xref: /linux/arch/s390/net/bpf_jit_comp.c (revision 9738280aae592b579a25b5b1b6584c894827d3c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include <asm/unwind.h>
35 #include "bpf_jit.h"
36 
37 struct bpf_jit {
38 	u32 seen;		/* Flags to remember seen eBPF instructions */
39 	u16 seen_regs;		/* Mask to remember which registers are used */
40 	u32 *addrs;		/* Array with relative instruction addresses */
41 	u8 *prg_buf;		/* Start of program */
42 	int size;		/* Size of program and literal pool */
43 	int size_prg;		/* Size of program */
44 	int prg;		/* Current position in program */
45 	int lit32_start;	/* Start of 32-bit literal pool */
46 	int lit32;		/* Current position in 32-bit literal pool */
47 	int lit64_start;	/* Start of 64-bit literal pool */
48 	int lit64;		/* Current position in 64-bit literal pool */
49 	int base_ip;		/* Base address for literal pool */
50 	int exit_ip;		/* Address of exit */
51 	int tail_call_start;	/* Tail call start offset */
52 	int excnt;		/* Number of exception table entries */
53 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
54 	int prologue_plt;	/* Start of prologue hotpatch PLT */
55 	int kern_arena;		/* Pool offset of kernel arena address */
56 	u64 user_arena;		/* User arena address */
57 };
58 
59 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
60 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
61 #define SEEN_FUNC	BIT(2)		/* calls C functions */
62 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
63 
64 #define NVREGS		0xffc0		/* %r6-%r15 */
65 
66 /*
67  * s390 registers
68  */
69 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
70 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
71 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
72 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
73 #define REG_0		REG_W0			/* Register 0 */
74 #define REG_1		REG_W1			/* Register 1 */
75 #define REG_2		BPF_REG_1		/* Register 2 */
76 #define REG_3		BPF_REG_2		/* Register 3 */
77 #define REG_4		BPF_REG_3		/* Register 4 */
78 #define REG_7		BPF_REG_6		/* Register 7 */
79 #define REG_8		BPF_REG_7		/* Register 8 */
80 #define REG_14		BPF_REG_0		/* Register 14 */
81 
82 /*
83  * Mapping of BPF registers to s390 registers
84  */
85 static const int reg2hex[] = {
86 	/* Return code */
87 	[BPF_REG_0]	= 14,
88 	/* Function parameters */
89 	[BPF_REG_1]	= 2,
90 	[BPF_REG_2]	= 3,
91 	[BPF_REG_3]	= 4,
92 	[BPF_REG_4]	= 5,
93 	[BPF_REG_5]	= 6,
94 	/* Call saved registers */
95 	[BPF_REG_6]	= 7,
96 	[BPF_REG_7]	= 8,
97 	[BPF_REG_8]	= 9,
98 	[BPF_REG_9]	= 10,
99 	/* BPF stack pointer */
100 	[BPF_REG_FP]	= 13,
101 	/* Register for blinding */
102 	[BPF_REG_AX]	= 12,
103 	/* Work registers for s390x backend */
104 	[REG_W0]	= 0,
105 	[REG_W1]	= 1,
106 	[REG_L]		= 11,
107 	[REG_15]	= 15,
108 };
109 
110 static inline u32 reg(u32 dst_reg, u32 src_reg)
111 {
112 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
113 }
114 
115 static inline u32 reg_high(u32 reg)
116 {
117 	return reg2hex[reg] << 4;
118 }
119 
120 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
121 {
122 	u32 r1 = reg2hex[b1];
123 
124 	if (r1 >= 6 && r1 <= 15)
125 		jit->seen_regs |= (1 << r1);
126 }
127 
128 static s32 off_to_pcrel(struct bpf_jit *jit, u32 off)
129 {
130 	return off - jit->prg;
131 }
132 
133 static s64 ptr_to_pcrel(struct bpf_jit *jit, const void *ptr)
134 {
135 	if (jit->prg_buf)
136 		return (const u8 *)ptr - ((const u8 *)jit->prg_buf + jit->prg);
137 	return 0;
138 }
139 
140 #define REG_SET_SEEN(b1)					\
141 ({								\
142 	reg_set_seen(jit, b1);					\
143 })
144 
145 /*
146  * EMIT macros for code generation
147  */
148 
149 #define _EMIT2(op)						\
150 ({								\
151 	if (jit->prg_buf)					\
152 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
153 	jit->prg += 2;						\
154 })
155 
156 #define EMIT2(op, b1, b2)					\
157 ({								\
158 	_EMIT2((op) | reg(b1, b2));				\
159 	REG_SET_SEEN(b1);					\
160 	REG_SET_SEEN(b2);					\
161 })
162 
163 #define _EMIT4(op)						\
164 ({								\
165 	if (jit->prg_buf)					\
166 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
167 	jit->prg += 4;						\
168 })
169 
170 #define EMIT4(op, b1, b2)					\
171 ({								\
172 	_EMIT4((op) | reg(b1, b2));				\
173 	REG_SET_SEEN(b1);					\
174 	REG_SET_SEEN(b2);					\
175 })
176 
177 #define EMIT4_RRF(op, b1, b2, b3)				\
178 ({								\
179 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
180 	REG_SET_SEEN(b1);					\
181 	REG_SET_SEEN(b2);					\
182 	REG_SET_SEEN(b3);					\
183 })
184 
185 #define _EMIT4_DISP(op, disp)					\
186 ({								\
187 	unsigned int __disp = (disp) & 0xfff;			\
188 	_EMIT4((op) | __disp);					\
189 })
190 
191 #define EMIT4_DISP(op, b1, b2, disp)				\
192 ({								\
193 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
194 		    reg_high(b2) << 8, (disp));			\
195 	REG_SET_SEEN(b1);					\
196 	REG_SET_SEEN(b2);					\
197 })
198 
199 #define EMIT4_IMM(op, b1, imm)					\
200 ({								\
201 	unsigned int __imm = (imm) & 0xffff;			\
202 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
203 	REG_SET_SEEN(b1);					\
204 })
205 
206 #define EMIT4_PCREL(op, pcrel)					\
207 ({								\
208 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
209 	_EMIT4((op) | __pcrel);					\
210 })
211 
212 #define EMIT4_PCREL_RIC(op, mask, target)			\
213 ({								\
214 	int __rel = off_to_pcrel(jit, target) / 2;		\
215 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
216 })
217 
218 #define _EMIT6(op1, op2)					\
219 ({								\
220 	if (jit->prg_buf) {					\
221 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
222 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
223 	}							\
224 	jit->prg += 6;						\
225 })
226 
227 #define _EMIT6_DISP(op1, op2, disp)				\
228 ({								\
229 	unsigned int __disp = (disp) & 0xfff;			\
230 	_EMIT6((op1) | __disp, op2);				\
231 })
232 
233 #define _EMIT6_DISP_LH(op1, op2, disp)				\
234 ({								\
235 	u32 _disp = (u32) (disp);				\
236 	unsigned int __disp_h = _disp & 0xff000;		\
237 	unsigned int __disp_l = _disp & 0x00fff;		\
238 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
239 })
240 
241 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
242 ({								\
243 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
244 		       reg_high(b3) << 8, op2, disp);		\
245 	REG_SET_SEEN(b1);					\
246 	REG_SET_SEEN(b2);					\
247 	REG_SET_SEEN(b3);					\
248 })
249 
250 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
251 ({								\
252 	unsigned int rel = off_to_pcrel(jit, target) / 2;	\
253 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
254 	       (op2) | (mask) << 12);				\
255 	REG_SET_SEEN(b1);					\
256 	REG_SET_SEEN(b2);					\
257 })
258 
259 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
260 ({								\
261 	unsigned int rel = off_to_pcrel(jit, target) / 2;	\
262 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
263 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
264 	REG_SET_SEEN(b1);					\
265 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
266 })
267 
268 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
269 ({								\
270 	int rel = off_to_pcrel(jit, addrs[(i) + (off) + 1]) / 2;\
271 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
272 	REG_SET_SEEN(b1);					\
273 	REG_SET_SEEN(b2);					\
274 })
275 
276 static void emit6_pcrel_ril(struct bpf_jit *jit, u32 op, s64 pcrel)
277 {
278 	u32 pc32dbl = (s32)(pcrel / 2);
279 
280 	_EMIT6(op | pc32dbl >> 16, pc32dbl & 0xffff);
281 }
282 
283 static void emit6_pcrel_rilb(struct bpf_jit *jit, u32 op, u8 b, s64 pcrel)
284 {
285 	emit6_pcrel_ril(jit, op | reg_high(b) << 16, pcrel);
286 	REG_SET_SEEN(b);
287 }
288 
289 #define EMIT6_PCREL_RILB(op, b, target)				\
290 	emit6_pcrel_rilb(jit, op, b, off_to_pcrel(jit, target))
291 
292 #define EMIT6_PCREL_RILB_PTR(op, b, target_ptr)			\
293 	emit6_pcrel_rilb(jit, op, b, ptr_to_pcrel(jit, target_ptr))
294 
295 static void emit6_pcrel_rilc(struct bpf_jit *jit, u32 op, u8 mask, s64 pcrel)
296 {
297 	emit6_pcrel_ril(jit, op | mask << 20, pcrel);
298 }
299 
300 #define EMIT6_PCREL_RILC(op, mask, target)			\
301 	emit6_pcrel_rilc(jit, op, mask, off_to_pcrel(jit, target))
302 
303 #define EMIT6_PCREL_RILC_PTR(op, mask, target_ptr)		\
304 	emit6_pcrel_rilc(jit, op, mask, ptr_to_pcrel(jit, target_ptr))
305 
306 #define _EMIT6_IMM(op, imm)					\
307 ({								\
308 	unsigned int __imm = (imm);				\
309 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
310 })
311 
312 #define EMIT6_IMM(op, b1, imm)					\
313 ({								\
314 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
315 	REG_SET_SEEN(b1);					\
316 })
317 
318 #define _EMIT_CONST_U32(val)					\
319 ({								\
320 	unsigned int ret;					\
321 	ret = jit->lit32;					\
322 	if (jit->prg_buf)					\
323 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
324 	jit->lit32 += 4;					\
325 	ret;							\
326 })
327 
328 #define EMIT_CONST_U32(val)					\
329 ({								\
330 	jit->seen |= SEEN_LITERAL;				\
331 	_EMIT_CONST_U32(val) - jit->base_ip;			\
332 })
333 
334 #define _EMIT_CONST_U64(val)					\
335 ({								\
336 	unsigned int ret;					\
337 	ret = jit->lit64;					\
338 	if (jit->prg_buf)					\
339 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
340 	jit->lit64 += 8;					\
341 	ret;							\
342 })
343 
344 #define EMIT_CONST_U64(val)					\
345 ({								\
346 	jit->seen |= SEEN_LITERAL;				\
347 	_EMIT_CONST_U64(val) - jit->base_ip;			\
348 })
349 
350 #define EMIT_ZERO(b1)						\
351 ({								\
352 	if (!fp->aux->verifier_zext) {				\
353 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
354 		EMIT4(0xb9160000, b1, b1);			\
355 		REG_SET_SEEN(b1);				\
356 	}							\
357 })
358 
359 /*
360  * Return whether this is the first pass. The first pass is special, since we
361  * don't know any sizes yet, and thus must be conservative.
362  */
363 static bool is_first_pass(struct bpf_jit *jit)
364 {
365 	return jit->size == 0;
366 }
367 
368 /*
369  * Return whether this is the code generation pass. The code generation pass is
370  * special, since we should change as little as possible.
371  */
372 static bool is_codegen_pass(struct bpf_jit *jit)
373 {
374 	return jit->prg_buf;
375 }
376 
377 /*
378  * Return whether "rel" can be encoded as a short PC-relative offset
379  */
380 static bool is_valid_rel(int rel)
381 {
382 	return rel >= -65536 && rel <= 65534;
383 }
384 
385 /*
386  * Return whether "off" can be reached using a short PC-relative offset
387  */
388 static bool can_use_rel(struct bpf_jit *jit, int off)
389 {
390 	return is_valid_rel(off - jit->prg);
391 }
392 
393 /*
394  * Return whether given displacement can be encoded using
395  * Long-Displacement Facility
396  */
397 static bool is_valid_ldisp(int disp)
398 {
399 	return disp >= -524288 && disp <= 524287;
400 }
401 
402 /*
403  * Return whether the next 32-bit literal pool entry can be referenced using
404  * Long-Displacement Facility
405  */
406 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
407 {
408 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
409 }
410 
411 /*
412  * Return whether the next 64-bit literal pool entry can be referenced using
413  * Long-Displacement Facility
414  */
415 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
416 {
417 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
418 }
419 
420 /*
421  * Fill whole space with illegal instructions
422  */
423 static void jit_fill_hole(void *area, unsigned int size)
424 {
425 	memset(area, 0, size);
426 }
427 
428 /*
429  * Save registers from "rs" (register start) to "re" (register end) on stack
430  */
431 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
432 {
433 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
434 
435 	if (rs == re)
436 		/* stg %rs,off(%r15) */
437 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
438 	else
439 		/* stmg %rs,%re,off(%r15) */
440 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
441 }
442 
443 /*
444  * Restore registers from "rs" (register start) to "re" (register end) on stack
445  */
446 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
447 {
448 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
449 
450 	if (jit->seen & SEEN_STACK)
451 		off += STK_OFF + stack_depth;
452 
453 	if (rs == re)
454 		/* lg %rs,off(%r15) */
455 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
456 	else
457 		/* lmg %rs,%re,off(%r15) */
458 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
459 }
460 
461 /*
462  * Return first seen register (from start)
463  */
464 static int get_start(u16 seen_regs, int start)
465 {
466 	int i;
467 
468 	for (i = start; i <= 15; i++) {
469 		if (seen_regs & (1 << i))
470 			return i;
471 	}
472 	return 0;
473 }
474 
475 /*
476  * Return last seen register (from start) (gap >= 2)
477  */
478 static int get_end(u16 seen_regs, int start)
479 {
480 	int i;
481 
482 	for (i = start; i < 15; i++) {
483 		if (!(seen_regs & (3 << i)))
484 			return i - 1;
485 	}
486 	return (seen_regs & (1 << 15)) ? 15 : 14;
487 }
488 
489 #define REGS_SAVE	1
490 #define REGS_RESTORE	0
491 /*
492  * Save and restore clobbered registers (6-15) on stack.
493  * We save/restore registers in chunks with gap >= 2 registers.
494  */
495 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth,
496 			      u16 extra_regs)
497 {
498 	u16 seen_regs = jit->seen_regs | extra_regs;
499 	const int last = 15, save_restore_size = 6;
500 	int re = 6, rs;
501 
502 	if (is_first_pass(jit)) {
503 		/*
504 		 * We don't know yet which registers are used. Reserve space
505 		 * conservatively.
506 		 */
507 		jit->prg += (last - re + 1) * save_restore_size;
508 		return;
509 	}
510 
511 	do {
512 		rs = get_start(seen_regs, re);
513 		if (!rs)
514 			break;
515 		re = get_end(seen_regs, rs + 1);
516 		if (op == REGS_SAVE)
517 			save_regs(jit, rs, re);
518 		else
519 			restore_regs(jit, rs, re, stack_depth);
520 		re++;
521 	} while (re <= last);
522 }
523 
524 static void bpf_skip(struct bpf_jit *jit, int size)
525 {
526 	if (size >= 6 && !is_valid_rel(size)) {
527 		/* brcl 0xf,size */
528 		EMIT6_PCREL_RILC(0xc0040000, 0xf, size);
529 		size -= 6;
530 	} else if (size >= 4 && is_valid_rel(size)) {
531 		/* brc 0xf,size */
532 		EMIT4_PCREL(0xa7f40000, size);
533 		size -= 4;
534 	}
535 	while (size >= 2) {
536 		/* bcr 0,%0 */
537 		_EMIT2(0x0700);
538 		size -= 2;
539 	}
540 }
541 
542 /*
543  * PLT for hotpatchable calls. The calling convention is the same as for the
544  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
545  */
546 struct bpf_plt {
547 	char code[16];
548 	void *ret;
549 	void *target;
550 } __packed;
551 extern const struct bpf_plt bpf_plt;
552 asm(
553 	".pushsection .rodata\n"
554 	"	.balign 8\n"
555 	"bpf_plt:\n"
556 	"	lgrl %r0,bpf_plt_ret\n"
557 	"	lgrl %r1,bpf_plt_target\n"
558 	"	br %r1\n"
559 	"	.balign 8\n"
560 	"bpf_plt_ret: .quad 0\n"
561 	"bpf_plt_target: .quad 0\n"
562 	"	.popsection\n"
563 );
564 
565 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
566 {
567 	memcpy(plt, &bpf_plt, sizeof(*plt));
568 	plt->ret = ret;
569 	plt->target = target;
570 }
571 
572 /*
573  * Emit function prologue
574  *
575  * Save registers and create stack frame if necessary.
576  * See stack frame layout description in "bpf_jit.h"!
577  */
578 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
579 			     u32 stack_depth)
580 {
581 	/* No-op for hotpatching */
582 	/* brcl 0,prologue_plt */
583 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
584 	jit->prologue_plt_ret = jit->prg;
585 
586 	if (!bpf_is_subprog(fp)) {
587 		/* Initialize the tail call counter in the main program. */
588 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
589 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
590 	} else {
591 		/*
592 		 * Skip the tail call counter initialization in subprograms.
593 		 * Insert nops in order to have tail_call_start at a
594 		 * predictable offset.
595 		 */
596 		bpf_skip(jit, 6);
597 	}
598 	/* Tail calls have to skip above initialization */
599 	jit->tail_call_start = jit->prg;
600 	if (fp->aux->exception_cb) {
601 		/*
602 		 * Switch stack, the new address is in the 2nd parameter.
603 		 *
604 		 * Arrange the restoration of %r6-%r15 in the epilogue.
605 		 * Do not restore them now, the prog does not need them.
606 		 */
607 		/* lgr %r15,%r3 */
608 		EMIT4(0xb9040000, REG_15, REG_3);
609 		jit->seen_regs |= NVREGS;
610 	} else {
611 		/* Save registers */
612 		save_restore_regs(jit, REGS_SAVE, stack_depth,
613 				  fp->aux->exception_boundary ? NVREGS : 0);
614 	}
615 	/* Setup literal pool */
616 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
617 		if (!is_first_pass(jit) &&
618 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
619 			/* basr %l,0 */
620 			EMIT2(0x0d00, REG_L, REG_0);
621 			jit->base_ip = jit->prg;
622 		} else {
623 			/* larl %l,lit32_start */
624 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
625 			jit->base_ip = jit->lit32_start;
626 		}
627 	}
628 	/* Setup stack and backchain */
629 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
630 		/* lgr %w1,%r15 (backchain) */
631 		EMIT4(0xb9040000, REG_W1, REG_15);
632 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
633 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
634 		/* aghi %r15,-STK_OFF */
635 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
636 		/* stg %w1,152(%r15) (backchain) */
637 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
638 			      REG_15, 152);
639 	}
640 }
641 
642 /*
643  * Jump using a register either directly or via an expoline thunk
644  */
645 #define EMIT_JUMP_REG(reg) do {						\
646 	if (nospec_uses_trampoline())					\
647 		/* brcl 0xf,__s390_indirect_jump_rN */			\
648 		EMIT6_PCREL_RILC_PTR(0xc0040000, 0x0f,			\
649 				     __s390_indirect_jump_r ## reg);	\
650 	else								\
651 		/* br %rN */						\
652 		_EMIT2(0x07f0 | reg);					\
653 } while (0)
654 
655 /*
656  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
657  */
658 static void call_r1(struct bpf_jit *jit)
659 {
660 	if (nospec_uses_trampoline())
661 		/* brasl %r14,__s390_indirect_jump_r1 */
662 		EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14,
663 				     __s390_indirect_jump_r1);
664 	else
665 		/* basr %r14,%r1 */
666 		EMIT2(0x0d00, REG_14, REG_1);
667 }
668 
669 /*
670  * Function epilogue
671  */
672 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
673 {
674 	jit->exit_ip = jit->prg;
675 	/* Load exit code: lgr %r2,%b0 */
676 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
677 	/* Restore registers */
678 	save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
679 	EMIT_JUMP_REG(14);
680 
681 	jit->prg = ALIGN(jit->prg, 8);
682 	jit->prologue_plt = jit->prg;
683 	if (jit->prg_buf)
684 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
685 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
686 	jit->prg += sizeof(struct bpf_plt);
687 }
688 
689 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
690 {
691 	regs->psw.addr = extable_fixup(x);
692 	if (x->data != -1)
693 		regs->gprs[x->data] = 0;
694 	return true;
695 }
696 
697 /*
698  * A single BPF probe instruction
699  */
700 struct bpf_jit_probe {
701 	int prg;	/* JITed instruction offset */
702 	int nop_prg;	/* JITed nop offset */
703 	int reg;	/* Register to clear on exception */
704 	int arena_reg;	/* Register to use for arena addressing */
705 };
706 
707 static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
708 {
709 	probe->prg = -1;
710 	probe->nop_prg = -1;
711 	probe->reg = -1;
712 	probe->arena_reg = REG_0;
713 }
714 
715 /*
716  * Handlers of certain exceptions leave psw.addr pointing to the instruction
717  * directly after the failing one. Therefore, create two exception table
718  * entries and also add a nop in case two probing instructions come directly
719  * after each other.
720  */
721 static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
722 				   struct bpf_jit_probe *probe)
723 {
724 	if (probe->prg == -1 || probe->nop_prg != -1)
725 		/* The probe is not armed or nop is already emitted. */
726 		return;
727 
728 	probe->nop_prg = jit->prg;
729 	/* bcr 0,%0 */
730 	_EMIT2(0x0700);
731 }
732 
733 static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
734 				   struct bpf_jit_probe *probe)
735 {
736 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
737 	    BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
738 	    BPF_MODE(insn->code) != BPF_PROBE_MEM32)
739 		return;
740 
741 	if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
742 		/* lgrl %r1,kern_arena */
743 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
744 		probe->arena_reg = REG_W1;
745 	}
746 	probe->prg = jit->prg;
747 	probe->reg = reg2hex[insn->dst_reg];
748 }
749 
750 static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
751 				    struct bpf_jit_probe *probe)
752 {
753 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
754 		return;
755 
756 	/* lgrl %r1,kern_arena */
757 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
758 	probe->arena_reg = REG_W1;
759 	probe->prg = jit->prg;
760 }
761 
762 static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
763 				     struct bpf_insn *insn,
764 				     struct bpf_jit_probe *probe)
765 {
766 	if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
767 		return;
768 
769 	/* lgrl %r1,kern_arena */
770 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
771 	/* agr %r1,%dst */
772 	EMIT4(0xb9080000, REG_W1, insn->dst_reg);
773 	probe->arena_reg = REG_W1;
774 	probe->prg = jit->prg;
775 }
776 
777 static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
778 			      struct bpf_jit_probe *probe)
779 {
780 	struct exception_table_entry *ex;
781 	int i, prg;
782 	s64 delta;
783 	u8 *insn;
784 
785 	if (probe->prg == -1)
786 		/* The probe is not armed. */
787 		return 0;
788 	bpf_jit_probe_emit_nop(jit, probe);
789 	if (!fp->aux->extable)
790 		/* Do nothing during early JIT passes. */
791 		return 0;
792 	insn = jit->prg_buf + probe->prg;
793 	if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
794 		/* JIT bug - gap between probe and nop instructions. */
795 		return -1;
796 	for (i = 0; i < 2; i++) {
797 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
798 			/* Verifier bug - not enough entries. */
799 			return -1;
800 		ex = &fp->aux->extable[jit->excnt];
801 		/* Add extable entries for probe and nop instructions. */
802 		prg = i == 0 ? probe->prg : probe->nop_prg;
803 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
804 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
805 			/* JIT bug - code and extable must be close. */
806 			return -1;
807 		ex->insn = delta;
808 		/*
809 		 * Land on the current instruction. Note that the extable
810 		 * infrastructure ignores the fixup field; it is handled by
811 		 * ex_handler_bpf().
812 		 */
813 		delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
814 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
815 			/* JIT bug - landing pad and extable must be close. */
816 			return -1;
817 		ex->fixup = delta;
818 		ex->type = EX_TYPE_BPF;
819 		ex->data = probe->reg;
820 		jit->excnt++;
821 	}
822 	return 0;
823 }
824 
825 /*
826  * Sign-extend the register if necessary
827  */
828 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
829 {
830 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
831 		return 0;
832 
833 	switch (size) {
834 	case 1:
835 		/* lgbr %r,%r */
836 		EMIT4(0xb9060000, r, r);
837 		return 0;
838 	case 2:
839 		/* lghr %r,%r */
840 		EMIT4(0xb9070000, r, r);
841 		return 0;
842 	case 4:
843 		/* lgfr %r,%r */
844 		EMIT4(0xb9140000, r, r);
845 		return 0;
846 	case 8:
847 		return 0;
848 	default:
849 		return -1;
850 	}
851 }
852 
853 /*
854  * Compile one eBPF instruction into s390x code
855  *
856  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
857  * stack space for the large switch statement.
858  */
859 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
860 				 int i, bool extra_pass, u32 stack_depth)
861 {
862 	struct bpf_insn *insn = &fp->insnsi[i];
863 	s32 branch_oc_off = insn->off;
864 	u32 dst_reg = insn->dst_reg;
865 	u32 src_reg = insn->src_reg;
866 	struct bpf_jit_probe probe;
867 	int last, insn_count = 1;
868 	u32 *addrs = jit->addrs;
869 	s32 imm = insn->imm;
870 	s16 off = insn->off;
871 	unsigned int mask;
872 	int err;
873 
874 	bpf_jit_probe_init(&probe);
875 
876 	switch (insn->code) {
877 	/*
878 	 * BPF_MOV
879 	 */
880 	case BPF_ALU | BPF_MOV | BPF_X:
881 		switch (insn->off) {
882 		case 0: /* DST = (u32) SRC */
883 			/* llgfr %dst,%src */
884 			EMIT4(0xb9160000, dst_reg, src_reg);
885 			if (insn_is_zext(&insn[1]))
886 				insn_count = 2;
887 			break;
888 		case 8: /* DST = (u32)(s8) SRC */
889 			/* lbr %dst,%src */
890 			EMIT4(0xb9260000, dst_reg, src_reg);
891 			/* llgfr %dst,%dst */
892 			EMIT4(0xb9160000, dst_reg, dst_reg);
893 			break;
894 		case 16: /* DST = (u32)(s16) SRC */
895 			/* lhr %dst,%src */
896 			EMIT4(0xb9270000, dst_reg, src_reg);
897 			/* llgfr %dst,%dst */
898 			EMIT4(0xb9160000, dst_reg, dst_reg);
899 			break;
900 		}
901 		break;
902 	case BPF_ALU64 | BPF_MOV | BPF_X:
903 		if (insn_is_cast_user(insn)) {
904 			int patch_brc;
905 
906 			/* ltgr %dst,%src */
907 			EMIT4(0xb9020000, dst_reg, src_reg);
908 			/* brc 8,0f */
909 			patch_brc = jit->prg;
910 			EMIT4_PCREL_RIC(0xa7040000, 8, 0);
911 			/* iihf %dst,user_arena>>32 */
912 			EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
913 			/* 0: */
914 			if (jit->prg_buf)
915 				*(u16 *)(jit->prg_buf + patch_brc + 2) =
916 					(jit->prg - patch_brc) >> 1;
917 			break;
918 		}
919 		switch (insn->off) {
920 		case 0: /* DST = SRC */
921 			/* lgr %dst,%src */
922 			EMIT4(0xb9040000, dst_reg, src_reg);
923 			break;
924 		case 8: /* DST = (s8) SRC */
925 			/* lgbr %dst,%src */
926 			EMIT4(0xb9060000, dst_reg, src_reg);
927 			break;
928 		case 16: /* DST = (s16) SRC */
929 			/* lghr %dst,%src */
930 			EMIT4(0xb9070000, dst_reg, src_reg);
931 			break;
932 		case 32: /* DST = (s32) SRC */
933 			/* lgfr %dst,%src */
934 			EMIT4(0xb9140000, dst_reg, src_reg);
935 			break;
936 		}
937 		break;
938 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
939 		/* llilf %dst,imm */
940 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
941 		if (insn_is_zext(&insn[1]))
942 			insn_count = 2;
943 		break;
944 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
945 		/* lgfi %dst,imm */
946 		EMIT6_IMM(0xc0010000, dst_reg, imm);
947 		break;
948 	/*
949 	 * BPF_LD 64
950 	 */
951 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
952 	{
953 		/* 16 byte instruction that uses two 'struct bpf_insn' */
954 		u64 imm64;
955 
956 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
957 		/* lgrl %dst,imm */
958 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
959 		insn_count = 2;
960 		break;
961 	}
962 	/*
963 	 * BPF_ADD
964 	 */
965 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
966 		/* ar %dst,%src */
967 		EMIT2(0x1a00, dst_reg, src_reg);
968 		EMIT_ZERO(dst_reg);
969 		break;
970 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
971 		/* agr %dst,%src */
972 		EMIT4(0xb9080000, dst_reg, src_reg);
973 		break;
974 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
975 		if (imm != 0) {
976 			/* alfi %dst,imm */
977 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
978 		}
979 		EMIT_ZERO(dst_reg);
980 		break;
981 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
982 		if (!imm)
983 			break;
984 		/* agfi %dst,imm */
985 		EMIT6_IMM(0xc2080000, dst_reg, imm);
986 		break;
987 	/*
988 	 * BPF_SUB
989 	 */
990 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
991 		/* sr %dst,%src */
992 		EMIT2(0x1b00, dst_reg, src_reg);
993 		EMIT_ZERO(dst_reg);
994 		break;
995 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
996 		/* sgr %dst,%src */
997 		EMIT4(0xb9090000, dst_reg, src_reg);
998 		break;
999 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
1000 		if (imm != 0) {
1001 			/* alfi %dst,-imm */
1002 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1003 		}
1004 		EMIT_ZERO(dst_reg);
1005 		break;
1006 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1007 		if (!imm)
1008 			break;
1009 		if (imm == -0x80000000) {
1010 			/* algfi %dst,0x80000000 */
1011 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1012 		} else {
1013 			/* agfi %dst,-imm */
1014 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
1015 		}
1016 		break;
1017 	/*
1018 	 * BPF_MUL
1019 	 */
1020 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1021 		/* msr %dst,%src */
1022 		EMIT4(0xb2520000, dst_reg, src_reg);
1023 		EMIT_ZERO(dst_reg);
1024 		break;
1025 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1026 		/* msgr %dst,%src */
1027 		EMIT4(0xb90c0000, dst_reg, src_reg);
1028 		break;
1029 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1030 		if (imm != 1) {
1031 			/* msfi %r5,imm */
1032 			EMIT6_IMM(0xc2010000, dst_reg, imm);
1033 		}
1034 		EMIT_ZERO(dst_reg);
1035 		break;
1036 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1037 		if (imm == 1)
1038 			break;
1039 		/* msgfi %dst,imm */
1040 		EMIT6_IMM(0xc2000000, dst_reg, imm);
1041 		break;
1042 	/*
1043 	 * BPF_DIV / BPF_MOD
1044 	 */
1045 	case BPF_ALU | BPF_DIV | BPF_X:
1046 	case BPF_ALU | BPF_MOD | BPF_X:
1047 	{
1048 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1049 
1050 		switch (off) {
1051 		case 0: /* dst = (u32) dst {/,%} (u32) src */
1052 			/* xr %w0,%w0 */
1053 			EMIT2(0x1700, REG_W0, REG_W0);
1054 			/* lr %w1,%dst */
1055 			EMIT2(0x1800, REG_W1, dst_reg);
1056 			/* dlr %w0,%src */
1057 			EMIT4(0xb9970000, REG_W0, src_reg);
1058 			break;
1059 		case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1060 			/* lgfr %r1,%dst */
1061 			EMIT4(0xb9140000, REG_W1, dst_reg);
1062 			/* dsgfr %r0,%src */
1063 			EMIT4(0xb91d0000, REG_W0, src_reg);
1064 			break;
1065 		}
1066 		/* llgfr %dst,%rc */
1067 		EMIT4(0xb9160000, dst_reg, rc_reg);
1068 		if (insn_is_zext(&insn[1]))
1069 			insn_count = 2;
1070 		break;
1071 	}
1072 	case BPF_ALU64 | BPF_DIV | BPF_X:
1073 	case BPF_ALU64 | BPF_MOD | BPF_X:
1074 	{
1075 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1076 
1077 		switch (off) {
1078 		case 0: /* dst = dst {/,%} src */
1079 			/* lghi %w0,0 */
1080 			EMIT4_IMM(0xa7090000, REG_W0, 0);
1081 			/* lgr %w1,%dst */
1082 			EMIT4(0xb9040000, REG_W1, dst_reg);
1083 			/* dlgr %w0,%src */
1084 			EMIT4(0xb9870000, REG_W0, src_reg);
1085 			break;
1086 		case 1: /* dst = (s64) dst {/,%} (s64) src */
1087 			/* lgr %w1,%dst */
1088 			EMIT4(0xb9040000, REG_W1, dst_reg);
1089 			/* dsgr %w0,%src */
1090 			EMIT4(0xb90d0000, REG_W0, src_reg);
1091 			break;
1092 		}
1093 		/* lgr %dst,%rc */
1094 		EMIT4(0xb9040000, dst_reg, rc_reg);
1095 		break;
1096 	}
1097 	case BPF_ALU | BPF_DIV | BPF_K:
1098 	case BPF_ALU | BPF_MOD | BPF_K:
1099 	{
1100 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1101 
1102 		if (imm == 1) {
1103 			if (BPF_OP(insn->code) == BPF_MOD)
1104 				/* lghi %dst,0 */
1105 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1106 			else
1107 				EMIT_ZERO(dst_reg);
1108 			break;
1109 		}
1110 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1111 			switch (off) {
1112 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1113 				/* xr %w0,%w0 */
1114 				EMIT2(0x1700, REG_W0, REG_W0);
1115 				/* lr %w1,%dst */
1116 				EMIT2(0x1800, REG_W1, dst_reg);
1117 				/* dl %w0,<d(imm)>(%l) */
1118 				EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1119 					      REG_L, EMIT_CONST_U32(imm));
1120 				break;
1121 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1122 				/* lgfr %r1,%dst */
1123 				EMIT4(0xb9140000, REG_W1, dst_reg);
1124 				/* dsgf %r0,<d(imm)>(%l) */
1125 				EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1126 					      REG_L, EMIT_CONST_U32(imm));
1127 				break;
1128 			}
1129 		} else {
1130 			switch (off) {
1131 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1132 				/* xr %w0,%w0 */
1133 				EMIT2(0x1700, REG_W0, REG_W0);
1134 				/* lr %w1,%dst */
1135 				EMIT2(0x1800, REG_W1, dst_reg);
1136 				/* lrl %dst,imm */
1137 				EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1138 						 _EMIT_CONST_U32(imm));
1139 				jit->seen |= SEEN_LITERAL;
1140 				/* dlr %w0,%dst */
1141 				EMIT4(0xb9970000, REG_W0, dst_reg);
1142 				break;
1143 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1144 				/* lgfr %w1,%dst */
1145 				EMIT4(0xb9140000, REG_W1, dst_reg);
1146 				/* lgfrl %dst,imm */
1147 				EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1148 						 _EMIT_CONST_U32(imm));
1149 				jit->seen |= SEEN_LITERAL;
1150 				/* dsgr %w0,%dst */
1151 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1152 				break;
1153 			}
1154 		}
1155 		/* llgfr %dst,%rc */
1156 		EMIT4(0xb9160000, dst_reg, rc_reg);
1157 		if (insn_is_zext(&insn[1]))
1158 			insn_count = 2;
1159 		break;
1160 	}
1161 	case BPF_ALU64 | BPF_DIV | BPF_K:
1162 	case BPF_ALU64 | BPF_MOD | BPF_K:
1163 	{
1164 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1165 
1166 		if (imm == 1) {
1167 			if (BPF_OP(insn->code) == BPF_MOD)
1168 				/* lhgi %dst,0 */
1169 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1170 			break;
1171 		}
1172 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1173 			switch (off) {
1174 			case 0: /* dst = dst {/,%} imm */
1175 				/* lghi %w0,0 */
1176 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1177 				/* lgr %w1,%dst */
1178 				EMIT4(0xb9040000, REG_W1, dst_reg);
1179 				/* dlg %w0,<d(imm)>(%l) */
1180 				EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1181 					      REG_L, EMIT_CONST_U64(imm));
1182 				break;
1183 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1184 				/* lgr %w1,%dst */
1185 				EMIT4(0xb9040000, REG_W1, dst_reg);
1186 				/* dsg %w0,<d(imm)>(%l) */
1187 				EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1188 					      REG_L, EMIT_CONST_U64(imm));
1189 				break;
1190 			}
1191 		} else {
1192 			switch (off) {
1193 			case 0: /* dst = dst {/,%} imm */
1194 				/* lghi %w0,0 */
1195 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1196 				/* lgr %w1,%dst */
1197 				EMIT4(0xb9040000, REG_W1, dst_reg);
1198 				/* lgrl %dst,imm */
1199 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1200 						 _EMIT_CONST_U64(imm));
1201 				jit->seen |= SEEN_LITERAL;
1202 				/* dlgr %w0,%dst */
1203 				EMIT4(0xb9870000, REG_W0, dst_reg);
1204 				break;
1205 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1206 				/* lgr %w1,%dst */
1207 				EMIT4(0xb9040000, REG_W1, dst_reg);
1208 				/* lgrl %dst,imm */
1209 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1210 						 _EMIT_CONST_U64(imm));
1211 				jit->seen |= SEEN_LITERAL;
1212 				/* dsgr %w0,%dst */
1213 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1214 				break;
1215 			}
1216 		}
1217 		/* lgr %dst,%rc */
1218 		EMIT4(0xb9040000, dst_reg, rc_reg);
1219 		break;
1220 	}
1221 	/*
1222 	 * BPF_AND
1223 	 */
1224 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1225 		/* nr %dst,%src */
1226 		EMIT2(0x1400, dst_reg, src_reg);
1227 		EMIT_ZERO(dst_reg);
1228 		break;
1229 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1230 		/* ngr %dst,%src */
1231 		EMIT4(0xb9800000, dst_reg, src_reg);
1232 		break;
1233 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1234 		/* nilf %dst,imm */
1235 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1236 		EMIT_ZERO(dst_reg);
1237 		break;
1238 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1239 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1240 			/* ng %dst,<d(imm)>(%l) */
1241 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1242 				      dst_reg, REG_0, REG_L,
1243 				      EMIT_CONST_U64(imm));
1244 		} else {
1245 			/* lgrl %w0,imm */
1246 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1247 					 _EMIT_CONST_U64(imm));
1248 			jit->seen |= SEEN_LITERAL;
1249 			/* ngr %dst,%w0 */
1250 			EMIT4(0xb9800000, dst_reg, REG_W0);
1251 		}
1252 		break;
1253 	/*
1254 	 * BPF_OR
1255 	 */
1256 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1257 		/* or %dst,%src */
1258 		EMIT2(0x1600, dst_reg, src_reg);
1259 		EMIT_ZERO(dst_reg);
1260 		break;
1261 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1262 		/* ogr %dst,%src */
1263 		EMIT4(0xb9810000, dst_reg, src_reg);
1264 		break;
1265 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1266 		/* oilf %dst,imm */
1267 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1268 		EMIT_ZERO(dst_reg);
1269 		break;
1270 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1271 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1272 			/* og %dst,<d(imm)>(%l) */
1273 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1274 				      dst_reg, REG_0, REG_L,
1275 				      EMIT_CONST_U64(imm));
1276 		} else {
1277 			/* lgrl %w0,imm */
1278 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1279 					 _EMIT_CONST_U64(imm));
1280 			jit->seen |= SEEN_LITERAL;
1281 			/* ogr %dst,%w0 */
1282 			EMIT4(0xb9810000, dst_reg, REG_W0);
1283 		}
1284 		break;
1285 	/*
1286 	 * BPF_XOR
1287 	 */
1288 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1289 		/* xr %dst,%src */
1290 		EMIT2(0x1700, dst_reg, src_reg);
1291 		EMIT_ZERO(dst_reg);
1292 		break;
1293 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1294 		/* xgr %dst,%src */
1295 		EMIT4(0xb9820000, dst_reg, src_reg);
1296 		break;
1297 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1298 		if (imm != 0) {
1299 			/* xilf %dst,imm */
1300 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1301 		}
1302 		EMIT_ZERO(dst_reg);
1303 		break;
1304 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1305 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1306 			/* xg %dst,<d(imm)>(%l) */
1307 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1308 				      dst_reg, REG_0, REG_L,
1309 				      EMIT_CONST_U64(imm));
1310 		} else {
1311 			/* lgrl %w0,imm */
1312 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1313 					 _EMIT_CONST_U64(imm));
1314 			jit->seen |= SEEN_LITERAL;
1315 			/* xgr %dst,%w0 */
1316 			EMIT4(0xb9820000, dst_reg, REG_W0);
1317 		}
1318 		break;
1319 	/*
1320 	 * BPF_LSH
1321 	 */
1322 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1323 		/* sll %dst,0(%src) */
1324 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1325 		EMIT_ZERO(dst_reg);
1326 		break;
1327 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1328 		/* sllg %dst,%dst,0(%src) */
1329 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1330 		break;
1331 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1332 		if (imm != 0) {
1333 			/* sll %dst,imm(%r0) */
1334 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1335 		}
1336 		EMIT_ZERO(dst_reg);
1337 		break;
1338 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1339 		if (imm == 0)
1340 			break;
1341 		/* sllg %dst,%dst,imm(%r0) */
1342 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1343 		break;
1344 	/*
1345 	 * BPF_RSH
1346 	 */
1347 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1348 		/* srl %dst,0(%src) */
1349 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1350 		EMIT_ZERO(dst_reg);
1351 		break;
1352 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1353 		/* srlg %dst,%dst,0(%src) */
1354 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1355 		break;
1356 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1357 		if (imm != 0) {
1358 			/* srl %dst,imm(%r0) */
1359 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1360 		}
1361 		EMIT_ZERO(dst_reg);
1362 		break;
1363 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1364 		if (imm == 0)
1365 			break;
1366 		/* srlg %dst,%dst,imm(%r0) */
1367 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1368 		break;
1369 	/*
1370 	 * BPF_ARSH
1371 	 */
1372 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1373 		/* sra %dst,%dst,0(%src) */
1374 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1375 		EMIT_ZERO(dst_reg);
1376 		break;
1377 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1378 		/* srag %dst,%dst,0(%src) */
1379 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1380 		break;
1381 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1382 		if (imm != 0) {
1383 			/* sra %dst,imm(%r0) */
1384 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1385 		}
1386 		EMIT_ZERO(dst_reg);
1387 		break;
1388 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1389 		if (imm == 0)
1390 			break;
1391 		/* srag %dst,%dst,imm(%r0) */
1392 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1393 		break;
1394 	/*
1395 	 * BPF_NEG
1396 	 */
1397 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1398 		/* lcr %dst,%dst */
1399 		EMIT2(0x1300, dst_reg, dst_reg);
1400 		EMIT_ZERO(dst_reg);
1401 		break;
1402 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1403 		/* lcgr %dst,%dst */
1404 		EMIT4(0xb9030000, dst_reg, dst_reg);
1405 		break;
1406 	/*
1407 	 * BPF_FROM_BE/LE
1408 	 */
1409 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1410 		/* s390 is big endian, therefore only clear high order bytes */
1411 		switch (imm) {
1412 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1413 			/* llghr %dst,%dst */
1414 			EMIT4(0xb9850000, dst_reg, dst_reg);
1415 			if (insn_is_zext(&insn[1]))
1416 				insn_count = 2;
1417 			break;
1418 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1419 			if (!fp->aux->verifier_zext)
1420 				/* llgfr %dst,%dst */
1421 				EMIT4(0xb9160000, dst_reg, dst_reg);
1422 			break;
1423 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1424 			break;
1425 		}
1426 		break;
1427 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1428 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1429 		switch (imm) {
1430 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1431 			/* lrvr %dst,%dst */
1432 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1433 			/* srl %dst,16(%r0) */
1434 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1435 			/* llghr %dst,%dst */
1436 			EMIT4(0xb9850000, dst_reg, dst_reg);
1437 			if (insn_is_zext(&insn[1]))
1438 				insn_count = 2;
1439 			break;
1440 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1441 			/* lrvr %dst,%dst */
1442 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1443 			if (!fp->aux->verifier_zext)
1444 				/* llgfr %dst,%dst */
1445 				EMIT4(0xb9160000, dst_reg, dst_reg);
1446 			break;
1447 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1448 			/* lrvgr %dst,%dst */
1449 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1450 			break;
1451 		}
1452 		break;
1453 	/*
1454 	 * BPF_NOSPEC (speculation barrier)
1455 	 */
1456 	case BPF_ST | BPF_NOSPEC:
1457 		break;
1458 	/*
1459 	 * BPF_ST(X)
1460 	 */
1461 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1462 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1463 		bpf_jit_probe_store_pre(jit, insn, &probe);
1464 		/* stcy %src,off(%dst,%arena) */
1465 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1466 			      probe.arena_reg, off);
1467 		err = bpf_jit_probe_post(jit, fp, &probe);
1468 		if (err < 0)
1469 			return err;
1470 		jit->seen |= SEEN_MEM;
1471 		break;
1472 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1473 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1474 		bpf_jit_probe_store_pre(jit, insn, &probe);
1475 		/* sthy %src,off(%dst,%arena) */
1476 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1477 			      probe.arena_reg, off);
1478 		err = bpf_jit_probe_post(jit, fp, &probe);
1479 		if (err < 0)
1480 			return err;
1481 		jit->seen |= SEEN_MEM;
1482 		break;
1483 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1484 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1485 		bpf_jit_probe_store_pre(jit, insn, &probe);
1486 		/* sty %src,off(%dst,%arena) */
1487 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1488 			      probe.arena_reg, off);
1489 		err = bpf_jit_probe_post(jit, fp, &probe);
1490 		if (err < 0)
1491 			return err;
1492 		jit->seen |= SEEN_MEM;
1493 		break;
1494 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1495 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1496 		bpf_jit_probe_store_pre(jit, insn, &probe);
1497 		/* stg %src,off(%dst,%arena) */
1498 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1499 			      probe.arena_reg, off);
1500 		err = bpf_jit_probe_post(jit, fp, &probe);
1501 		if (err < 0)
1502 			return err;
1503 		jit->seen |= SEEN_MEM;
1504 		break;
1505 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1506 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1507 		/* lhi %w0,imm */
1508 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1509 		bpf_jit_probe_store_pre(jit, insn, &probe);
1510 		/* stcy %w0,off(%dst,%arena) */
1511 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1512 			      probe.arena_reg, off);
1513 		err = bpf_jit_probe_post(jit, fp, &probe);
1514 		if (err < 0)
1515 			return err;
1516 		jit->seen |= SEEN_MEM;
1517 		break;
1518 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1519 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1520 		/* lhi %w0,imm */
1521 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1522 		bpf_jit_probe_store_pre(jit, insn, &probe);
1523 		/* sthy %w0,off(%dst,%arena) */
1524 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1525 			      probe.arena_reg, off);
1526 		err = bpf_jit_probe_post(jit, fp, &probe);
1527 		if (err < 0)
1528 			return err;
1529 		jit->seen |= SEEN_MEM;
1530 		break;
1531 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1532 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1533 		/* llilf %w0,imm  */
1534 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1535 		bpf_jit_probe_store_pre(jit, insn, &probe);
1536 		/* sty %w0,off(%dst,%arena) */
1537 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1538 			      probe.arena_reg, off);
1539 		err = bpf_jit_probe_post(jit, fp, &probe);
1540 		if (err < 0)
1541 			return err;
1542 		jit->seen |= SEEN_MEM;
1543 		break;
1544 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1545 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1546 		/* lgfi %w0,imm */
1547 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1548 		bpf_jit_probe_store_pre(jit, insn, &probe);
1549 		/* stg %w0,off(%dst,%arena) */
1550 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1551 			      probe.arena_reg, off);
1552 		err = bpf_jit_probe_post(jit, fp, &probe);
1553 		if (err < 0)
1554 			return err;
1555 		jit->seen |= SEEN_MEM;
1556 		break;
1557 	/*
1558 	 * BPF_ATOMIC
1559 	 */
1560 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1561 	case BPF_STX | BPF_ATOMIC | BPF_W:
1562 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1563 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1564 	{
1565 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1566 
1567 		/*
1568 		 * Unlike loads and stores, atomics have only a base register,
1569 		 * but no index register. For the non-arena case, simply use
1570 		 * %dst as a base. For the arena case, use the work register
1571 		 * %r1: first, load the arena base into it, and then add %dst
1572 		 * to it.
1573 		 */
1574 		probe.arena_reg = dst_reg;
1575 
1576 		switch (insn->imm) {
1577 #define EMIT_ATOMIC(op32, op64) do {					\
1578 	bpf_jit_probe_atomic_pre(jit, insn, &probe);			\
1579 	/* {op32|op64} {%w0|%src},%src,off(%arena) */			\
1580 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1581 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1582 		      src_reg, probe.arena_reg, off);			\
1583 	err = bpf_jit_probe_post(jit, fp, &probe);			\
1584 	if (err < 0)							\
1585 		return err;						\
1586 	if (insn->imm & BPF_FETCH) {					\
1587 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1588 		_EMIT2(0x07e0);						\
1589 		if (is32)                                               \
1590 			EMIT_ZERO(src_reg);				\
1591 	}								\
1592 } while (0)
1593 		case BPF_ADD:
1594 		case BPF_ADD | BPF_FETCH:
1595 			/* {laal|laalg} */
1596 			EMIT_ATOMIC(0x00fa, 0x00ea);
1597 			break;
1598 		case BPF_AND:
1599 		case BPF_AND | BPF_FETCH:
1600 			/* {lan|lang} */
1601 			EMIT_ATOMIC(0x00f4, 0x00e4);
1602 			break;
1603 		case BPF_OR:
1604 		case BPF_OR | BPF_FETCH:
1605 			/* {lao|laog} */
1606 			EMIT_ATOMIC(0x00f6, 0x00e6);
1607 			break;
1608 		case BPF_XOR:
1609 		case BPF_XOR | BPF_FETCH:
1610 			/* {lax|laxg} */
1611 			EMIT_ATOMIC(0x00f7, 0x00e7);
1612 			break;
1613 #undef EMIT_ATOMIC
1614 		case BPF_XCHG: {
1615 			struct bpf_jit_probe load_probe = probe;
1616 			int loop_start;
1617 
1618 			bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1619 			/* {ly|lg} %w0,off(%arena) */
1620 			EMIT6_DISP_LH(0xe3000000,
1621 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1622 				      load_probe.arena_reg, off);
1623 			bpf_jit_probe_emit_nop(jit, &load_probe);
1624 			/* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1625 			if (load_probe.prg != -1) {
1626 				probe.prg = jit->prg;
1627 				probe.arena_reg = load_probe.arena_reg;
1628 			}
1629 			loop_start = jit->prg;
1630 			/* 0: {csy|csg} %w0,%src,off(%arena) */
1631 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1632 				      REG_W0, src_reg, probe.arena_reg, off);
1633 			bpf_jit_probe_emit_nop(jit, &probe);
1634 			/* brc 4,0b */
1635 			EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1636 			/* {llgfr|lgr} %src,%w0 */
1637 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1638 			/* Both probes should land here on exception. */
1639 			err = bpf_jit_probe_post(jit, fp, &load_probe);
1640 			if (err < 0)
1641 				return err;
1642 			err = bpf_jit_probe_post(jit, fp, &probe);
1643 			if (err < 0)
1644 				return err;
1645 			if (is32 && insn_is_zext(&insn[1]))
1646 				insn_count = 2;
1647 			break;
1648 		}
1649 		case BPF_CMPXCHG:
1650 			bpf_jit_probe_atomic_pre(jit, insn, &probe);
1651 			/* 0: {csy|csg} %b0,%src,off(%arena) */
1652 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1653 				      BPF_REG_0, src_reg,
1654 				      probe.arena_reg, off);
1655 			err = bpf_jit_probe_post(jit, fp, &probe);
1656 			if (err < 0)
1657 				return err;
1658 			break;
1659 		default:
1660 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1661 			return -1;
1662 		}
1663 
1664 		jit->seen |= SEEN_MEM;
1665 		break;
1666 	}
1667 	/*
1668 	 * BPF_LDX
1669 	 */
1670 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1671 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1672 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1673 		bpf_jit_probe_load_pre(jit, insn, &probe);
1674 		/* llgc %dst,off(%src,%arena) */
1675 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1676 			      probe.arena_reg, off);
1677 		err = bpf_jit_probe_post(jit, fp, &probe);
1678 		if (err < 0)
1679 			return err;
1680 		jit->seen |= SEEN_MEM;
1681 		if (insn_is_zext(&insn[1]))
1682 			insn_count = 2;
1683 		break;
1684 	case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1685 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1686 		bpf_jit_probe_load_pre(jit, insn, &probe);
1687 		/* lgb %dst,off(%src) */
1688 		EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1689 		err = bpf_jit_probe_post(jit, fp, &probe);
1690 		if (err < 0)
1691 			return err;
1692 		jit->seen |= SEEN_MEM;
1693 		break;
1694 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1695 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1696 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1697 		bpf_jit_probe_load_pre(jit, insn, &probe);
1698 		/* llgh %dst,off(%src,%arena) */
1699 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1700 			      probe.arena_reg, off);
1701 		err = bpf_jit_probe_post(jit, fp, &probe);
1702 		if (err < 0)
1703 			return err;
1704 		jit->seen |= SEEN_MEM;
1705 		if (insn_is_zext(&insn[1]))
1706 			insn_count = 2;
1707 		break;
1708 	case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1709 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1710 		bpf_jit_probe_load_pre(jit, insn, &probe);
1711 		/* lgh %dst,off(%src) */
1712 		EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1713 		err = bpf_jit_probe_post(jit, fp, &probe);
1714 		if (err < 0)
1715 			return err;
1716 		jit->seen |= SEEN_MEM;
1717 		break;
1718 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1719 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1720 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1721 		bpf_jit_probe_load_pre(jit, insn, &probe);
1722 		/* llgf %dst,off(%src) */
1723 		jit->seen |= SEEN_MEM;
1724 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1725 			      probe.arena_reg, off);
1726 		err = bpf_jit_probe_post(jit, fp, &probe);
1727 		if (err < 0)
1728 			return err;
1729 		if (insn_is_zext(&insn[1]))
1730 			insn_count = 2;
1731 		break;
1732 	case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1733 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1734 		bpf_jit_probe_load_pre(jit, insn, &probe);
1735 		/* lgf %dst,off(%src) */
1736 		jit->seen |= SEEN_MEM;
1737 		EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1738 		err = bpf_jit_probe_post(jit, fp, &probe);
1739 		if (err < 0)
1740 			return err;
1741 		break;
1742 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1743 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1744 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1745 		bpf_jit_probe_load_pre(jit, insn, &probe);
1746 		/* lg %dst,off(%src,%arena) */
1747 		jit->seen |= SEEN_MEM;
1748 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1749 			      probe.arena_reg, off);
1750 		err = bpf_jit_probe_post(jit, fp, &probe);
1751 		if (err < 0)
1752 			return err;
1753 		break;
1754 	/*
1755 	 * BPF_JMP / CALL
1756 	 */
1757 	case BPF_JMP | BPF_CALL:
1758 	{
1759 		const struct btf_func_model *m;
1760 		bool func_addr_fixed;
1761 		int j, ret;
1762 		u64 func;
1763 
1764 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1765 					    &func, &func_addr_fixed);
1766 		if (ret < 0)
1767 			return -1;
1768 
1769 		REG_SET_SEEN(BPF_REG_5);
1770 		jit->seen |= SEEN_FUNC;
1771 		/*
1772 		 * Copy the tail call counter to where the callee expects it.
1773 		 *
1774 		 * Note 1: The callee can increment the tail call counter, but
1775 		 * we do not load it back, since the x86 JIT does not do this
1776 		 * either.
1777 		 *
1778 		 * Note 2: We assume that the verifier does not let us call the
1779 		 * main program, which clears the tail call counter on entry.
1780 		 */
1781 		/* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1782 		_EMIT6(0xd203f000 | STK_OFF_TCCNT,
1783 		       0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1784 
1785 		/* Sign-extend the kfunc arguments. */
1786 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1787 			m = bpf_jit_find_kfunc_model(fp, insn);
1788 			if (!m)
1789 				return -1;
1790 
1791 			for (j = 0; j < m->nr_args; j++) {
1792 				if (sign_extend(jit, BPF_REG_1 + j,
1793 						m->arg_size[j],
1794 						m->arg_flags[j]))
1795 					return -1;
1796 			}
1797 		}
1798 
1799 		/* lgrl %w1,func */
1800 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1801 		/* %r1() */
1802 		call_r1(jit);
1803 		/* lgr %b0,%r2: load return value into %b0 */
1804 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1805 		break;
1806 	}
1807 	case BPF_JMP | BPF_TAIL_CALL: {
1808 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1809 
1810 		/*
1811 		 * Implicit input:
1812 		 *  B1: pointer to ctx
1813 		 *  B2: pointer to bpf_array
1814 		 *  B3: index in bpf_array
1815 		 *
1816 		 * if (index >= array->map.max_entries)
1817 		 *         goto out;
1818 		 */
1819 
1820 		/* llgf %w1,map.max_entries(%b2) */
1821 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1822 			      offsetof(struct bpf_array, map.max_entries));
1823 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1824 		/* clrj %b3,%w1,0xa,out */
1825 		patch_1_clrj = jit->prg;
1826 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1827 				 jit->prg);
1828 
1829 		/*
1830 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1831 		 *         goto out;
1832 		 */
1833 
1834 		if (jit->seen & SEEN_STACK)
1835 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1836 		else
1837 			off = STK_OFF_TCCNT;
1838 		/* lhi %w0,1 */
1839 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1840 		/* laal %w1,%w0,off(%r15) */
1841 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1842 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1843 		patch_2_clij = jit->prg;
1844 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1845 				 2, jit->prg);
1846 
1847 		/*
1848 		 * prog = array->ptrs[index];
1849 		 * if (prog == NULL)
1850 		 *         goto out;
1851 		 */
1852 
1853 		/* llgfr %r1,%b3: %r1 = (u32) index */
1854 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1855 		/* sllg %r1,%r1,3: %r1 *= 8 */
1856 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1857 		/* ltg %r1,prog(%b2,%r1) */
1858 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1859 			      REG_1, offsetof(struct bpf_array, ptrs));
1860 		/* brc 0x8,out */
1861 		patch_3_brc = jit->prg;
1862 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1863 
1864 		/*
1865 		 * Restore registers before calling function
1866 		 */
1867 		save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
1868 
1869 		/*
1870 		 * goto *(prog->bpf_func + tail_call_start);
1871 		 */
1872 
1873 		/* lg %r1,bpf_func(%r1) */
1874 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1875 			      offsetof(struct bpf_prog, bpf_func));
1876 		if (nospec_uses_trampoline()) {
1877 			jit->seen |= SEEN_FUNC;
1878 			/* aghi %r1,tail_call_start */
1879 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1880 			/* brcl 0xf,__s390_indirect_jump_r1 */
1881 			EMIT6_PCREL_RILC_PTR(0xc0040000, 0xf,
1882 					     __s390_indirect_jump_r1);
1883 		} else {
1884 			/* bc 0xf,tail_call_start(%r1) */
1885 			_EMIT4(0x47f01000 + jit->tail_call_start);
1886 		}
1887 		/* out: */
1888 		if (jit->prg_buf) {
1889 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1890 				(jit->prg - patch_1_clrj) >> 1;
1891 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1892 				(jit->prg - patch_2_clij) >> 1;
1893 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1894 				(jit->prg - patch_3_brc) >> 1;
1895 		}
1896 		break;
1897 	}
1898 	case BPF_JMP | BPF_EXIT: /* return b0 */
1899 		last = (i == fp->len - 1) ? 1 : 0;
1900 		if (last)
1901 			break;
1902 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1903 			/* brc 0xf, <exit> */
1904 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1905 		else
1906 			/* brcl 0xf, <exit> */
1907 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1908 		break;
1909 	/*
1910 	 * Branch relative (number of skipped instructions) to offset on
1911 	 * condition.
1912 	 *
1913 	 * Condition code to mask mapping:
1914 	 *
1915 	 * CC | Description	   | Mask
1916 	 * ------------------------------
1917 	 * 0  | Operands equal	   |	8
1918 	 * 1  | First operand low  |	4
1919 	 * 2  | First operand high |	2
1920 	 * 3  | Unused		   |	1
1921 	 *
1922 	 * For s390x relative branches: ip = ip + off_bytes
1923 	 * For BPF relative branches:	insn = insn + off_insns + 1
1924 	 *
1925 	 * For example for s390x with offset 0 we jump to the branch
1926 	 * instruction itself (loop) and for BPF with offset 0 we
1927 	 * branch to the instruction behind the branch.
1928 	 */
1929 	case BPF_JMP32 | BPF_JA: /* if (true) */
1930 		branch_oc_off = imm;
1931 		fallthrough;
1932 	case BPF_JMP | BPF_JA: /* if (true) */
1933 		mask = 0xf000; /* j */
1934 		goto branch_oc;
1935 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1936 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1937 		mask = 0x2000; /* jh */
1938 		goto branch_ks;
1939 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1940 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1941 		mask = 0x4000; /* jl */
1942 		goto branch_ks;
1943 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1944 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1945 		mask = 0xa000; /* jhe */
1946 		goto branch_ks;
1947 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1948 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1949 		mask = 0xc000; /* jle */
1950 		goto branch_ks;
1951 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1952 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1953 		mask = 0x2000; /* jh */
1954 		goto branch_ku;
1955 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1956 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1957 		mask = 0x4000; /* jl */
1958 		goto branch_ku;
1959 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1960 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1961 		mask = 0xa000; /* jhe */
1962 		goto branch_ku;
1963 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1964 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1965 		mask = 0xc000; /* jle */
1966 		goto branch_ku;
1967 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1968 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1969 		mask = 0x7000; /* jne */
1970 		goto branch_ku;
1971 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1972 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1973 		mask = 0x8000; /* je */
1974 		goto branch_ku;
1975 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1976 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1977 		mask = 0x7000; /* jnz */
1978 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1979 			/* llilf %w1,imm (load zero extend imm) */
1980 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1981 			/* nr %w1,%dst */
1982 			EMIT2(0x1400, REG_W1, dst_reg);
1983 		} else {
1984 			/* lgfi %w1,imm (load sign extend imm) */
1985 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1986 			/* ngr %w1,%dst */
1987 			EMIT4(0xb9800000, REG_W1, dst_reg);
1988 		}
1989 		goto branch_oc;
1990 
1991 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1992 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1993 		mask = 0x2000; /* jh */
1994 		goto branch_xs;
1995 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1996 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1997 		mask = 0x4000; /* jl */
1998 		goto branch_xs;
1999 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
2000 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
2001 		mask = 0xa000; /* jhe */
2002 		goto branch_xs;
2003 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2004 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2005 		mask = 0xc000; /* jle */
2006 		goto branch_xs;
2007 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2008 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2009 		mask = 0x2000; /* jh */
2010 		goto branch_xu;
2011 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2012 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2013 		mask = 0x4000; /* jl */
2014 		goto branch_xu;
2015 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2016 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2017 		mask = 0xa000; /* jhe */
2018 		goto branch_xu;
2019 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2020 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2021 		mask = 0xc000; /* jle */
2022 		goto branch_xu;
2023 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2024 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2025 		mask = 0x7000; /* jne */
2026 		goto branch_xu;
2027 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2028 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2029 		mask = 0x8000; /* je */
2030 		goto branch_xu;
2031 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2032 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2033 	{
2034 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2035 
2036 		mask = 0x7000; /* jnz */
2037 		/* nrk or ngrk %w1,%dst,%src */
2038 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2039 			  REG_W1, dst_reg, src_reg);
2040 		goto branch_oc;
2041 branch_ks:
2042 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2043 		/* cfi or cgfi %dst,imm */
2044 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2045 			  dst_reg, imm);
2046 		if (!is_first_pass(jit) &&
2047 		    can_use_rel(jit, addrs[i + off + 1])) {
2048 			/* brc mask,off */
2049 			EMIT4_PCREL_RIC(0xa7040000,
2050 					mask >> 12, addrs[i + off + 1]);
2051 		} else {
2052 			/* brcl mask,off */
2053 			EMIT6_PCREL_RILC(0xc0040000,
2054 					 mask >> 12, addrs[i + off + 1]);
2055 		}
2056 		break;
2057 branch_ku:
2058 		/* lgfi %w1,imm (load sign extend imm) */
2059 		src_reg = REG_1;
2060 		EMIT6_IMM(0xc0010000, src_reg, imm);
2061 		goto branch_xu;
2062 branch_xs:
2063 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2064 		if (!is_first_pass(jit) &&
2065 		    can_use_rel(jit, addrs[i + off + 1])) {
2066 			/* crj or cgrj %dst,%src,mask,off */
2067 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2068 				    dst_reg, src_reg, i, off, mask);
2069 		} else {
2070 			/* cr or cgr %dst,%src */
2071 			if (is_jmp32)
2072 				EMIT2(0x1900, dst_reg, src_reg);
2073 			else
2074 				EMIT4(0xb9200000, dst_reg, src_reg);
2075 			/* brcl mask,off */
2076 			EMIT6_PCREL_RILC(0xc0040000,
2077 					 mask >> 12, addrs[i + off + 1]);
2078 		}
2079 		break;
2080 branch_xu:
2081 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2082 		if (!is_first_pass(jit) &&
2083 		    can_use_rel(jit, addrs[i + off + 1])) {
2084 			/* clrj or clgrj %dst,%src,mask,off */
2085 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2086 				    dst_reg, src_reg, i, off, mask);
2087 		} else {
2088 			/* clr or clgr %dst,%src */
2089 			if (is_jmp32)
2090 				EMIT2(0x1500, dst_reg, src_reg);
2091 			else
2092 				EMIT4(0xb9210000, dst_reg, src_reg);
2093 			/* brcl mask,off */
2094 			EMIT6_PCREL_RILC(0xc0040000,
2095 					 mask >> 12, addrs[i + off + 1]);
2096 		}
2097 		break;
2098 branch_oc:
2099 		if (!is_first_pass(jit) &&
2100 		    can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2101 			/* brc mask,off */
2102 			EMIT4_PCREL_RIC(0xa7040000,
2103 					mask >> 12,
2104 					addrs[i + branch_oc_off + 1]);
2105 		} else {
2106 			/* brcl mask,off */
2107 			EMIT6_PCREL_RILC(0xc0040000,
2108 					 mask >> 12,
2109 					 addrs[i + branch_oc_off + 1]);
2110 		}
2111 		break;
2112 	}
2113 	default: /* too complex, give up */
2114 		pr_err("Unknown opcode %02x\n", insn->code);
2115 		return -1;
2116 	}
2117 
2118 	return insn_count;
2119 }
2120 
2121 /*
2122  * Return whether new i-th instruction address does not violate any invariant
2123  */
2124 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2125 {
2126 	/* On the first pass anything goes */
2127 	if (is_first_pass(jit))
2128 		return true;
2129 
2130 	/* The codegen pass must not change anything */
2131 	if (is_codegen_pass(jit))
2132 		return jit->addrs[i] == jit->prg;
2133 
2134 	/* Passes in between must not increase code size */
2135 	return jit->addrs[i] >= jit->prg;
2136 }
2137 
2138 /*
2139  * Update the address of i-th instruction
2140  */
2141 static int bpf_set_addr(struct bpf_jit *jit, int i)
2142 {
2143 	int delta;
2144 
2145 	if (is_codegen_pass(jit)) {
2146 		delta = jit->prg - jit->addrs[i];
2147 		if (delta < 0)
2148 			bpf_skip(jit, -delta);
2149 	}
2150 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2151 		return -1;
2152 	jit->addrs[i] = jit->prg;
2153 	return 0;
2154 }
2155 
2156 /*
2157  * Compile eBPF program into s390x code
2158  */
2159 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2160 			bool extra_pass, u32 stack_depth)
2161 {
2162 	int i, insn_count, lit32_size, lit64_size;
2163 	u64 kern_arena;
2164 
2165 	jit->lit32 = jit->lit32_start;
2166 	jit->lit64 = jit->lit64_start;
2167 	jit->prg = 0;
2168 	jit->excnt = 0;
2169 
2170 	kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2171 	if (kern_arena)
2172 		jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2173 	jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2174 
2175 	bpf_jit_prologue(jit, fp, stack_depth);
2176 	if (bpf_set_addr(jit, 0) < 0)
2177 		return -1;
2178 	for (i = 0; i < fp->len; i += insn_count) {
2179 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
2180 		if (insn_count < 0)
2181 			return -1;
2182 		/* Next instruction address */
2183 		if (bpf_set_addr(jit, i + insn_count) < 0)
2184 			return -1;
2185 	}
2186 	bpf_jit_epilogue(jit, stack_depth);
2187 
2188 	lit32_size = jit->lit32 - jit->lit32_start;
2189 	lit64_size = jit->lit64 - jit->lit64_start;
2190 	jit->lit32_start = jit->prg;
2191 	if (lit32_size)
2192 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
2193 	jit->lit64_start = jit->lit32_start + lit32_size;
2194 	if (lit64_size)
2195 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
2196 	jit->size = jit->lit64_start + lit64_size;
2197 	jit->size_prg = jit->prg;
2198 
2199 	if (WARN_ON_ONCE(fp->aux->extable &&
2200 			 jit->excnt != fp->aux->num_exentries))
2201 		/* Verifier bug - too many entries. */
2202 		return -1;
2203 
2204 	return 0;
2205 }
2206 
2207 bool bpf_jit_needs_zext(void)
2208 {
2209 	return true;
2210 }
2211 
2212 struct s390_jit_data {
2213 	struct bpf_binary_header *header;
2214 	struct bpf_jit ctx;
2215 	int pass;
2216 };
2217 
2218 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2219 					       struct bpf_prog *fp)
2220 {
2221 	struct bpf_binary_header *header;
2222 	struct bpf_insn *insn;
2223 	u32 extable_size;
2224 	u32 code_size;
2225 	int i;
2226 
2227 	for (i = 0; i < fp->len; i++) {
2228 		insn = &fp->insnsi[i];
2229 
2230 		if (BPF_CLASS(insn->code) == BPF_STX &&
2231 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2232 		    (BPF_SIZE(insn->code) == BPF_DW ||
2233 		     BPF_SIZE(insn->code) == BPF_W) &&
2234 		    insn->imm == BPF_XCHG)
2235 			/*
2236 			 * bpf_jit_insn() emits a load and a compare-and-swap,
2237 			 * both of which need to be probed.
2238 			 */
2239 			fp->aux->num_exentries += 1;
2240 	}
2241 	/* We need two entries per insn. */
2242 	fp->aux->num_exentries *= 2;
2243 
2244 	code_size = roundup(jit->size,
2245 			    __alignof__(struct exception_table_entry));
2246 	extable_size = fp->aux->num_exentries *
2247 		sizeof(struct exception_table_entry);
2248 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2249 				      8, jit_fill_hole);
2250 	if (!header)
2251 		return NULL;
2252 	fp->aux->extable = (struct exception_table_entry *)
2253 		(jit->prg_buf + code_size);
2254 	return header;
2255 }
2256 
2257 /*
2258  * Compile eBPF program "fp"
2259  */
2260 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2261 {
2262 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
2263 	struct bpf_prog *tmp, *orig_fp = fp;
2264 	struct bpf_binary_header *header;
2265 	struct s390_jit_data *jit_data;
2266 	bool tmp_blinded = false;
2267 	bool extra_pass = false;
2268 	struct bpf_jit jit;
2269 	int pass;
2270 
2271 	if (!fp->jit_requested)
2272 		return orig_fp;
2273 
2274 	tmp = bpf_jit_blind_constants(fp);
2275 	/*
2276 	 * If blinding was requested and we failed during blinding,
2277 	 * we must fall back to the interpreter.
2278 	 */
2279 	if (IS_ERR(tmp))
2280 		return orig_fp;
2281 	if (tmp != fp) {
2282 		tmp_blinded = true;
2283 		fp = tmp;
2284 	}
2285 
2286 	jit_data = fp->aux->jit_data;
2287 	if (!jit_data) {
2288 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2289 		if (!jit_data) {
2290 			fp = orig_fp;
2291 			goto out;
2292 		}
2293 		fp->aux->jit_data = jit_data;
2294 	}
2295 	if (jit_data->ctx.addrs) {
2296 		jit = jit_data->ctx;
2297 		header = jit_data->header;
2298 		extra_pass = true;
2299 		pass = jit_data->pass + 1;
2300 		goto skip_init_ctx;
2301 	}
2302 
2303 	memset(&jit, 0, sizeof(jit));
2304 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2305 	if (jit.addrs == NULL) {
2306 		fp = orig_fp;
2307 		goto free_addrs;
2308 	}
2309 	/*
2310 	 * Three initial passes:
2311 	 *   - 1/2: Determine clobbered registers
2312 	 *   - 3:   Calculate program size and addrs array
2313 	 */
2314 	for (pass = 1; pass <= 3; pass++) {
2315 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2316 			fp = orig_fp;
2317 			goto free_addrs;
2318 		}
2319 	}
2320 	/*
2321 	 * Final pass: Allocate and generate program
2322 	 */
2323 	header = bpf_jit_alloc(&jit, fp);
2324 	if (!header) {
2325 		fp = orig_fp;
2326 		goto free_addrs;
2327 	}
2328 skip_init_ctx:
2329 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2330 		bpf_jit_binary_free(header);
2331 		fp = orig_fp;
2332 		goto free_addrs;
2333 	}
2334 	if (bpf_jit_enable > 1) {
2335 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2336 		print_fn_code(jit.prg_buf, jit.size_prg);
2337 	}
2338 	if (!fp->is_func || extra_pass) {
2339 		if (bpf_jit_binary_lock_ro(header)) {
2340 			bpf_jit_binary_free(header);
2341 			fp = orig_fp;
2342 			goto free_addrs;
2343 		}
2344 	} else {
2345 		jit_data->header = header;
2346 		jit_data->ctx = jit;
2347 		jit_data->pass = pass;
2348 	}
2349 	fp->bpf_func = (void *) jit.prg_buf;
2350 	fp->jited = 1;
2351 	fp->jited_len = jit.size;
2352 
2353 	if (!fp->is_func || extra_pass) {
2354 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2355 free_addrs:
2356 		kvfree(jit.addrs);
2357 		kfree(jit_data);
2358 		fp->aux->jit_data = NULL;
2359 	}
2360 out:
2361 	if (tmp_blinded)
2362 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
2363 					   tmp : orig_fp);
2364 	return fp;
2365 }
2366 
2367 bool bpf_jit_supports_kfunc_call(void)
2368 {
2369 	return true;
2370 }
2371 
2372 bool bpf_jit_supports_far_kfunc_call(void)
2373 {
2374 	return true;
2375 }
2376 
2377 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2378 		       void *old_addr, void *new_addr)
2379 {
2380 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2381 	struct {
2382 		u16 opc;
2383 		s32 disp;
2384 	} __packed insn;
2385 	char *ret;
2386 	int err;
2387 
2388 	/* Verify the branch to be patched. */
2389 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2390 	if (err < 0)
2391 		return err;
2392 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2393 		return -EINVAL;
2394 
2395 	if (t == BPF_MOD_JUMP &&
2396 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2397 		/*
2398 		 * The branch already points to the destination,
2399 		 * there is no PLT.
2400 		 */
2401 	} else {
2402 		/* Verify the PLT. */
2403 		plt = ip + (insn.disp << 1);
2404 		err = copy_from_kernel_nofault(&current_plt, plt,
2405 					       sizeof(current_plt));
2406 		if (err < 0)
2407 			return err;
2408 		ret = (char *)ip + 6;
2409 		bpf_jit_plt(&expected_plt, ret, old_addr);
2410 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2411 			return -EINVAL;
2412 		/* Adjust the call address. */
2413 		bpf_jit_plt(&new_plt, ret, new_addr);
2414 		s390_kernel_write(&plt->target, &new_plt.target,
2415 				  sizeof(void *));
2416 	}
2417 
2418 	/* Adjust the mask of the branch. */
2419 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2420 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2421 
2422 	/* Make the new code visible to the other CPUs. */
2423 	text_poke_sync_lock();
2424 
2425 	return 0;
2426 }
2427 
2428 struct bpf_tramp_jit {
2429 	struct bpf_jit common;
2430 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2431 				 * func_addr's original caller
2432 				 */
2433 	int stack_size;		/* Trampoline stack size */
2434 	int backchain_off;	/* Offset of backchain */
2435 	int stack_args_off;	/* Offset of stack arguments for calling
2436 				 * func_addr, has to be at the top
2437 				 */
2438 	int reg_args_off;	/* Offset of register arguments for calling
2439 				 * func_addr
2440 				 */
2441 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2442 				 * (ctx - 16)
2443 				 */
2444 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2445 				 * (ctx - 8)
2446 				 */
2447 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2448 				 * of BPF arguments followed by return value
2449 				 */
2450 	int retval_off;		/* Offset of return value (see above) */
2451 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2452 				 * for __bpf_prog_enter() return value and
2453 				 * func_addr respectively
2454 				 */
2455 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2456 	int tccnt_off;		/* Offset of saved tailcall counter */
2457 	int r14_off;		/* Offset of saved %r14, has to be at the
2458 				 * bottom */
2459 	int do_fexit;		/* do_fexit: label */
2460 };
2461 
2462 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2463 {
2464 	/* llihf %dst_reg,val_hi */
2465 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2466 	/* oilf %rdst_reg,val_lo */
2467 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2468 }
2469 
2470 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2471 			   const struct btf_func_model *m,
2472 			   struct bpf_tramp_link *tlink, bool save_ret)
2473 {
2474 	struct bpf_jit *jit = &tjit->common;
2475 	int cookie_off = tjit->run_ctx_off +
2476 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2477 	struct bpf_prog *p = tlink->link.prog;
2478 	int patch;
2479 
2480 	/*
2481 	 * run_ctx.cookie = tlink->cookie;
2482 	 */
2483 
2484 	/* %r0 = tlink->cookie */
2485 	load_imm64(jit, REG_W0, tlink->cookie);
2486 	/* stg %r0,cookie_off(%r15) */
2487 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2488 
2489 	/*
2490 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2491 	 *         goto skip;
2492 	 */
2493 
2494 	/* %r1 = __bpf_prog_enter */
2495 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2496 	/* %r2 = p */
2497 	load_imm64(jit, REG_2, (u64)p);
2498 	/* la %r3,run_ctx_off(%r15) */
2499 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2500 	/* %r1() */
2501 	call_r1(jit);
2502 	/* ltgr %r7,%r2 */
2503 	EMIT4(0xb9020000, REG_7, REG_2);
2504 	/* brcl 8,skip */
2505 	patch = jit->prg;
2506 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2507 
2508 	/*
2509 	 * retval = bpf_func(args, p->insnsi);
2510 	 */
2511 
2512 	/* %r1 = p->bpf_func */
2513 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2514 	/* la %r2,bpf_args_off(%r15) */
2515 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2516 	/* %r3 = p->insnsi */
2517 	if (!p->jited)
2518 		load_imm64(jit, REG_3, (u64)p->insnsi);
2519 	/* %r1() */
2520 	call_r1(jit);
2521 	/* stg %r2,retval_off(%r15) */
2522 	if (save_ret) {
2523 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2524 			return -1;
2525 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2526 			      tjit->retval_off);
2527 	}
2528 
2529 	/* skip: */
2530 	if (jit->prg_buf)
2531 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2532 
2533 	/*
2534 	 * __bpf_prog_exit(p, start, &run_ctx);
2535 	 */
2536 
2537 	/* %r1 = __bpf_prog_exit */
2538 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2539 	/* %r2 = p */
2540 	load_imm64(jit, REG_2, (u64)p);
2541 	/* lgr %r3,%r7 */
2542 	EMIT4(0xb9040000, REG_3, REG_7);
2543 	/* la %r4,run_ctx_off(%r15) */
2544 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2545 	/* %r1() */
2546 	call_r1(jit);
2547 
2548 	return 0;
2549 }
2550 
2551 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2552 {
2553 	int stack_offset = tjit->stack_size;
2554 
2555 	tjit->stack_size += size;
2556 	return stack_offset;
2557 }
2558 
2559 /* ABI uses %r2 - %r6 for parameter passing. */
2560 #define MAX_NR_REG_ARGS 5
2561 
2562 /* The "L" field of the "mvc" instruction is 8 bits. */
2563 #define MAX_MVC_SIZE 256
2564 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2565 
2566 /* -mfentry generates a 6-byte nop on s390x. */
2567 #define S390X_PATCH_SIZE 6
2568 
2569 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2570 					 struct bpf_tramp_jit *tjit,
2571 					 const struct btf_func_model *m,
2572 					 u32 flags,
2573 					 struct bpf_tramp_links *tlinks,
2574 					 void *func_addr)
2575 {
2576 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2577 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2578 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2579 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2580 	struct bpf_jit *jit = &tjit->common;
2581 	int arg, bpf_arg_off;
2582 	int i, j;
2583 
2584 	/* Support as many stack arguments as "mvc" instruction can handle. */
2585 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2586 	nr_stack_args = m->nr_args - nr_reg_args;
2587 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2588 		return -ENOTSUPP;
2589 
2590 	/* Return to %r14 in the struct_ops case. */
2591 	if (flags & BPF_TRAMP_F_INDIRECT)
2592 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2593 
2594 	/*
2595 	 * Compute how many arguments we need to pass to BPF programs.
2596 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2597 	 * smaller are packed into 1 or 2 registers; larger arguments are
2598 	 * passed via pointers.
2599 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2600 	 * a register; larger arguments are passed via pointers.
2601 	 * We need to deal with this difference.
2602 	 */
2603 	nr_bpf_args = 0;
2604 	for (i = 0; i < m->nr_args; i++) {
2605 		if (m->arg_size[i] <= 8)
2606 			nr_bpf_args += 1;
2607 		else if (m->arg_size[i] <= 16)
2608 			nr_bpf_args += 2;
2609 		else
2610 			return -ENOTSUPP;
2611 	}
2612 
2613 	/*
2614 	 * Calculate the stack layout.
2615 	 */
2616 
2617 	/*
2618 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2619 	 * ABI requires, put our backchain at the end of the allocated memory.
2620 	 */
2621 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2622 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2623 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2624 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2625 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2626 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2627 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2628 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2629 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2630 	tjit->run_ctx_off = alloc_stack(tjit,
2631 					sizeof(struct bpf_tramp_run_ctx));
2632 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2633 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2634 	/*
2635 	 * In accordance with the s390x ABI, the caller has allocated
2636 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2637 	 * backchain, and the rest we can use.
2638 	 */
2639 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2640 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2641 
2642 	/* lgr %r1,%r15 */
2643 	EMIT4(0xb9040000, REG_1, REG_15);
2644 	/* aghi %r15,-stack_size */
2645 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2646 	/* stg %r1,backchain_off(%r15) */
2647 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2648 		      tjit->backchain_off);
2649 	/* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2650 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2651 	       0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2652 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2653 	if (nr_reg_args)
2654 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2655 			      REG_2 + (nr_reg_args - 1), REG_15,
2656 			      tjit->reg_args_off);
2657 	for (i = 0, j = 0; i < m->nr_args; i++) {
2658 		if (i < MAX_NR_REG_ARGS)
2659 			arg = REG_2 + i;
2660 		else
2661 			arg = tjit->orig_stack_args_off +
2662 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2663 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2664 		if (m->arg_size[i] <= 8) {
2665 			if (i < MAX_NR_REG_ARGS)
2666 				/* stg %arg,bpf_arg_off(%r15) */
2667 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2668 					      REG_0, REG_15, bpf_arg_off);
2669 			else
2670 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2671 				_EMIT6(0xd207f000 | bpf_arg_off,
2672 				       0xf000 | arg);
2673 			j += 1;
2674 		} else {
2675 			if (i < MAX_NR_REG_ARGS) {
2676 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2677 				_EMIT6(0xd20ff000 | bpf_arg_off,
2678 				       reg2hex[arg] << 12);
2679 			} else {
2680 				/* lg %r1,arg(%r15) */
2681 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2682 					      REG_15, arg);
2683 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2684 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2685 			}
2686 			j += 2;
2687 		}
2688 	}
2689 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2690 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2691 		      tjit->r7_r8_off);
2692 	/* stg %r14,r14_off(%r15) */
2693 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2694 
2695 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2696 		/*
2697 		 * The ftrace trampoline puts the return address (which is the
2698 		 * address of the original function + S390X_PATCH_SIZE) into
2699 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2700 		 * ftrace_init_nop() for details.
2701 		 */
2702 
2703 		/* lgr %r8,%r0 */
2704 		EMIT4(0xb9040000, REG_8, REG_0);
2705 	} else {
2706 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2707 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2708 	}
2709 
2710 	/*
2711 	 * ip = func_addr;
2712 	 * arg_cnt = m->nr_args;
2713 	 */
2714 
2715 	if (flags & BPF_TRAMP_F_IP_ARG) {
2716 		/* %r0 = func_addr */
2717 		load_imm64(jit, REG_0, (u64)func_addr);
2718 		/* stg %r0,ip_off(%r15) */
2719 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2720 			      tjit->ip_off);
2721 	}
2722 	/* lghi %r0,nr_bpf_args */
2723 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2724 	/* stg %r0,arg_cnt_off(%r15) */
2725 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2726 		      tjit->arg_cnt_off);
2727 
2728 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2729 		/*
2730 		 * __bpf_tramp_enter(im);
2731 		 */
2732 
2733 		/* %r1 = __bpf_tramp_enter */
2734 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2735 		/* %r2 = im */
2736 		load_imm64(jit, REG_2, (u64)im);
2737 		/* %r1() */
2738 		call_r1(jit);
2739 	}
2740 
2741 	for (i = 0; i < fentry->nr_links; i++)
2742 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2743 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2744 			return -EINVAL;
2745 
2746 	if (fmod_ret->nr_links) {
2747 		/*
2748 		 * retval = 0;
2749 		 */
2750 
2751 		/* xc retval_off(8,%r15),retval_off(%r15) */
2752 		_EMIT6(0xd707f000 | tjit->retval_off,
2753 		       0xf000 | tjit->retval_off);
2754 
2755 		for (i = 0; i < fmod_ret->nr_links; i++) {
2756 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2757 				return -EINVAL;
2758 
2759 			/*
2760 			 * if (retval)
2761 			 *         goto do_fexit;
2762 			 */
2763 
2764 			/* ltg %r0,retval_off(%r15) */
2765 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2766 				      tjit->retval_off);
2767 			/* brcl 7,do_fexit */
2768 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2769 		}
2770 	}
2771 
2772 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2773 		/*
2774 		 * retval = func_addr(args);
2775 		 */
2776 
2777 		/* lmg %r2,%rN,reg_args_off(%r15) */
2778 		if (nr_reg_args)
2779 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2780 				      REG_2 + (nr_reg_args - 1), REG_15,
2781 				      tjit->reg_args_off);
2782 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2783 		if (nr_stack_args)
2784 			_EMIT6(0xd200f000 |
2785 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2786 				       tjit->stack_args_off,
2787 			       0xf000 | tjit->orig_stack_args_off);
2788 		/* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2789 		_EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2790 		/* lgr %r1,%r8 */
2791 		EMIT4(0xb9040000, REG_1, REG_8);
2792 		/* %r1() */
2793 		call_r1(jit);
2794 		/* stg %r2,retval_off(%r15) */
2795 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2796 			      tjit->retval_off);
2797 
2798 		im->ip_after_call = jit->prg_buf + jit->prg;
2799 
2800 		/*
2801 		 * The following nop will be patched by bpf_tramp_image_put().
2802 		 */
2803 
2804 		/* brcl 0,im->ip_epilogue */
2805 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2806 	}
2807 
2808 	/* do_fexit: */
2809 	tjit->do_fexit = jit->prg;
2810 	for (i = 0; i < fexit->nr_links; i++)
2811 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2812 			return -EINVAL;
2813 
2814 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2815 		im->ip_epilogue = jit->prg_buf + jit->prg;
2816 
2817 		/*
2818 		 * __bpf_tramp_exit(im);
2819 		 */
2820 
2821 		/* %r1 = __bpf_tramp_exit */
2822 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2823 		/* %r2 = im */
2824 		load_imm64(jit, REG_2, (u64)im);
2825 		/* %r1() */
2826 		call_r1(jit);
2827 	}
2828 
2829 	/* lmg %r2,%rN,reg_args_off(%r15) */
2830 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2831 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2832 			      REG_2 + (nr_reg_args - 1), REG_15,
2833 			      tjit->reg_args_off);
2834 	/* lgr %r1,%r8 */
2835 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2836 		EMIT4(0xb9040000, REG_1, REG_8);
2837 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2838 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2839 		      tjit->r7_r8_off);
2840 	/* lg %r14,r14_off(%r15) */
2841 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2842 	/* lg %r2,retval_off(%r15) */
2843 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2844 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2845 			      tjit->retval_off);
2846 	/* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2847 	_EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2848 	       0xf000 | tjit->tccnt_off);
2849 	/* aghi %r15,stack_size */
2850 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2851 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2852 		EMIT_JUMP_REG(14);
2853 	else
2854 		EMIT_JUMP_REG(1);
2855 
2856 	return 0;
2857 }
2858 
2859 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2860 			     struct bpf_tramp_links *tlinks, void *orig_call)
2861 {
2862 	struct bpf_tramp_image im;
2863 	struct bpf_tramp_jit tjit;
2864 	int ret;
2865 
2866 	memset(&tjit, 0, sizeof(tjit));
2867 
2868 	ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2869 					    tlinks, orig_call);
2870 
2871 	return ret < 0 ? ret : tjit.common.prg;
2872 }
2873 
2874 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2875 				void *image_end, const struct btf_func_model *m,
2876 				u32 flags, struct bpf_tramp_links *tlinks,
2877 				void *func_addr)
2878 {
2879 	struct bpf_tramp_jit tjit;
2880 	int ret;
2881 
2882 	/* Compute offsets, check whether the code fits. */
2883 	memset(&tjit, 0, sizeof(tjit));
2884 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2885 					    tlinks, func_addr);
2886 
2887 	if (ret < 0)
2888 		return ret;
2889 	if (tjit.common.prg > (char *)image_end - (char *)image)
2890 		/*
2891 		 * Use the same error code as for exceeding
2892 		 * BPF_MAX_TRAMP_LINKS.
2893 		 */
2894 		return -E2BIG;
2895 
2896 	tjit.common.prg = 0;
2897 	tjit.common.prg_buf = image;
2898 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2899 					    tlinks, func_addr);
2900 
2901 	return ret < 0 ? ret : tjit.common.prg;
2902 }
2903 
2904 bool bpf_jit_supports_subprog_tailcalls(void)
2905 {
2906 	return true;
2907 }
2908 
2909 bool bpf_jit_supports_arena(void)
2910 {
2911 	return true;
2912 }
2913 
2914 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2915 {
2916 	if (!in_arena)
2917 		return true;
2918 	switch (insn->code) {
2919 	case BPF_STX | BPF_ATOMIC | BPF_B:
2920 	case BPF_STX | BPF_ATOMIC | BPF_H:
2921 	case BPF_STX | BPF_ATOMIC | BPF_W:
2922 	case BPF_STX | BPF_ATOMIC | BPF_DW:
2923 		if (bpf_atomic_is_load_store(insn))
2924 			return false;
2925 	}
2926 	return true;
2927 }
2928 
2929 bool bpf_jit_supports_exceptions(void)
2930 {
2931 	/*
2932 	 * Exceptions require unwinding support, which is always available,
2933 	 * because the kernel is always built with backchain.
2934 	 */
2935 	return true;
2936 }
2937 
2938 void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2939 			 void *cookie)
2940 {
2941 	unsigned long addr, prev_addr = 0;
2942 	struct unwind_state state;
2943 
2944 	unwind_for_each_frame(&state, NULL, NULL, 0) {
2945 		addr = unwind_get_return_address(&state);
2946 		if (!addr)
2947 			break;
2948 		/*
2949 		 * addr is a return address and state.sp is the value of %r15
2950 		 * at this address. exception_cb needs %r15 at entry to the
2951 		 * function containing addr, so take the next state.sp.
2952 		 *
2953 		 * There is no bp, and the exception_cb prog does not need one
2954 		 * to perform a quasi-longjmp. The common code requires a
2955 		 * non-zero bp, so pass sp there as well.
2956 		 */
2957 		if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
2958 					     state.sp))
2959 			break;
2960 		prev_addr = addr;
2961 	}
2962 }
2963