i++) {
2604 		if (m->arg_size[i] <= 8)
2605 			nr_bpf_args += 1;
2606 		else if (m->arg_size[i] <= 16)
2607 			nr_bpf_args += 2;
2608 		else
2609 			return -ENOTSUPP;
2610 	}
2611 
2612 	/*
2613 	 * Calculate the stack layout.
2614 	 */
2615 
2616 	/*
2617 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2618 	 * ABI requires, put our backchain at the end of the allocated memory.
2619 	 */
2620 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2621 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2622 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2623 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2624 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2625 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2626 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2627 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2628 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2629 	tjit->run_ctx_off = alloc_stack(tjit,
2630 					sizeof(struct bpf_tramp_run_ctx));
2631 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2632 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2633 	/*
2634 	 * In accordance with the s390x ABI, the caller has allocated
2635 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2636 	 * backchain, and the rest we can use.
2637 	 */
2638 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2639 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2640 
2641 	/* lgr %r1,%r15 */
2642 	EMIT4(0xb9040000, REG_1, REG_15);
2643 	/* aghi %r15,-stack_size */
2644 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2645 	/* stg %r1,backchain_off(%r15) */
2646 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2647 		      tjit->backchain_off);
2648 	/* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2649 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2650 	       0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2651 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2652 	if (nr_reg_args)
2653 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2654 			      REG_2 + (nr_reg_args - 1), REG_15,
2655 			      tjit->reg_args_off);
2656 	for (i = 0, j = 0; i < m->nr_args; i++) {
2657 		if (i < MAX_NR_REG_ARGS)
2658 			arg = REG_2 + i;
2659 		else
2660 			arg = tjit->orig_stack_args_off +
2661 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2662 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2663 		if (m->arg_size[i] <= 8) {
2664 			if (i < MAX_NR_REG_ARGS)
2665 				/* stg %arg,bpf_arg_off(%r15) */
2666 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2667 					      REG_0, REG_15, bpf_arg_off);
2668 			else
2669 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2670 				_EMIT6(0xd207f000 | bpf_arg_off,
2671 				       0xf000 | arg);
2672 			j += 1;
2673 		} else {
2674 			if (i < MAX_NR_REG_ARGS) {
2675 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2676 				_EMIT6(0xd20ff000 | bpf_arg_off,
2677 				       reg2hex[arg] << 12);
2678 			} else {
2679 				/* lg %r1,arg(%r15) */
2680 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2681 					      REG_15, arg);
2682 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2683 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2684 			}
2685 			j += 2;
2686 		}
2687 	}
2688 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2689 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2690 		      tjit->r7_r8_off);
2691 	/* stg %r14,r14_off(%r15) */
2692 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2693 
2694 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2695 		/*
2696 		 * The ftrace trampoline puts the return address (which is the
2697 		 * address of the original function + S390X_PATCH_SIZE) into
2698 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2699 		 * ftrace_init_nop() for details.
2700 		 */
2701 
2702 		/* lgr %r8,%r0 */
2703 		EMIT4(0xb9040000, REG_8, REG_0);
2704 	} else {
2705 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2706 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2707 	}
2708 
2709 	/*
2710 	 * ip = func_addr;
2711 	 * arg_cnt = m->nr_args;
2712 	 */
2713 
2714 	if (flags & BPF_TRAMP_F_IP_ARG) {
2715 		/* %r0 = func_addr */
2716 		load_imm64(jit, REG_0, (u64)func_addr);
2717 		/* stg %r0,ip_off(%r15) */
2718 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2719 			      tjit->ip_off);
2720 	}
2721 	/* lghi %r0,nr_bpf_args */
2722 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2723 	/* stg %r0,arg_cnt_off(%r15) */
2724 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2725 		      tjit->arg_cnt_off);
2726 
2727 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2728 		/*
2729 		 * __bpf_tramp_enter(im);
2730 		 */
2731 
2732 		/* %r1 = __bpf_tramp_enter */
2733 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2734 		/* %r2 = im */
2735 		load_imm64(jit, REG_2, (u64)im);
2736 		/* %r1() */
2737 		call_r1(jit);
2738 	}
2739 
2740 	for (i = 0; i < fentry->nr_links; i++)
2741 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2742 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2743 			return -EINVAL;
2744 
2745 	if (fmod_ret->nr_links) {
2746 		/*
2747 		 * retval = 0;
2748 		 */
2749 
2750 		/* xc retval_off(8,%r15),retval_off(%r15) */
2751 		_EMIT6(0xd707f000 | tjit->retval_off,
2752 		       0xf000 | tjit->retval_off);
2753 
2754 		for (i = 0; i < fmod_ret->nr_links; i++) {
2755 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2756 				return -EINVAL;
2757 
2758 			/*
2759 			 * if (retval)
2760 			 *         goto do_fexit;
2761 			 */
2762 
2763 			/* ltg %r0,retval_off(%r15) */
2764 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2765 				      tjit->retval_off);
2766 			/* brcl 7,do_fexit */
2767 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2768 		}
2769 	}
2770 
2771 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2772 		/*
2773 		 * retval = func_addr(args);
2774 		 */
2775 
2776 		/* lmg %r2,%rN,reg_args_off(%r15) */
2777 		if (nr_reg_args)
2778 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2779 				      REG_2 + (nr_reg_args - 1), REG_15,
2780 				      tjit->reg_args_off);
2781 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2782 		if (nr_stack_args)
2783 			_EMIT6(0xd200f000 |
2784 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2785 				       tjit->stack_args_off,
2786 			       0xf000 | tjit->orig_stack_args_off);
2787 		/* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2788 		_EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2789 		/* lgr %r1,%r8 */
2790 		EMIT4(0xb9040000, REG_1, REG_8);
2791 		/* %r1() */
2792 		call_r1(jit);
2793 		/* stg %r2,retval_off(%r15) */
2794 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2795 			      tjit->retval_off);
2796 
2797 		im->ip_after_call = jit->prg_buf + jit->prg;
2798 
2799 		/*
2800 		 * The following nop will be patched by bpf_tramp_image_put().
2801 		 */
2802 
2803 		/* brcl 0,im->ip_epilogue */
2804 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2805 	}
2806 
2807 	/* do_fexit: */
2808 	tjit->do_fexit = jit->prg;
2809 	for (i = 0; i < fexit->nr_links; i++)
2810 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2811 			return -EINVAL;
2812 
2813 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2814 		im->ip_epilogue = jit->prg_buf + jit->prg;
2815 
2816 		/*
2817 		 * __bpf_tramp_exit(im);
2818 		 */
2819 
2820 		/* %r1 = __bpf_tramp_exit */
2821 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2822 		/* %r2 = im */
2823 		load_imm64(jit, REG_2, (u64)im);
2824 		/* %r1() */
2825 		call_r1(jit);
2826 	}
2827 
2828 	/* lmg %r2,%rN,reg_args_off(%r15) */
2829 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2830 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2831 			      REG_2 + (nr_reg_args - 1), REG_15,
2832 			      tjit->reg_args_off);
2833 	/* lgr %r1,%r8 */
2834 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2835 		EMIT4(0xb9040000, REG_1, REG_8);
2836 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2837 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2838 		      tjit->r7_r8_off);
2839 	/* lg %r14,r14_off(%r15) */
2840 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2841 	/* lg %r2,retval_off(%r15) */
2842 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2843 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2844 			      tjit->retval_off);
2845 	/* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2846 	_EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2847 	       0xf000 | tjit->tccnt_off);
2848 	/* aghi %r15,stack_size */
2849 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2850 	/* Emit an expoline for the following indirect jump. */
2851 	if (nospec_uses_trampoline())
2852 		emit_expoline(jit);
2853 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2854 		/* br %r14 */
2855 		_EMIT2(0x07fe);
2856 	else
2857 		/* br %r1 */
2858 		_EMIT2(0x07f1);
2859 
2860 	emit_r1_thunk(jit);
2861 
2862 	return 0;
2863 }
2864 
2865 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2866 			     struct bpf_tramp_links *tlinks, void *orig_call)
2867 {
2868 	struct bpf_tramp_image im;
2869 	struct bpf_tramp_jit tjit;
2870 	int ret;
2871 
2872 	memset(&tjit, 0, sizeof(tjit));
2873 
2874 	ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2875 					    tlinks, orig_call);
2876 
2877 	return ret < 0 ? ret : tjit.common.prg;
2878 }
2879 
2880 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2881 				void *image_end, const struct btf_func_model *m,
2882 				u32 flags, struct bpf_tramp_links *tlinks,
2883 				void *func_addr)
2884 {
2885 	struct bpf_tramp_jit tjit;
2886 	int ret;
2887 
2888 	/* Compute offsets, check whether the code fits. */
2889 	memset(&tjit, 0, sizeof(tjit));
2890 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2891 					    tlinks, func_addr);
2892 
2893 	if (ret < 0)
2894 		return ret;
2895 	if (tjit.common.prg > (char *)image_end - (char *)image)
2896 		/*
2897 		 * Use the same error code as for exceeding
2898 		 * BPF_MAX_TRAMP_LINKS.
2899 		 */
2900 		return -E2BIG;
2901 
2902 	tjit.common.prg = 0;
2903 	tjit.common.prg_buf = image;
2904 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2905 					    tlinks, func_addr);
2906 
2907 	return ret < 0 ? ret : tjit.common.prg;
2908 }
2909 
2910 bool bpf_jit_supports_subprog_tailcalls(void)
2911 {
2912 	return true;
2913 }
2914 
2915 bool bpf_jit_supports_arena(void)
2916 {
2917 	return true;
2918 }
2919 
2920 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2921 {
2922 	/*
2923 	 * Currently the verifier uses this function only to check which
2924 	 * atomic stores to arena are supported, and they all are.
2925 	 */
2926 	return true;
2927 }
2928 
2929 bool bpf_jit_supports_exceptions(void)
2930 {
2931 	/*
2932 	 * Exceptions require unwinding support, which is always available,
2933 	 * because the kernel is always built with backchain.
2934 	 */
2935 	return true;
2936 }
2937 
2938 void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2939 			 void *cookie)
2940 {
2941 	unsigned long addr, prev_addr = 0;
2942 	struct unwind_state state;
2943 
2944 	unwind_for_each_frame(&state, NULL, NULL, 0) {
2945 		addr = unwind_get_return_address(&state);
2946 		if (!addr)
2947 			break;
2948 		/*
2949 		 * addr is a return address and state.sp is the value of %r15
2950 		 * at this address. exception_cb needs %r15 at entry to the
2951 		 * function containing addr, so take the next state.sp.
2952 		 *
2953 		 * There is no bp, and the exception_cb prog does not need one
2954 		 * to perform a quasi-longjmp. The common code requires a
2955 		 * non-zero bp, so pass sp there as well.
2956 		 */
2957 		if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
2958 					     state.sp))
2959 			break;
2960 		prev_addr = addr;
2961 	}
2962 }
2963