xref: /linux/arch/s390/net/bpf_jit_comp.c (revision 876f5ebd58a9ac42f48a7ead3d5b274a314e0ace)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include <asm/unwind.h>
35 
36 struct bpf_jit {
37 	u32 seen;		/* Flags to remember seen eBPF instructions */
38 	u16 seen_regs;		/* Mask to remember which registers are used */
39 	u32 *addrs;		/* Array with relative instruction addresses */
40 	u8 *prg_buf;		/* Start of program */
41 	int size;		/* Size of program and literal pool */
42 	int size_prg;		/* Size of program */
43 	int prg;		/* Current position in program */
44 	int lit32_start;	/* Start of 32-bit literal pool */
45 	int lit32;		/* Current position in 32-bit literal pool */
46 	int lit64_start;	/* Start of 64-bit literal pool */
47 	int lit64;		/* Current position in 64-bit literal pool */
48 	int base_ip;		/* Base address for literal pool */
49 	int exit_ip;		/* Address of exit */
50 	int tail_call_start;	/* Tail call start offset */
51 	int excnt;		/* Number of exception table entries */
52 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
53 	int prologue_plt;	/* Start of prologue hotpatch PLT */
54 	int kern_arena;		/* Pool offset of kernel arena address */
55 	u64 user_arena;		/* User arena address */
56 	u32 frame_off;		/* Offset of struct bpf_prog from %r15 */
57 };
58 
59 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
60 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
61 #define SEEN_FUNC	BIT(2)		/* calls C functions */
62 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
63 
64 #define NVREGS		0xffc0		/* %r6-%r15 */
65 
66 /*
67  * s390 registers
68  */
69 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
70 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
71 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
72 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
73 #define REG_0		REG_W0			/* Register 0 */
74 #define REG_1		REG_W1			/* Register 1 */
75 #define REG_2		BPF_REG_1		/* Register 2 */
76 #define REG_3		BPF_REG_2		/* Register 3 */
77 #define REG_4		BPF_REG_3		/* Register 4 */
78 #define REG_7		BPF_REG_6		/* Register 7 */
79 #define REG_8		BPF_REG_7		/* Register 8 */
80 #define REG_14		BPF_REG_0		/* Register 14 */
81 
82 /*
83  * Mapping of BPF registers to s390 registers
84  */
85 static const int reg2hex[] = {
86 	/* Return code */
87 	[BPF_REG_0]	= 14,
88 	/* Function parameters */
89 	[BPF_REG_1]	= 2,
90 	[BPF_REG_2]	= 3,
91 	[BPF_REG_3]	= 4,
92 	[BPF_REG_4]	= 5,
93 	[BPF_REG_5]	= 6,
94 	/* Call saved registers */
95 	[BPF_REG_6]	= 7,
96 	[BPF_REG_7]	= 8,
97 	[BPF_REG_8]	= 9,
98 	[BPF_REG_9]	= 10,
99 	/* BPF stack pointer */
100 	[BPF_REG_FP]	= 13,
101 	/* Register for blinding */
102 	[BPF_REG_AX]	= 12,
103 	/* Work registers for s390x backend */
104 	[REG_W0]	= 0,
105 	[REG_W1]	= 1,
106 	[REG_L]		= 11,
107 	[REG_15]	= 15,
108 };
109 
110 static inline u32 reg(u32 dst_reg, u32 src_reg)
111 {
112 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
113 }
114 
115 static inline u32 reg_high(u32 reg)
116 {
117 	return reg2hex[reg] << 4;
118 }
119 
120 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
121 {
122 	u32 r1 = reg2hex[b1];
123 
124 	if (r1 >= 6 && r1 <= 15)
125 		jit->seen_regs |= (1 << r1);
126 }
127 
128 static s32 off_to_pcrel(struct bpf_jit *jit, u32 off)
129 {
130 	return off - jit->prg;
131 }
132 
133 static s64 ptr_to_pcrel(struct bpf_jit *jit, const void *ptr)
134 {
135 	if (jit->prg_buf)
136 		return (const u8 *)ptr - ((const u8 *)jit->prg_buf + jit->prg);
137 	return 0;
138 }
139 
140 #define REG_SET_SEEN(b1)					\
141 ({								\
142 	reg_set_seen(jit, b1);					\
143 })
144 
145 /*
146  * EMIT macros for code generation
147  */
148 
149 #define _EMIT2(op)						\
150 ({								\
151 	if (jit->prg_buf)					\
152 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
153 	jit->prg += 2;						\
154 })
155 
156 #define EMIT2(op, b1, b2)					\
157 ({								\
158 	_EMIT2((op) | reg(b1, b2));				\
159 	REG_SET_SEEN(b1);					\
160 	REG_SET_SEEN(b2);					\
161 })
162 
163 #define _EMIT4(op)						\
164 ({								\
165 	if (jit->prg_buf)					\
166 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
167 	jit->prg += 4;						\
168 })
169 
170 #define EMIT4(op, b1, b2)					\
171 ({								\
172 	_EMIT4((op) | reg(b1, b2));				\
173 	REG_SET_SEEN(b1);					\
174 	REG_SET_SEEN(b2);					\
175 })
176 
177 #define EMIT4_RRF(op, b1, b2, b3)				\
178 ({								\
179 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
180 	REG_SET_SEEN(b1);					\
181 	REG_SET_SEEN(b2);					\
182 	REG_SET_SEEN(b3);					\
183 })
184 
185 #define _EMIT4_DISP(op, disp)					\
186 ({								\
187 	unsigned int __disp = (disp) & 0xfff;			\
188 	_EMIT4((op) | __disp);					\
189 })
190 
191 #define EMIT4_DISP(op, b1, b2, disp)				\
192 ({								\
193 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
194 		    reg_high(b2) << 8, (disp));			\
195 	REG_SET_SEEN(b1);					\
196 	REG_SET_SEEN(b2);					\
197 })
198 
199 #define EMIT4_IMM(op, b1, imm)					\
200 ({								\
201 	unsigned int __imm = (imm) & 0xffff;			\
202 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
203 	REG_SET_SEEN(b1);					\
204 })
205 
206 #define EMIT4_PCREL(op, pcrel)					\
207 ({								\
208 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
209 	_EMIT4((op) | __pcrel);					\
210 })
211 
212 #define EMIT4_PCREL_RIC(op, mask, target)			\
213 ({								\
214 	int __rel = off_to_pcrel(jit, target) / 2;		\
215 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
216 })
217 
218 #define _EMIT6(op1, op2)					\
219 ({								\
220 	if (jit->prg_buf) {					\
221 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
222 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
223 	}							\
224 	jit->prg += 6;						\
225 })
226 
227 #define _EMIT6_DISP(op1, op2, disp)				\
228 ({								\
229 	unsigned int __disp = (disp) & 0xfff;			\
230 	_EMIT6((op1) | __disp, op2);				\
231 })
232 
233 #define _EMIT6_DISP_LH(op1, op2, disp)				\
234 ({								\
235 	u32 _disp = (u32) (disp);				\
236 	unsigned int __disp_h = _disp & 0xff000;		\
237 	unsigned int __disp_l = _disp & 0x00fff;		\
238 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
239 })
240 
241 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
242 ({								\
243 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
244 		       reg_high(b3) << 8, op2, disp);		\
245 	REG_SET_SEEN(b1);					\
246 	REG_SET_SEEN(b2);					\
247 	REG_SET_SEEN(b3);					\
248 })
249 
250 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
251 ({								\
252 	unsigned int rel = off_to_pcrel(jit, target) / 2;	\
253 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
254 	       (op2) | (mask) << 12);				\
255 	REG_SET_SEEN(b1);					\
256 	REG_SET_SEEN(b2);					\
257 })
258 
259 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
260 ({								\
261 	unsigned int rel = off_to_pcrel(jit, target) / 2;	\
262 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
263 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
264 	REG_SET_SEEN(b1);					\
265 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
266 })
267 
268 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
269 ({								\
270 	int rel = off_to_pcrel(jit, addrs[(i) + (off) + 1]) / 2;\
271 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
272 	REG_SET_SEEN(b1);					\
273 	REG_SET_SEEN(b2);					\
274 })
275 
276 static void emit6_pcrel_ril(struct bpf_jit *jit, u32 op, s64 pcrel)
277 {
278 	u32 pc32dbl = (s32)(pcrel / 2);
279 
280 	_EMIT6(op | pc32dbl >> 16, pc32dbl & 0xffff);
281 }
282 
283 static void emit6_pcrel_rilb(struct bpf_jit *jit, u32 op, u8 b, s64 pcrel)
284 {
285 	emit6_pcrel_ril(jit, op | reg_high(b) << 16, pcrel);
286 	REG_SET_SEEN(b);
287 }
288 
289 #define EMIT6_PCREL_RILB(op, b, target)				\
290 	emit6_pcrel_rilb(jit, op, b, off_to_pcrel(jit, target))
291 
292 #define EMIT6_PCREL_RILB_PTR(op, b, target_ptr)			\
293 	emit6_pcrel_rilb(jit, op, b, ptr_to_pcrel(jit, target_ptr))
294 
295 static void emit6_pcrel_rilc(struct bpf_jit *jit, u32 op, u8 mask, s64 pcrel)
296 {
297 	emit6_pcrel_ril(jit, op | mask << 20, pcrel);
298 }
299 
300 #define EMIT6_PCREL_RILC(op, mask, target)			\
301 	emit6_pcrel_rilc(jit, op, mask, off_to_pcrel(jit, target))
302 
303 #define EMIT6_PCREL_RILC_PTR(op, mask, target_ptr)		\
304 	emit6_pcrel_rilc(jit, op, mask, ptr_to_pcrel(jit, target_ptr))
305 
306 #define _EMIT6_IMM(op, imm)					\
307 ({								\
308 	unsigned int __imm = (imm);				\
309 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
310 })
311 
312 #define EMIT6_IMM(op, b1, imm)					\
313 ({								\
314 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
315 	REG_SET_SEEN(b1);					\
316 })
317 
318 #define _EMIT_CONST_U32(val)					\
319 ({								\
320 	unsigned int ret;					\
321 	ret = jit->lit32;					\
322 	if (jit->prg_buf)					\
323 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
324 	jit->lit32 += 4;					\
325 	ret;							\
326 })
327 
328 #define EMIT_CONST_U32(val)					\
329 ({								\
330 	jit->seen |= SEEN_LITERAL;				\
331 	_EMIT_CONST_U32(val) - jit->base_ip;			\
332 })
333 
334 #define _EMIT_CONST_U64(val)					\
335 ({								\
336 	unsigned int ret;					\
337 	ret = jit->lit64;					\
338 	if (jit->prg_buf)					\
339 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
340 	jit->lit64 += 8;					\
341 	ret;							\
342 })
343 
344 #define EMIT_CONST_U64(val)					\
345 ({								\
346 	jit->seen |= SEEN_LITERAL;				\
347 	_EMIT_CONST_U64(val) - jit->base_ip;			\
348 })
349 
350 #define EMIT_ZERO(b1)						\
351 ({								\
352 	if (!fp->aux->verifier_zext) {				\
353 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
354 		EMIT4(0xb9160000, b1, b1);			\
355 		REG_SET_SEEN(b1);				\
356 	}							\
357 })
358 
359 /*
360  * Return whether this is the first pass. The first pass is special, since we
361  * don't know any sizes yet, and thus must be conservative.
362  */
363 static bool is_first_pass(struct bpf_jit *jit)
364 {
365 	return jit->size == 0;
366 }
367 
368 /*
369  * Return whether this is the code generation pass. The code generation pass is
370  * special, since we should change as little as possible.
371  */
372 static bool is_codegen_pass(struct bpf_jit *jit)
373 {
374 	return jit->prg_buf;
375 }
376 
377 /*
378  * Return whether "rel" can be encoded as a short PC-relative offset
379  */
380 static bool is_valid_rel(int rel)
381 {
382 	return rel >= -65536 && rel <= 65534;
383 }
384 
385 /*
386  * Return whether "off" can be reached using a short PC-relative offset
387  */
388 static bool can_use_rel(struct bpf_jit *jit, int off)
389 {
390 	return is_valid_rel(off - jit->prg);
391 }
392 
393 /*
394  * Return whether given displacement can be encoded using
395  * Long-Displacement Facility
396  */
397 static bool is_valid_ldisp(int disp)
398 {
399 	return disp >= -524288 && disp <= 524287;
400 }
401 
402 /*
403  * Return whether the next 32-bit literal pool entry can be referenced using
404  * Long-Displacement Facility
405  */
406 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
407 {
408 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
409 }
410 
411 /*
412  * Return whether the next 64-bit literal pool entry can be referenced using
413  * Long-Displacement Facility
414  */
415 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
416 {
417 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
418 }
419 
420 /*
421  * Fill whole space with illegal instructions
422  */
423 static void jit_fill_hole(void *area, unsigned int size)
424 {
425 	memset(area, 0, size);
426 }
427 
428 /*
429  * Caller-allocated part of the frame.
430  * Thanks to packed stack, its otherwise unused initial part can be used for
431  * the BPF stack and for the next frame.
432  */
433 struct prog_frame {
434 	u64 unused[8];
435 	/* BPF stack starts here and grows towards 0 */
436 	u32 tail_call_cnt;
437 	u32 pad;
438 	u64 r6[10];  /* r6 - r15 */
439 	u64 backchain;
440 } __packed;
441 
442 /*
443  * Save registers from "rs" (register start) to "re" (register end) on stack
444  */
445 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
446 {
447 	u32 off = offsetof(struct prog_frame, r6) + (rs - 6) * 8;
448 
449 	if (rs == re)
450 		/* stg %rs,off(%r15) */
451 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
452 	else
453 		/* stmg %rs,%re,off(%r15) */
454 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
455 }
456 
457 /*
458  * Restore registers from "rs" (register start) to "re" (register end) on stack
459  */
460 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
461 {
462 	u32 off = jit->frame_off + offsetof(struct prog_frame, r6) + (rs - 6) * 8;
463 
464 	if (rs == re)
465 		/* lg %rs,off(%r15) */
466 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
467 	else
468 		/* lmg %rs,%re,off(%r15) */
469 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
470 }
471 
472 /*
473  * Return first seen register (from start)
474  */
475 static int get_start(u16 seen_regs, int start)
476 {
477 	int i;
478 
479 	for (i = start; i <= 15; i++) {
480 		if (seen_regs & (1 << i))
481 			return i;
482 	}
483 	return 0;
484 }
485 
486 /*
487  * Return last seen register (from start) (gap >= 2)
488  */
489 static int get_end(u16 seen_regs, int start)
490 {
491 	int i;
492 
493 	for (i = start; i < 15; i++) {
494 		if (!(seen_regs & (3 << i)))
495 			return i - 1;
496 	}
497 	return (seen_regs & (1 << 15)) ? 15 : 14;
498 }
499 
500 #define REGS_SAVE	1
501 #define REGS_RESTORE	0
502 /*
503  * Save and restore clobbered registers (6-15) on stack.
504  * We save/restore registers in chunks with gap >= 2 registers.
505  */
506 static void save_restore_regs(struct bpf_jit *jit, int op, u16 extra_regs)
507 {
508 	u16 seen_regs = jit->seen_regs | extra_regs;
509 	const int last = 15, save_restore_size = 6;
510 	int re = 6, rs;
511 
512 	if (is_first_pass(jit)) {
513 		/*
514 		 * We don't know yet which registers are used. Reserve space
515 		 * conservatively.
516 		 */
517 		jit->prg += (last - re + 1) * save_restore_size;
518 		return;
519 	}
520 
521 	do {
522 		rs = get_start(seen_regs, re);
523 		if (!rs)
524 			break;
525 		re = get_end(seen_regs, rs + 1);
526 		if (op == REGS_SAVE)
527 			save_regs(jit, rs, re);
528 		else
529 			restore_regs(jit, rs, re);
530 		re++;
531 	} while (re <= last);
532 }
533 
534 static void bpf_skip(struct bpf_jit *jit, int size)
535 {
536 	if (size >= 6 && !is_valid_rel(size)) {
537 		/* brcl 0xf,size */
538 		EMIT6_PCREL_RILC(0xc0040000, 0xf, size);
539 		size -= 6;
540 	} else if (size >= 4 && is_valid_rel(size)) {
541 		/* brc 0xf,size */
542 		EMIT4_PCREL(0xa7f40000, size);
543 		size -= 4;
544 	}
545 	while (size >= 2) {
546 		/* bcr 0,%0 */
547 		_EMIT2(0x0700);
548 		size -= 2;
549 	}
550 }
551 
552 /*
553  * PLT for hotpatchable calls. The calling convention is the same as for the
554  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
555  */
556 struct bpf_plt {
557 	char code[16];
558 	void *ret;
559 	void *target;
560 } __packed;
561 extern const struct bpf_plt bpf_plt;
562 asm(
563 	".pushsection .rodata\n"
564 	"	.balign 8\n"
565 	"bpf_plt:\n"
566 	"	lgrl %r0,bpf_plt_ret\n"
567 	"	lgrl %r1,bpf_plt_target\n"
568 	"	br %r1\n"
569 	"	.balign 8\n"
570 	"bpf_plt_ret: .quad 0\n"
571 	"bpf_plt_target: .quad 0\n"
572 	"	.popsection\n"
573 );
574 
575 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
576 {
577 	memcpy(plt, &bpf_plt, sizeof(*plt));
578 	plt->ret = ret;
579 	plt->target = target;
580 }
581 
582 /*
583  * Emit function prologue
584  *
585  * Save registers and create stack frame if necessary.
586  * Stack frame layout is described by struct prog_frame.
587  */
588 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp)
589 {
590 	BUILD_BUG_ON(sizeof(struct prog_frame) != STACK_FRAME_OVERHEAD);
591 
592 	/* No-op for hotpatching */
593 	/* brcl 0,prologue_plt */
594 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
595 	jit->prologue_plt_ret = jit->prg;
596 
597 	if (!bpf_is_subprog(fp)) {
598 		/* Initialize the tail call counter in the main program. */
599 		/* xc tail_call_cnt(4,%r15),tail_call_cnt(%r15) */
600 		_EMIT6(0xd703f000 | offsetof(struct prog_frame, tail_call_cnt),
601 		       0xf000 | offsetof(struct prog_frame, tail_call_cnt));
602 	} else {
603 		/*
604 		 * Skip the tail call counter initialization in subprograms.
605 		 * Insert nops in order to have tail_call_start at a
606 		 * predictable offset.
607 		 */
608 		bpf_skip(jit, 6);
609 	}
610 	/* Tail calls have to skip above initialization */
611 	jit->tail_call_start = jit->prg;
612 	if (fp->aux->exception_cb) {
613 		/*
614 		 * Switch stack, the new address is in the 2nd parameter.
615 		 *
616 		 * Arrange the restoration of %r6-%r15 in the epilogue.
617 		 * Do not restore them now, the prog does not need them.
618 		 */
619 		/* lgr %r15,%r3 */
620 		EMIT4(0xb9040000, REG_15, REG_3);
621 		jit->seen_regs |= NVREGS;
622 	} else {
623 		/* Save registers */
624 		save_restore_regs(jit, REGS_SAVE,
625 				  fp->aux->exception_boundary ? NVREGS : 0);
626 	}
627 	/* Setup literal pool */
628 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
629 		if (!is_first_pass(jit) &&
630 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
631 			/* basr %l,0 */
632 			EMIT2(0x0d00, REG_L, REG_0);
633 			jit->base_ip = jit->prg;
634 		} else {
635 			/* larl %l,lit32_start */
636 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
637 			jit->base_ip = jit->lit32_start;
638 		}
639 	}
640 	/* Setup stack and backchain */
641 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
642 		/* lgr %w1,%r15 (backchain) */
643 		EMIT4(0xb9040000, REG_W1, REG_15);
644 		/* la %bfp,unused_end(%r15) (BPF frame pointer) */
645 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15,
646 			   offsetofend(struct prog_frame, unused));
647 		/* aghi %r15,-frame_off */
648 		EMIT4_IMM(0xa70b0000, REG_15, -jit->frame_off);
649 		/* stg %w1,backchain(%r15) */
650 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
651 			      REG_15,
652 			      offsetof(struct prog_frame, backchain));
653 	}
654 }
655 
656 /*
657  * Jump using a register either directly or via an expoline thunk
658  */
659 #define EMIT_JUMP_REG(reg) do {						\
660 	if (nospec_uses_trampoline())					\
661 		/* brcl 0xf,__s390_indirect_jump_rN */			\
662 		EMIT6_PCREL_RILC_PTR(0xc0040000, 0x0f,			\
663 				     __s390_indirect_jump_r ## reg);	\
664 	else								\
665 		/* br %rN */						\
666 		_EMIT2(0x07f0 | reg);					\
667 } while (0)
668 
669 /*
670  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
671  */
672 static void call_r1(struct bpf_jit *jit)
673 {
674 	if (nospec_uses_trampoline())
675 		/* brasl %r14,__s390_indirect_jump_r1 */
676 		EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14,
677 				     __s390_indirect_jump_r1);
678 	else
679 		/* basr %r14,%r1 */
680 		EMIT2(0x0d00, REG_14, REG_1);
681 }
682 
683 /*
684  * Function epilogue
685  */
686 static void bpf_jit_epilogue(struct bpf_jit *jit)
687 {
688 	jit->exit_ip = jit->prg;
689 	/* Load exit code: lgr %r2,%b0 */
690 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
691 	/* Restore registers */
692 	save_restore_regs(jit, REGS_RESTORE, 0);
693 	EMIT_JUMP_REG(14);
694 
695 	jit->prg = ALIGN(jit->prg, 8);
696 	jit->prologue_plt = jit->prg;
697 	if (jit->prg_buf)
698 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
699 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
700 	jit->prg += sizeof(struct bpf_plt);
701 }
702 
703 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
704 {
705 	regs->psw.addr = extable_fixup(x);
706 	if (x->data != -1)
707 		regs->gprs[x->data] = 0;
708 	return true;
709 }
710 
711 /*
712  * A single BPF probe instruction
713  */
714 struct bpf_jit_probe {
715 	int prg;	/* JITed instruction offset */
716 	int nop_prg;	/* JITed nop offset */
717 	int reg;	/* Register to clear on exception */
718 	int arena_reg;	/* Register to use for arena addressing */
719 };
720 
721 static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
722 {
723 	probe->prg = -1;
724 	probe->nop_prg = -1;
725 	probe->reg = -1;
726 	probe->arena_reg = REG_0;
727 }
728 
729 /*
730  * Handlers of certain exceptions leave psw.addr pointing to the instruction
731  * directly after the failing one. Therefore, create two exception table
732  * entries and also add a nop in case two probing instructions come directly
733  * after each other.
734  */
735 static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
736 				   struct bpf_jit_probe *probe)
737 {
738 	if (probe->prg == -1 || probe->nop_prg != -1)
739 		/* The probe is not armed or nop is already emitted. */
740 		return;
741 
742 	probe->nop_prg = jit->prg;
743 	/* bcr 0,%0 */
744 	_EMIT2(0x0700);
745 }
746 
747 static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
748 				   struct bpf_jit_probe *probe)
749 {
750 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
751 	    BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
752 	    BPF_MODE(insn->code) != BPF_PROBE_MEM32)
753 		return;
754 
755 	if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
756 		/* lgrl %r1,kern_arena */
757 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
758 		probe->arena_reg = REG_W1;
759 	}
760 	probe->prg = jit->prg;
761 	probe->reg = reg2hex[insn->dst_reg];
762 }
763 
764 static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
765 				    struct bpf_jit_probe *probe)
766 {
767 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
768 		return;
769 
770 	/* lgrl %r1,kern_arena */
771 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
772 	probe->arena_reg = REG_W1;
773 	probe->prg = jit->prg;
774 }
775 
776 static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
777 				     struct bpf_insn *insn,
778 				     struct bpf_jit_probe *probe)
779 {
780 	if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
781 		return;
782 
783 	/* lgrl %r1,kern_arena */
784 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
785 	/* agr %r1,%dst */
786 	EMIT4(0xb9080000, REG_W1, insn->dst_reg);
787 	probe->arena_reg = REG_W1;
788 	probe->prg = jit->prg;
789 }
790 
791 static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
792 			      struct bpf_jit_probe *probe)
793 {
794 	struct exception_table_entry *ex;
795 	int i, prg;
796 	s64 delta;
797 	u8 *insn;
798 
799 	if (probe->prg == -1)
800 		/* The probe is not armed. */
801 		return 0;
802 	bpf_jit_probe_emit_nop(jit, probe);
803 	if (!fp->aux->extable)
804 		/* Do nothing during early JIT passes. */
805 		return 0;
806 	insn = jit->prg_buf + probe->prg;
807 	if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
808 		/* JIT bug - gap between probe and nop instructions. */
809 		return -1;
810 	for (i = 0; i < 2; i++) {
811 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
812 			/* Verifier bug - not enough entries. */
813 			return -1;
814 		ex = &fp->aux->extable[jit->excnt];
815 		/* Add extable entries for probe and nop instructions. */
816 		prg = i == 0 ? probe->prg : probe->nop_prg;
817 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
818 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
819 			/* JIT bug - code and extable must be close. */
820 			return -1;
821 		ex->insn = delta;
822 		/*
823 		 * Land on the current instruction. Note that the extable
824 		 * infrastructure ignores the fixup field; it is handled by
825 		 * ex_handler_bpf().
826 		 */
827 		delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
828 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
829 			/* JIT bug - landing pad and extable must be close. */
830 			return -1;
831 		ex->fixup = delta;
832 		ex->type = EX_TYPE_BPF;
833 		ex->data = probe->reg;
834 		jit->excnt++;
835 	}
836 	return 0;
837 }
838 
839 /*
840  * Sign-extend the register if necessary
841  */
842 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
843 {
844 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
845 		return 0;
846 
847 	switch (size) {
848 	case 1:
849 		/* lgbr %r,%r */
850 		EMIT4(0xb9060000, r, r);
851 		return 0;
852 	case 2:
853 		/* lghr %r,%r */
854 		EMIT4(0xb9070000, r, r);
855 		return 0;
856 	case 4:
857 		/* lgfr %r,%r */
858 		EMIT4(0xb9140000, r, r);
859 		return 0;
860 	case 8:
861 		return 0;
862 	default:
863 		return -1;
864 	}
865 }
866 
867 /*
868  * Compile one eBPF instruction into s390x code
869  *
870  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
871  * stack space for the large switch statement.
872  */
873 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
874 				 int i, bool extra_pass)
875 {
876 	struct bpf_insn *insn = &fp->insnsi[i];
877 	s32 branch_oc_off = insn->off;
878 	u32 dst_reg = insn->dst_reg;
879 	u32 src_reg = insn->src_reg;
880 	struct bpf_jit_probe probe;
881 	int last, insn_count = 1;
882 	u32 *addrs = jit->addrs;
883 	s32 imm = insn->imm;
884 	s16 off = insn->off;
885 	unsigned int mask;
886 	int err;
887 
888 	bpf_jit_probe_init(&probe);
889 
890 	switch (insn->code) {
891 	/*
892 	 * BPF_MOV
893 	 */
894 	case BPF_ALU | BPF_MOV | BPF_X:
895 		switch (insn->off) {
896 		case 0: /* DST = (u32) SRC */
897 			/* llgfr %dst,%src */
898 			EMIT4(0xb9160000, dst_reg, src_reg);
899 			if (insn_is_zext(&insn[1]))
900 				insn_count = 2;
901 			break;
902 		case 8: /* DST = (u32)(s8) SRC */
903 			/* lbr %dst,%src */
904 			EMIT4(0xb9260000, dst_reg, src_reg);
905 			/* llgfr %dst,%dst */
906 			EMIT4(0xb9160000, dst_reg, dst_reg);
907 			break;
908 		case 16: /* DST = (u32)(s16) SRC */
909 			/* lhr %dst,%src */
910 			EMIT4(0xb9270000, dst_reg, src_reg);
911 			/* llgfr %dst,%dst */
912 			EMIT4(0xb9160000, dst_reg, dst_reg);
913 			break;
914 		}
915 		break;
916 	case BPF_ALU64 | BPF_MOV | BPF_X:
917 		if (insn_is_cast_user(insn)) {
918 			int patch_brc;
919 
920 			/* ltgr %dst,%src */
921 			EMIT4(0xb9020000, dst_reg, src_reg);
922 			/* brc 8,0f */
923 			patch_brc = jit->prg;
924 			EMIT4_PCREL_RIC(0xa7040000, 8, 0);
925 			/* iihf %dst,user_arena>>32 */
926 			EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
927 			/* 0: */
928 			if (jit->prg_buf)
929 				*(u16 *)(jit->prg_buf + patch_brc + 2) =
930 					(jit->prg - patch_brc) >> 1;
931 			break;
932 		}
933 		switch (insn->off) {
934 		case 0: /* DST = SRC */
935 			/* lgr %dst,%src */
936 			EMIT4(0xb9040000, dst_reg, src_reg);
937 			break;
938 		case 8: /* DST = (s8) SRC */
939 			/* lgbr %dst,%src */
940 			EMIT4(0xb9060000, dst_reg, src_reg);
941 			break;
942 		case 16: /* DST = (s16) SRC */
943 			/* lghr %dst,%src */
944 			EMIT4(0xb9070000, dst_reg, src_reg);
945 			break;
946 		case 32: /* DST = (s32) SRC */
947 			/* lgfr %dst,%src */
948 			EMIT4(0xb9140000, dst_reg, src_reg);
949 			break;
950 		}
951 		break;
952 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
953 		/* llilf %dst,imm */
954 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
955 		if (insn_is_zext(&insn[1]))
956 			insn_count = 2;
957 		break;
958 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
959 		/* lgfi %dst,imm */
960 		EMIT6_IMM(0xc0010000, dst_reg, imm);
961 		break;
962 	/*
963 	 * BPF_LD 64
964 	 */
965 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
966 	{
967 		/* 16 byte instruction that uses two 'struct bpf_insn' */
968 		u64 imm64;
969 
970 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
971 		/* lgrl %dst,imm */
972 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
973 		insn_count = 2;
974 		break;
975 	}
976 	/*
977 	 * BPF_ADD
978 	 */
979 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
980 		/* ar %dst,%src */
981 		EMIT2(0x1a00, dst_reg, src_reg);
982 		EMIT_ZERO(dst_reg);
983 		break;
984 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
985 		/* agr %dst,%src */
986 		EMIT4(0xb9080000, dst_reg, src_reg);
987 		break;
988 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
989 		if (imm != 0) {
990 			/* alfi %dst,imm */
991 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
992 		}
993 		EMIT_ZERO(dst_reg);
994 		break;
995 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
996 		if (!imm)
997 			break;
998 		/* agfi %dst,imm */
999 		EMIT6_IMM(0xc2080000, dst_reg, imm);
1000 		break;
1001 	/*
1002 	 * BPF_SUB
1003 	 */
1004 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
1005 		/* sr %dst,%src */
1006 		EMIT2(0x1b00, dst_reg, src_reg);
1007 		EMIT_ZERO(dst_reg);
1008 		break;
1009 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
1010 		/* sgr %dst,%src */
1011 		EMIT4(0xb9090000, dst_reg, src_reg);
1012 		break;
1013 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
1014 		if (imm != 0) {
1015 			/* alfi %dst,-imm */
1016 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1017 		}
1018 		EMIT_ZERO(dst_reg);
1019 		break;
1020 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1021 		if (!imm)
1022 			break;
1023 		if (imm == -0x80000000) {
1024 			/* algfi %dst,0x80000000 */
1025 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1026 		} else {
1027 			/* agfi %dst,-imm */
1028 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
1029 		}
1030 		break;
1031 	/*
1032 	 * BPF_MUL
1033 	 */
1034 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1035 		/* msr %dst,%src */
1036 		EMIT4(0xb2520000, dst_reg, src_reg);
1037 		EMIT_ZERO(dst_reg);
1038 		break;
1039 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1040 		/* msgr %dst,%src */
1041 		EMIT4(0xb90c0000, dst_reg, src_reg);
1042 		break;
1043 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1044 		if (imm != 1) {
1045 			/* msfi %r5,imm */
1046 			EMIT6_IMM(0xc2010000, dst_reg, imm);
1047 		}
1048 		EMIT_ZERO(dst_reg);
1049 		break;
1050 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1051 		if (imm == 1)
1052 			break;
1053 		/* msgfi %dst,imm */
1054 		EMIT6_IMM(0xc2000000, dst_reg, imm);
1055 		break;
1056 	/*
1057 	 * BPF_DIV / BPF_MOD
1058 	 */
1059 	case BPF_ALU | BPF_DIV | BPF_X:
1060 	case BPF_ALU | BPF_MOD | BPF_X:
1061 	{
1062 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1063 
1064 		switch (off) {
1065 		case 0: /* dst = (u32) dst {/,%} (u32) src */
1066 			/* xr %w0,%w0 */
1067 			EMIT2(0x1700, REG_W0, REG_W0);
1068 			/* lr %w1,%dst */
1069 			EMIT2(0x1800, REG_W1, dst_reg);
1070 			/* dlr %w0,%src */
1071 			EMIT4(0xb9970000, REG_W0, src_reg);
1072 			break;
1073 		case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1074 			/* lgfr %r1,%dst */
1075 			EMIT4(0xb9140000, REG_W1, dst_reg);
1076 			/* dsgfr %r0,%src */
1077 			EMIT4(0xb91d0000, REG_W0, src_reg);
1078 			break;
1079 		}
1080 		/* llgfr %dst,%rc */
1081 		EMIT4(0xb9160000, dst_reg, rc_reg);
1082 		if (insn_is_zext(&insn[1]))
1083 			insn_count = 2;
1084 		break;
1085 	}
1086 	case BPF_ALU64 | BPF_DIV | BPF_X:
1087 	case BPF_ALU64 | BPF_MOD | BPF_X:
1088 	{
1089 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1090 
1091 		switch (off) {
1092 		case 0: /* dst = dst {/,%} src */
1093 			/* lghi %w0,0 */
1094 			EMIT4_IMM(0xa7090000, REG_W0, 0);
1095 			/* lgr %w1,%dst */
1096 			EMIT4(0xb9040000, REG_W1, dst_reg);
1097 			/* dlgr %w0,%src */
1098 			EMIT4(0xb9870000, REG_W0, src_reg);
1099 			break;
1100 		case 1: /* dst = (s64) dst {/,%} (s64) src */
1101 			/* lgr %w1,%dst */
1102 			EMIT4(0xb9040000, REG_W1, dst_reg);
1103 			/* dsgr %w0,%src */
1104 			EMIT4(0xb90d0000, REG_W0, src_reg);
1105 			break;
1106 		}
1107 		/* lgr %dst,%rc */
1108 		EMIT4(0xb9040000, dst_reg, rc_reg);
1109 		break;
1110 	}
1111 	case BPF_ALU | BPF_DIV | BPF_K:
1112 	case BPF_ALU | BPF_MOD | BPF_K:
1113 	{
1114 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1115 
1116 		if (imm == 1) {
1117 			if (BPF_OP(insn->code) == BPF_MOD)
1118 				/* lghi %dst,0 */
1119 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1120 			else
1121 				EMIT_ZERO(dst_reg);
1122 			break;
1123 		}
1124 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1125 			switch (off) {
1126 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1127 				/* xr %w0,%w0 */
1128 				EMIT2(0x1700, REG_W0, REG_W0);
1129 				/* lr %w1,%dst */
1130 				EMIT2(0x1800, REG_W1, dst_reg);
1131 				/* dl %w0,<d(imm)>(%l) */
1132 				EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1133 					      REG_L, EMIT_CONST_U32(imm));
1134 				break;
1135 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1136 				/* lgfr %r1,%dst */
1137 				EMIT4(0xb9140000, REG_W1, dst_reg);
1138 				/* dsgf %r0,<d(imm)>(%l) */
1139 				EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1140 					      REG_L, EMIT_CONST_U32(imm));
1141 				break;
1142 			}
1143 		} else {
1144 			switch (off) {
1145 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1146 				/* xr %w0,%w0 */
1147 				EMIT2(0x1700, REG_W0, REG_W0);
1148 				/* lr %w1,%dst */
1149 				EMIT2(0x1800, REG_W1, dst_reg);
1150 				/* lrl %dst,imm */
1151 				EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1152 						 _EMIT_CONST_U32(imm));
1153 				jit->seen |= SEEN_LITERAL;
1154 				/* dlr %w0,%dst */
1155 				EMIT4(0xb9970000, REG_W0, dst_reg);
1156 				break;
1157 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1158 				/* lgfr %w1,%dst */
1159 				EMIT4(0xb9140000, REG_W1, dst_reg);
1160 				/* lgfrl %dst,imm */
1161 				EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1162 						 _EMIT_CONST_U32(imm));
1163 				jit->seen |= SEEN_LITERAL;
1164 				/* dsgr %w0,%dst */
1165 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1166 				break;
1167 			}
1168 		}
1169 		/* llgfr %dst,%rc */
1170 		EMIT4(0xb9160000, dst_reg, rc_reg);
1171 		if (insn_is_zext(&insn[1]))
1172 			insn_count = 2;
1173 		break;
1174 	}
1175 	case BPF_ALU64 | BPF_DIV | BPF_K:
1176 	case BPF_ALU64 | BPF_MOD | BPF_K:
1177 	{
1178 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1179 
1180 		if (imm == 1) {
1181 			if (BPF_OP(insn->code) == BPF_MOD)
1182 				/* lhgi %dst,0 */
1183 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1184 			break;
1185 		}
1186 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1187 			switch (off) {
1188 			case 0: /* dst = dst {/,%} imm */
1189 				/* lghi %w0,0 */
1190 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1191 				/* lgr %w1,%dst */
1192 				EMIT4(0xb9040000, REG_W1, dst_reg);
1193 				/* dlg %w0,<d(imm)>(%l) */
1194 				EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1195 					      REG_L, EMIT_CONST_U64(imm));
1196 				break;
1197 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1198 				/* lgr %w1,%dst */
1199 				EMIT4(0xb9040000, REG_W1, dst_reg);
1200 				/* dsg %w0,<d(imm)>(%l) */
1201 				EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1202 					      REG_L, EMIT_CONST_U64(imm));
1203 				break;
1204 			}
1205 		} else {
1206 			switch (off) {
1207 			case 0: /* dst = dst {/,%} imm */
1208 				/* lghi %w0,0 */
1209 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1210 				/* lgr %w1,%dst */
1211 				EMIT4(0xb9040000, REG_W1, dst_reg);
1212 				/* lgrl %dst,imm */
1213 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1214 						 _EMIT_CONST_U64(imm));
1215 				jit->seen |= SEEN_LITERAL;
1216 				/* dlgr %w0,%dst */
1217 				EMIT4(0xb9870000, REG_W0, dst_reg);
1218 				break;
1219 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1220 				/* lgr %w1,%dst */
1221 				EMIT4(0xb9040000, REG_W1, dst_reg);
1222 				/* lgrl %dst,imm */
1223 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1224 						 _EMIT_CONST_U64(imm));
1225 				jit->seen |= SEEN_LITERAL;
1226 				/* dsgr %w0,%dst */
1227 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1228 				break;
1229 			}
1230 		}
1231 		/* lgr %dst,%rc */
1232 		EMIT4(0xb9040000, dst_reg, rc_reg);
1233 		break;
1234 	}
1235 	/*
1236 	 * BPF_AND
1237 	 */
1238 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1239 		/* nr %dst,%src */
1240 		EMIT2(0x1400, dst_reg, src_reg);
1241 		EMIT_ZERO(dst_reg);
1242 		break;
1243 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1244 		/* ngr %dst,%src */
1245 		EMIT4(0xb9800000, dst_reg, src_reg);
1246 		break;
1247 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1248 		/* nilf %dst,imm */
1249 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1250 		EMIT_ZERO(dst_reg);
1251 		break;
1252 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1253 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1254 			/* ng %dst,<d(imm)>(%l) */
1255 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1256 				      dst_reg, REG_0, REG_L,
1257 				      EMIT_CONST_U64(imm));
1258 		} else {
1259 			/* lgrl %w0,imm */
1260 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1261 					 _EMIT_CONST_U64(imm));
1262 			jit->seen |= SEEN_LITERAL;
1263 			/* ngr %dst,%w0 */
1264 			EMIT4(0xb9800000, dst_reg, REG_W0);
1265 		}
1266 		break;
1267 	/*
1268 	 * BPF_OR
1269 	 */
1270 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1271 		/* or %dst,%src */
1272 		EMIT2(0x1600, dst_reg, src_reg);
1273 		EMIT_ZERO(dst_reg);
1274 		break;
1275 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1276 		/* ogr %dst,%src */
1277 		EMIT4(0xb9810000, dst_reg, src_reg);
1278 		break;
1279 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1280 		/* oilf %dst,imm */
1281 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1282 		EMIT_ZERO(dst_reg);
1283 		break;
1284 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1285 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1286 			/* og %dst,<d(imm)>(%l) */
1287 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1288 				      dst_reg, REG_0, REG_L,
1289 				      EMIT_CONST_U64(imm));
1290 		} else {
1291 			/* lgrl %w0,imm */
1292 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1293 					 _EMIT_CONST_U64(imm));
1294 			jit->seen |= SEEN_LITERAL;
1295 			/* ogr %dst,%w0 */
1296 			EMIT4(0xb9810000, dst_reg, REG_W0);
1297 		}
1298 		break;
1299 	/*
1300 	 * BPF_XOR
1301 	 */
1302 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1303 		/* xr %dst,%src */
1304 		EMIT2(0x1700, dst_reg, src_reg);
1305 		EMIT_ZERO(dst_reg);
1306 		break;
1307 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1308 		/* xgr %dst,%src */
1309 		EMIT4(0xb9820000, dst_reg, src_reg);
1310 		break;
1311 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1312 		if (imm != 0) {
1313 			/* xilf %dst,imm */
1314 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1315 		}
1316 		EMIT_ZERO(dst_reg);
1317 		break;
1318 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1319 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1320 			/* xg %dst,<d(imm)>(%l) */
1321 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1322 				      dst_reg, REG_0, REG_L,
1323 				      EMIT_CONST_U64(imm));
1324 		} else {
1325 			/* lgrl %w0,imm */
1326 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1327 					 _EMIT_CONST_U64(imm));
1328 			jit->seen |= SEEN_LITERAL;
1329 			/* xgr %dst,%w0 */
1330 			EMIT4(0xb9820000, dst_reg, REG_W0);
1331 		}
1332 		break;
1333 	/*
1334 	 * BPF_LSH
1335 	 */
1336 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1337 		/* sll %dst,0(%src) */
1338 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1339 		EMIT_ZERO(dst_reg);
1340 		break;
1341 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1342 		/* sllg %dst,%dst,0(%src) */
1343 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1344 		break;
1345 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1346 		if (imm != 0) {
1347 			/* sll %dst,imm(%r0) */
1348 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1349 		}
1350 		EMIT_ZERO(dst_reg);
1351 		break;
1352 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1353 		if (imm == 0)
1354 			break;
1355 		/* sllg %dst,%dst,imm(%r0) */
1356 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1357 		break;
1358 	/*
1359 	 * BPF_RSH
1360 	 */
1361 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1362 		/* srl %dst,0(%src) */
1363 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1364 		EMIT_ZERO(dst_reg);
1365 		break;
1366 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1367 		/* srlg %dst,%dst,0(%src) */
1368 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1369 		break;
1370 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1371 		if (imm != 0) {
1372 			/* srl %dst,imm(%r0) */
1373 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1374 		}
1375 		EMIT_ZERO(dst_reg);
1376 		break;
1377 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1378 		if (imm == 0)
1379 			break;
1380 		/* srlg %dst,%dst,imm(%r0) */
1381 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1382 		break;
1383 	/*
1384 	 * BPF_ARSH
1385 	 */
1386 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1387 		/* sra %dst,%dst,0(%src) */
1388 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1389 		EMIT_ZERO(dst_reg);
1390 		break;
1391 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1392 		/* srag %dst,%dst,0(%src) */
1393 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1394 		break;
1395 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1396 		if (imm != 0) {
1397 			/* sra %dst,imm(%r0) */
1398 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1399 		}
1400 		EMIT_ZERO(dst_reg);
1401 		break;
1402 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1403 		if (imm == 0)
1404 			break;
1405 		/* srag %dst,%dst,imm(%r0) */
1406 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1407 		break;
1408 	/*
1409 	 * BPF_NEG
1410 	 */
1411 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1412 		/* lcr %dst,%dst */
1413 		EMIT2(0x1300, dst_reg, dst_reg);
1414 		EMIT_ZERO(dst_reg);
1415 		break;
1416 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1417 		/* lcgr %dst,%dst */
1418 		EMIT4(0xb9030000, dst_reg, dst_reg);
1419 		break;
1420 	/*
1421 	 * BPF_FROM_BE/LE
1422 	 */
1423 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1424 		/* s390 is big endian, therefore only clear high order bytes */
1425 		switch (imm) {
1426 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1427 			/* llghr %dst,%dst */
1428 			EMIT4(0xb9850000, dst_reg, dst_reg);
1429 			if (insn_is_zext(&insn[1]))
1430 				insn_count = 2;
1431 			break;
1432 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1433 			if (!fp->aux->verifier_zext)
1434 				/* llgfr %dst,%dst */
1435 				EMIT4(0xb9160000, dst_reg, dst_reg);
1436 			break;
1437 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1438 			break;
1439 		}
1440 		break;
1441 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1442 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1443 		switch (imm) {
1444 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1445 			/* lrvr %dst,%dst */
1446 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1447 			/* srl %dst,16(%r0) */
1448 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1449 			/* llghr %dst,%dst */
1450 			EMIT4(0xb9850000, dst_reg, dst_reg);
1451 			if (insn_is_zext(&insn[1]))
1452 				insn_count = 2;
1453 			break;
1454 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1455 			/* lrvr %dst,%dst */
1456 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1457 			if (!fp->aux->verifier_zext)
1458 				/* llgfr %dst,%dst */
1459 				EMIT4(0xb9160000, dst_reg, dst_reg);
1460 			break;
1461 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1462 			/* lrvgr %dst,%dst */
1463 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1464 			break;
1465 		}
1466 		break;
1467 	/*
1468 	 * BPF_NOSPEC (speculation barrier)
1469 	 */
1470 	case BPF_ST | BPF_NOSPEC:
1471 		break;
1472 	/*
1473 	 * BPF_ST(X)
1474 	 */
1475 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1476 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1477 		bpf_jit_probe_store_pre(jit, insn, &probe);
1478 		/* stcy %src,off(%dst,%arena) */
1479 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1480 			      probe.arena_reg, off);
1481 		err = bpf_jit_probe_post(jit, fp, &probe);
1482 		if (err < 0)
1483 			return err;
1484 		jit->seen |= SEEN_MEM;
1485 		break;
1486 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1487 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1488 		bpf_jit_probe_store_pre(jit, insn, &probe);
1489 		/* sthy %src,off(%dst,%arena) */
1490 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1491 			      probe.arena_reg, off);
1492 		err = bpf_jit_probe_post(jit, fp, &probe);
1493 		if (err < 0)
1494 			return err;
1495 		jit->seen |= SEEN_MEM;
1496 		break;
1497 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1498 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1499 		bpf_jit_probe_store_pre(jit, insn, &probe);
1500 		/* sty %src,off(%dst,%arena) */
1501 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1502 			      probe.arena_reg, off);
1503 		err = bpf_jit_probe_post(jit, fp, &probe);
1504 		if (err < 0)
1505 			return err;
1506 		jit->seen |= SEEN_MEM;
1507 		break;
1508 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1509 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1510 		bpf_jit_probe_store_pre(jit, insn, &probe);
1511 		/* stg %src,off(%dst,%arena) */
1512 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1513 			      probe.arena_reg, off);
1514 		err = bpf_jit_probe_post(jit, fp, &probe);
1515 		if (err < 0)
1516 			return err;
1517 		jit->seen |= SEEN_MEM;
1518 		break;
1519 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1520 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1521 		/* lhi %w0,imm */
1522 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1523 		bpf_jit_probe_store_pre(jit, insn, &probe);
1524 		/* stcy %w0,off(%dst,%arena) */
1525 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1526 			      probe.arena_reg, off);
1527 		err = bpf_jit_probe_post(jit, fp, &probe);
1528 		if (err < 0)
1529 			return err;
1530 		jit->seen |= SEEN_MEM;
1531 		break;
1532 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1533 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1534 		/* lhi %w0,imm */
1535 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1536 		bpf_jit_probe_store_pre(jit, insn, &probe);
1537 		/* sthy %w0,off(%dst,%arena) */
1538 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1539 			      probe.arena_reg, off);
1540 		err = bpf_jit_probe_post(jit, fp, &probe);
1541 		if (err < 0)
1542 			return err;
1543 		jit->seen |= SEEN_MEM;
1544 		break;
1545 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1546 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1547 		/* llilf %w0,imm  */
1548 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1549 		bpf_jit_probe_store_pre(jit, insn, &probe);
1550 		/* sty %w0,off(%dst,%arena) */
1551 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1552 			      probe.arena_reg, off);
1553 		err = bpf_jit_probe_post(jit, fp, &probe);
1554 		if (err < 0)
1555 			return err;
1556 		jit->seen |= SEEN_MEM;
1557 		break;
1558 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1559 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1560 		/* lgfi %w0,imm */
1561 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1562 		bpf_jit_probe_store_pre(jit, insn, &probe);
1563 		/* stg %w0,off(%dst,%arena) */
1564 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1565 			      probe.arena_reg, off);
1566 		err = bpf_jit_probe_post(jit, fp, &probe);
1567 		if (err < 0)
1568 			return err;
1569 		jit->seen |= SEEN_MEM;
1570 		break;
1571 	/*
1572 	 * BPF_ATOMIC
1573 	 */
1574 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1575 	case BPF_STX | BPF_ATOMIC | BPF_W:
1576 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1577 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1578 	{
1579 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1580 
1581 		/*
1582 		 * Unlike loads and stores, atomics have only a base register,
1583 		 * but no index register. For the non-arena case, simply use
1584 		 * %dst as a base. For the arena case, use the work register
1585 		 * %r1: first, load the arena base into it, and then add %dst
1586 		 * to it.
1587 		 */
1588 		probe.arena_reg = dst_reg;
1589 
1590 		switch (insn->imm) {
1591 #define EMIT_ATOMIC(op32, op64) do {					\
1592 	bpf_jit_probe_atomic_pre(jit, insn, &probe);			\
1593 	/* {op32|op64} {%w0|%src},%src,off(%arena) */			\
1594 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1595 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1596 		      src_reg, probe.arena_reg, off);			\
1597 	err = bpf_jit_probe_post(jit, fp, &probe);			\
1598 	if (err < 0)							\
1599 		return err;						\
1600 	if (insn->imm & BPF_FETCH) {					\
1601 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1602 		_EMIT2(0x07e0);						\
1603 		if (is32)                                               \
1604 			EMIT_ZERO(src_reg);				\
1605 	}								\
1606 } while (0)
1607 		case BPF_ADD:
1608 		case BPF_ADD | BPF_FETCH:
1609 			/* {laal|laalg} */
1610 			EMIT_ATOMIC(0x00fa, 0x00ea);
1611 			break;
1612 		case BPF_AND:
1613 		case BPF_AND | BPF_FETCH:
1614 			/* {lan|lang} */
1615 			EMIT_ATOMIC(0x00f4, 0x00e4);
1616 			break;
1617 		case BPF_OR:
1618 		case BPF_OR | BPF_FETCH:
1619 			/* {lao|laog} */
1620 			EMIT_ATOMIC(0x00f6, 0x00e6);
1621 			break;
1622 		case BPF_XOR:
1623 		case BPF_XOR | BPF_FETCH:
1624 			/* {lax|laxg} */
1625 			EMIT_ATOMIC(0x00f7, 0x00e7);
1626 			break;
1627 #undef EMIT_ATOMIC
1628 		case BPF_XCHG: {
1629 			struct bpf_jit_probe load_probe = probe;
1630 			int loop_start;
1631 
1632 			bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1633 			/* {ly|lg} %w0,off(%arena) */
1634 			EMIT6_DISP_LH(0xe3000000,
1635 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1636 				      load_probe.arena_reg, off);
1637 			bpf_jit_probe_emit_nop(jit, &load_probe);
1638 			/* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1639 			if (load_probe.prg != -1) {
1640 				probe.prg = jit->prg;
1641 				probe.arena_reg = load_probe.arena_reg;
1642 			}
1643 			loop_start = jit->prg;
1644 			/* 0: {csy|csg} %w0,%src,off(%arena) */
1645 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1646 				      REG_W0, src_reg, probe.arena_reg, off);
1647 			bpf_jit_probe_emit_nop(jit, &probe);
1648 			/* brc 4,0b */
1649 			EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1650 			/* {llgfr|lgr} %src,%w0 */
1651 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1652 			/* Both probes should land here on exception. */
1653 			err = bpf_jit_probe_post(jit, fp, &load_probe);
1654 			if (err < 0)
1655 				return err;
1656 			err = bpf_jit_probe_post(jit, fp, &probe);
1657 			if (err < 0)
1658 				return err;
1659 			if (is32 && insn_is_zext(&insn[1]))
1660 				insn_count = 2;
1661 			break;
1662 		}
1663 		case BPF_CMPXCHG:
1664 			bpf_jit_probe_atomic_pre(jit, insn, &probe);
1665 			/* 0: {csy|csg} %b0,%src,off(%arena) */
1666 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1667 				      BPF_REG_0, src_reg,
1668 				      probe.arena_reg, off);
1669 			err = bpf_jit_probe_post(jit, fp, &probe);
1670 			if (err < 0)
1671 				return err;
1672 			break;
1673 		default:
1674 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1675 			return -1;
1676 		}
1677 
1678 		jit->seen |= SEEN_MEM;
1679 		break;
1680 	}
1681 	/*
1682 	 * BPF_LDX
1683 	 */
1684 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1685 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1686 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1687 		bpf_jit_probe_load_pre(jit, insn, &probe);
1688 		/* llgc %dst,off(%src,%arena) */
1689 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1690 			      probe.arena_reg, off);
1691 		err = bpf_jit_probe_post(jit, fp, &probe);
1692 		if (err < 0)
1693 			return err;
1694 		jit->seen |= SEEN_MEM;
1695 		if (insn_is_zext(&insn[1]))
1696 			insn_count = 2;
1697 		break;
1698 	case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1699 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1700 		bpf_jit_probe_load_pre(jit, insn, &probe);
1701 		/* lgb %dst,off(%src) */
1702 		EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1703 		err = bpf_jit_probe_post(jit, fp, &probe);
1704 		if (err < 0)
1705 			return err;
1706 		jit->seen |= SEEN_MEM;
1707 		break;
1708 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1709 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1710 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1711 		bpf_jit_probe_load_pre(jit, insn, &probe);
1712 		/* llgh %dst,off(%src,%arena) */
1713 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1714 			      probe.arena_reg, off);
1715 		err = bpf_jit_probe_post(jit, fp, &probe);
1716 		if (err < 0)
1717 			return err;
1718 		jit->seen |= SEEN_MEM;
1719 		if (insn_is_zext(&insn[1]))
1720 			insn_count = 2;
1721 		break;
1722 	case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1723 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1724 		bpf_jit_probe_load_pre(jit, insn, &probe);
1725 		/* lgh %dst,off(%src) */
1726 		EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1727 		err = bpf_jit_probe_post(jit, fp, &probe);
1728 		if (err < 0)
1729 			return err;
1730 		jit->seen |= SEEN_MEM;
1731 		break;
1732 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1733 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1734 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1735 		bpf_jit_probe_load_pre(jit, insn, &probe);
1736 		/* llgf %dst,off(%src) */
1737 		jit->seen |= SEEN_MEM;
1738 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1739 			      probe.arena_reg, off);
1740 		err = bpf_jit_probe_post(jit, fp, &probe);
1741 		if (err < 0)
1742 			return err;
1743 		if (insn_is_zext(&insn[1]))
1744 			insn_count = 2;
1745 		break;
1746 	case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1747 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1748 		bpf_jit_probe_load_pre(jit, insn, &probe);
1749 		/* lgf %dst,off(%src) */
1750 		jit->seen |= SEEN_MEM;
1751 		EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1752 		err = bpf_jit_probe_post(jit, fp, &probe);
1753 		if (err < 0)
1754 			return err;
1755 		break;
1756 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1757 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1758 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1759 		bpf_jit_probe_load_pre(jit, insn, &probe);
1760 		/* lg %dst,off(%src,%arena) */
1761 		jit->seen |= SEEN_MEM;
1762 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1763 			      probe.arena_reg, off);
1764 		err = bpf_jit_probe_post(jit, fp, &probe);
1765 		if (err < 0)
1766 			return err;
1767 		break;
1768 	/*
1769 	 * BPF_JMP / CALL
1770 	 */
1771 	case BPF_JMP | BPF_CALL:
1772 	{
1773 		const struct btf_func_model *m;
1774 		bool func_addr_fixed;
1775 		int j, ret;
1776 		u64 func;
1777 
1778 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1779 					    &func, &func_addr_fixed);
1780 		if (ret < 0)
1781 			return -1;
1782 
1783 		REG_SET_SEEN(BPF_REG_5);
1784 		jit->seen |= SEEN_FUNC;
1785 		/*
1786 		 * Copy the tail call counter to where the callee expects it.
1787 		 *
1788 		 * Note 1: The callee can increment the tail call counter, but
1789 		 * we do not load it back, since the x86 JIT does not do this
1790 		 * either.
1791 		 *
1792 		 * Note 2: We assume that the verifier does not let us call the
1793 		 * main program, which clears the tail call counter on entry.
1794 		 */
1795 		/* mvc tail_call_cnt(4,%r15),frame_off+tail_call_cnt(%r15) */
1796 		_EMIT6(0xd203f000 | offsetof(struct prog_frame, tail_call_cnt),
1797 		       0xf000 | (jit->frame_off +
1798 				 offsetof(struct prog_frame, tail_call_cnt)));
1799 
1800 		/* Sign-extend the kfunc arguments. */
1801 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1802 			m = bpf_jit_find_kfunc_model(fp, insn);
1803 			if (!m)
1804 				return -1;
1805 
1806 			for (j = 0; j < m->nr_args; j++) {
1807 				if (sign_extend(jit, BPF_REG_1 + j,
1808 						m->arg_size[j],
1809 						m->arg_flags[j]))
1810 					return -1;
1811 			}
1812 		}
1813 
1814 		/* lgrl %w1,func */
1815 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1816 		/* %r1() */
1817 		call_r1(jit);
1818 		/* lgr %b0,%r2: load return value into %b0 */
1819 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1820 		break;
1821 	}
1822 	case BPF_JMP | BPF_TAIL_CALL: {
1823 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1824 
1825 		/*
1826 		 * Implicit input:
1827 		 *  B1: pointer to ctx
1828 		 *  B2: pointer to bpf_array
1829 		 *  B3: index in bpf_array
1830 		 *
1831 		 * if (index >= array->map.max_entries)
1832 		 *         goto out;
1833 		 */
1834 
1835 		/* llgf %w1,map.max_entries(%b2) */
1836 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1837 			      offsetof(struct bpf_array, map.max_entries));
1838 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1839 		/* clrj %b3,%w1,0xa,out */
1840 		patch_1_clrj = jit->prg;
1841 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1842 				 jit->prg);
1843 
1844 		/*
1845 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1846 		 *         goto out;
1847 		 */
1848 
1849 		off = jit->frame_off +
1850 		      offsetof(struct prog_frame, tail_call_cnt);
1851 		/* lhi %w0,1 */
1852 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1853 		/* laal %w1,%w0,off(%r15) */
1854 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1855 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1856 		patch_2_clij = jit->prg;
1857 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1858 				 2, jit->prg);
1859 
1860 		/*
1861 		 * prog = array->ptrs[index];
1862 		 * if (prog == NULL)
1863 		 *         goto out;
1864 		 */
1865 
1866 		/* llgfr %r1,%b3: %r1 = (u32) index */
1867 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1868 		/* sllg %r1,%r1,3: %r1 *= 8 */
1869 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1870 		/* ltg %r1,prog(%b2,%r1) */
1871 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1872 			      REG_1, offsetof(struct bpf_array, ptrs));
1873 		/* brc 0x8,out */
1874 		patch_3_brc = jit->prg;
1875 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1876 
1877 		/*
1878 		 * Restore registers before calling function
1879 		 */
1880 		save_restore_regs(jit, REGS_RESTORE, 0);
1881 
1882 		/*
1883 		 * goto *(prog->bpf_func + tail_call_start);
1884 		 */
1885 
1886 		/* lg %r1,bpf_func(%r1) */
1887 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1888 			      offsetof(struct bpf_prog, bpf_func));
1889 		if (nospec_uses_trampoline()) {
1890 			jit->seen |= SEEN_FUNC;
1891 			/* aghi %r1,tail_call_start */
1892 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1893 			/* brcl 0xf,__s390_indirect_jump_r1 */
1894 			EMIT6_PCREL_RILC_PTR(0xc0040000, 0xf,
1895 					     __s390_indirect_jump_r1);
1896 		} else {
1897 			/* bc 0xf,tail_call_start(%r1) */
1898 			_EMIT4(0x47f01000 + jit->tail_call_start);
1899 		}
1900 		/* out: */
1901 		if (jit->prg_buf) {
1902 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1903 				(jit->prg - patch_1_clrj) >> 1;
1904 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1905 				(jit->prg - patch_2_clij) >> 1;
1906 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1907 				(jit->prg - patch_3_brc) >> 1;
1908 		}
1909 		break;
1910 	}
1911 	case BPF_JMP | BPF_EXIT: /* return b0 */
1912 		last = (i == fp->len - 1) ? 1 : 0;
1913 		if (last)
1914 			break;
1915 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1916 			/* brc 0xf, <exit> */
1917 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1918 		else
1919 			/* brcl 0xf, <exit> */
1920 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1921 		break;
1922 	/*
1923 	 * Branch relative (number of skipped instructions) to offset on
1924 	 * condition.
1925 	 *
1926 	 * Condition code to mask mapping:
1927 	 *
1928 	 * CC | Description	   | Mask
1929 	 * ------------------------------
1930 	 * 0  | Operands equal	   |	8
1931 	 * 1  | First operand low  |	4
1932 	 * 2  | First operand high |	2
1933 	 * 3  | Unused		   |	1
1934 	 *
1935 	 * For s390x relative branches: ip = ip + off_bytes
1936 	 * For BPF relative branches:	insn = insn + off_insns + 1
1937 	 *
1938 	 * For example for s390x with offset 0 we jump to the branch
1939 	 * instruction itself (loop) and for BPF with offset 0 we
1940 	 * branch to the instruction behind the branch.
1941 	 */
1942 	case BPF_JMP32 | BPF_JA: /* if (true) */
1943 		branch_oc_off = imm;
1944 		fallthrough;
1945 	case BPF_JMP | BPF_JA: /* if (true) */
1946 		mask = 0xf000; /* j */
1947 		goto branch_oc;
1948 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1949 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1950 		mask = 0x2000; /* jh */
1951 		goto branch_ks;
1952 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1953 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1954 		mask = 0x4000; /* jl */
1955 		goto branch_ks;
1956 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1957 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1958 		mask = 0xa000; /* jhe */
1959 		goto branch_ks;
1960 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1961 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1962 		mask = 0xc000; /* jle */
1963 		goto branch_ks;
1964 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1965 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1966 		mask = 0x2000; /* jh */
1967 		goto branch_ku;
1968 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1969 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1970 		mask = 0x4000; /* jl */
1971 		goto branch_ku;
1972 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1973 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1974 		mask = 0xa000; /* jhe */
1975 		goto branch_ku;
1976 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1977 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1978 		mask = 0xc000; /* jle */
1979 		goto branch_ku;
1980 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1981 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1982 		mask = 0x7000; /* jne */
1983 		goto branch_ku;
1984 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1985 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1986 		mask = 0x8000; /* je */
1987 		goto branch_ku;
1988 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1989 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1990 		mask = 0x7000; /* jnz */
1991 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1992 			/* llilf %w1,imm (load zero extend imm) */
1993 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1994 			/* nr %w1,%dst */
1995 			EMIT2(0x1400, REG_W1, dst_reg);
1996 		} else {
1997 			/* lgfi %w1,imm (load sign extend imm) */
1998 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1999 			/* ngr %w1,%dst */
2000 			EMIT4(0xb9800000, REG_W1, dst_reg);
2001 		}
2002 		goto branch_oc;
2003 
2004 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
2005 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
2006 		mask = 0x2000; /* jh */
2007 		goto branch_xs;
2008 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
2009 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
2010 		mask = 0x4000; /* jl */
2011 		goto branch_xs;
2012 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
2013 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
2014 		mask = 0xa000; /* jhe */
2015 		goto branch_xs;
2016 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2017 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2018 		mask = 0xc000; /* jle */
2019 		goto branch_xs;
2020 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2021 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2022 		mask = 0x2000; /* jh */
2023 		goto branch_xu;
2024 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2025 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2026 		mask = 0x4000; /* jl */
2027 		goto branch_xu;
2028 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2029 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2030 		mask = 0xa000; /* jhe */
2031 		goto branch_xu;
2032 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2033 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2034 		mask = 0xc000; /* jle */
2035 		goto branch_xu;
2036 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2037 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2038 		mask = 0x7000; /* jne */
2039 		goto branch_xu;
2040 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2041 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2042 		mask = 0x8000; /* je */
2043 		goto branch_xu;
2044 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2045 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2046 	{
2047 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2048 
2049 		mask = 0x7000; /* jnz */
2050 		/* nrk or ngrk %w1,%dst,%src */
2051 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2052 			  REG_W1, dst_reg, src_reg);
2053 		goto branch_oc;
2054 branch_ks:
2055 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2056 		/* cfi or cgfi %dst,imm */
2057 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2058 			  dst_reg, imm);
2059 		if (!is_first_pass(jit) &&
2060 		    can_use_rel(jit, addrs[i + off + 1])) {
2061 			/* brc mask,off */
2062 			EMIT4_PCREL_RIC(0xa7040000,
2063 					mask >> 12, addrs[i + off + 1]);
2064 		} else {
2065 			/* brcl mask,off */
2066 			EMIT6_PCREL_RILC(0xc0040000,
2067 					 mask >> 12, addrs[i + off + 1]);
2068 		}
2069 		break;
2070 branch_ku:
2071 		/* lgfi %w1,imm (load sign extend imm) */
2072 		src_reg = REG_1;
2073 		EMIT6_IMM(0xc0010000, src_reg, imm);
2074 		goto branch_xu;
2075 branch_xs:
2076 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2077 		if (!is_first_pass(jit) &&
2078 		    can_use_rel(jit, addrs[i + off + 1])) {
2079 			/* crj or cgrj %dst,%src,mask,off */
2080 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2081 				    dst_reg, src_reg, i, off, mask);
2082 		} else {
2083 			/* cr or cgr %dst,%src */
2084 			if (is_jmp32)
2085 				EMIT2(0x1900, dst_reg, src_reg);
2086 			else
2087 				EMIT4(0xb9200000, dst_reg, src_reg);
2088 			/* brcl mask,off */
2089 			EMIT6_PCREL_RILC(0xc0040000,
2090 					 mask >> 12, addrs[i + off + 1]);
2091 		}
2092 		break;
2093 branch_xu:
2094 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2095 		if (!is_first_pass(jit) &&
2096 		    can_use_rel(jit, addrs[i + off + 1])) {
2097 			/* clrj or clgrj %dst,%src,mask,off */
2098 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2099 				    dst_reg, src_reg, i, off, mask);
2100 		} else {
2101 			/* clr or clgr %dst,%src */
2102 			if (is_jmp32)
2103 				EMIT2(0x1500, dst_reg, src_reg);
2104 			else
2105 				EMIT4(0xb9210000, dst_reg, src_reg);
2106 			/* brcl mask,off */
2107 			EMIT6_PCREL_RILC(0xc0040000,
2108 					 mask >> 12, addrs[i + off + 1]);
2109 		}
2110 		break;
2111 branch_oc:
2112 		if (!is_first_pass(jit) &&
2113 		    can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2114 			/* brc mask,off */
2115 			EMIT4_PCREL_RIC(0xa7040000,
2116 					mask >> 12,
2117 					addrs[i + branch_oc_off + 1]);
2118 		} else {
2119 			/* brcl mask,off */
2120 			EMIT6_PCREL_RILC(0xc0040000,
2121 					 mask >> 12,
2122 					 addrs[i + branch_oc_off + 1]);
2123 		}
2124 		break;
2125 	}
2126 	default: /* too complex, give up */
2127 		pr_err("Unknown opcode %02x\n", insn->code);
2128 		return -1;
2129 	}
2130 
2131 	return insn_count;
2132 }
2133 
2134 /*
2135  * Return whether new i-th instruction address does not violate any invariant
2136  */
2137 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2138 {
2139 	/* On the first pass anything goes */
2140 	if (is_first_pass(jit))
2141 		return true;
2142 
2143 	/* The codegen pass must not change anything */
2144 	if (is_codegen_pass(jit))
2145 		return jit->addrs[i] == jit->prg;
2146 
2147 	/* Passes in between must not increase code size */
2148 	return jit->addrs[i] >= jit->prg;
2149 }
2150 
2151 /*
2152  * Update the address of i-th instruction
2153  */
2154 static int bpf_set_addr(struct bpf_jit *jit, int i)
2155 {
2156 	int delta;
2157 
2158 	if (is_codegen_pass(jit)) {
2159 		delta = jit->prg - jit->addrs[i];
2160 		if (delta < 0)
2161 			bpf_skip(jit, -delta);
2162 	}
2163 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2164 		return -1;
2165 	jit->addrs[i] = jit->prg;
2166 	return 0;
2167 }
2168 
2169 /*
2170  * Compile eBPF program into s390x code
2171  */
2172 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2173 			bool extra_pass)
2174 {
2175 	int i, insn_count, lit32_size, lit64_size;
2176 	u64 kern_arena;
2177 
2178 	jit->lit32 = jit->lit32_start;
2179 	jit->lit64 = jit->lit64_start;
2180 	jit->prg = 0;
2181 	jit->excnt = 0;
2182 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK))
2183 		jit->frame_off = sizeof(struct prog_frame) -
2184 				 offsetofend(struct prog_frame, unused) +
2185 				 round_up(fp->aux->stack_depth, 8);
2186 	else
2187 		jit->frame_off = 0;
2188 
2189 	kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2190 	if (kern_arena)
2191 		jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2192 	jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2193 
2194 	bpf_jit_prologue(jit, fp);
2195 	if (bpf_set_addr(jit, 0) < 0)
2196 		return -1;
2197 	for (i = 0; i < fp->len; i += insn_count) {
2198 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass);
2199 		if (insn_count < 0)
2200 			return -1;
2201 		/* Next instruction address */
2202 		if (bpf_set_addr(jit, i + insn_count) < 0)
2203 			return -1;
2204 	}
2205 	bpf_jit_epilogue(jit);
2206 
2207 	lit32_size = jit->lit32 - jit->lit32_start;
2208 	lit64_size = jit->lit64 - jit->lit64_start;
2209 	jit->lit32_start = jit->prg;
2210 	if (lit32_size)
2211 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
2212 	jit->lit64_start = jit->lit32_start + lit32_size;
2213 	if (lit64_size)
2214 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
2215 	jit->size = jit->lit64_start + lit64_size;
2216 	jit->size_prg = jit->prg;
2217 
2218 	if (WARN_ON_ONCE(fp->aux->extable &&
2219 			 jit->excnt != fp->aux->num_exentries))
2220 		/* Verifier bug - too many entries. */
2221 		return -1;
2222 
2223 	return 0;
2224 }
2225 
2226 bool bpf_jit_needs_zext(void)
2227 {
2228 	return true;
2229 }
2230 
2231 struct s390_jit_data {
2232 	struct bpf_binary_header *header;
2233 	struct bpf_jit ctx;
2234 	int pass;
2235 };
2236 
2237 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2238 					       struct bpf_prog *fp)
2239 {
2240 	struct bpf_binary_header *header;
2241 	struct bpf_insn *insn;
2242 	u32 extable_size;
2243 	u32 code_size;
2244 	int i;
2245 
2246 	for (i = 0; i < fp->len; i++) {
2247 		insn = &fp->insnsi[i];
2248 
2249 		if (BPF_CLASS(insn->code) == BPF_STX &&
2250 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2251 		    (BPF_SIZE(insn->code) == BPF_DW ||
2252 		     BPF_SIZE(insn->code) == BPF_W) &&
2253 		    insn->imm == BPF_XCHG)
2254 			/*
2255 			 * bpf_jit_insn() emits a load and a compare-and-swap,
2256 			 * both of which need to be probed.
2257 			 */
2258 			fp->aux->num_exentries += 1;
2259 	}
2260 	/* We need two entries per insn. */
2261 	fp->aux->num_exentries *= 2;
2262 
2263 	code_size = roundup(jit->size,
2264 			    __alignof__(struct exception_table_entry));
2265 	extable_size = fp->aux->num_exentries *
2266 		sizeof(struct exception_table_entry);
2267 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2268 				      8, jit_fill_hole);
2269 	if (!header)
2270 		return NULL;
2271 	fp->aux->extable = (struct exception_table_entry *)
2272 		(jit->prg_buf + code_size);
2273 	return header;
2274 }
2275 
2276 /*
2277  * Compile eBPF program "fp"
2278  */
2279 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2280 {
2281 	struct bpf_prog *tmp, *orig_fp = fp;
2282 	struct bpf_binary_header *header;
2283 	struct s390_jit_data *jit_data;
2284 	bool tmp_blinded = false;
2285 	bool extra_pass = false;
2286 	struct bpf_jit jit;
2287 	int pass;
2288 
2289 	if (!fp->jit_requested)
2290 		return orig_fp;
2291 
2292 	tmp = bpf_jit_blind_constants(fp);
2293 	/*
2294 	 * If blinding was requested and we failed during blinding,
2295 	 * we must fall back to the interpreter.
2296 	 */
2297 	if (IS_ERR(tmp))
2298 		return orig_fp;
2299 	if (tmp != fp) {
2300 		tmp_blinded = true;
2301 		fp = tmp;
2302 	}
2303 
2304 	jit_data = fp->aux->jit_data;
2305 	if (!jit_data) {
2306 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2307 		if (!jit_data) {
2308 			fp = orig_fp;
2309 			goto out;
2310 		}
2311 		fp->aux->jit_data = jit_data;
2312 	}
2313 	if (jit_data->ctx.addrs) {
2314 		jit = jit_data->ctx;
2315 		header = jit_data->header;
2316 		extra_pass = true;
2317 		pass = jit_data->pass + 1;
2318 		goto skip_init_ctx;
2319 	}
2320 
2321 	memset(&jit, 0, sizeof(jit));
2322 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2323 	if (jit.addrs == NULL) {
2324 		fp = orig_fp;
2325 		goto free_addrs;
2326 	}
2327 	/*
2328 	 * Three initial passes:
2329 	 *   - 1/2: Determine clobbered registers
2330 	 *   - 3:   Calculate program size and addrs array
2331 	 */
2332 	for (pass = 1; pass <= 3; pass++) {
2333 		if (bpf_jit_prog(&jit, fp, extra_pass)) {
2334 			fp = orig_fp;
2335 			goto free_addrs;
2336 		}
2337 	}
2338 	/*
2339 	 * Final pass: Allocate and generate program
2340 	 */
2341 	header = bpf_jit_alloc(&jit, fp);
2342 	if (!header) {
2343 		fp = orig_fp;
2344 		goto free_addrs;
2345 	}
2346 skip_init_ctx:
2347 	if (bpf_jit_prog(&jit, fp, extra_pass)) {
2348 		bpf_jit_binary_free(header);
2349 		fp = orig_fp;
2350 		goto free_addrs;
2351 	}
2352 	if (bpf_jit_enable > 1) {
2353 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2354 		print_fn_code(jit.prg_buf, jit.size_prg);
2355 	}
2356 	if (!fp->is_func || extra_pass) {
2357 		if (bpf_jit_binary_lock_ro(header)) {
2358 			bpf_jit_binary_free(header);
2359 			fp = orig_fp;
2360 			goto free_addrs;
2361 		}
2362 	} else {
2363 		jit_data->header = header;
2364 		jit_data->ctx = jit;
2365 		jit_data->pass = pass;
2366 	}
2367 	fp->bpf_func = (void *) jit.prg_buf;
2368 	fp->jited = 1;
2369 	fp->jited_len = jit.size;
2370 
2371 	if (!fp->is_func || extra_pass) {
2372 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2373 free_addrs:
2374 		kvfree(jit.addrs);
2375 		kfree(jit_data);
2376 		fp->aux->jit_data = NULL;
2377 	}
2378 out:
2379 	if (tmp_blinded)
2380 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
2381 					   tmp : orig_fp);
2382 	return fp;
2383 }
2384 
2385 bool bpf_jit_supports_kfunc_call(void)
2386 {
2387 	return true;
2388 }
2389 
2390 bool bpf_jit_supports_far_kfunc_call(void)
2391 {
2392 	return true;
2393 }
2394 
2395 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2396 		       void *old_addr, void *new_addr)
2397 {
2398 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2399 	struct {
2400 		u16 opc;
2401 		s32 disp;
2402 	} __packed insn;
2403 	char *ret;
2404 	int err;
2405 
2406 	/* Verify the branch to be patched. */
2407 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2408 	if (err < 0)
2409 		return err;
2410 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2411 		return -EINVAL;
2412 
2413 	if (t == BPF_MOD_JUMP &&
2414 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2415 		/*
2416 		 * The branch already points to the destination,
2417 		 * there is no PLT.
2418 		 */
2419 	} else {
2420 		/* Verify the PLT. */
2421 		plt = ip + (insn.disp << 1);
2422 		err = copy_from_kernel_nofault(&current_plt, plt,
2423 					       sizeof(current_plt));
2424 		if (err < 0)
2425 			return err;
2426 		ret = (char *)ip + 6;
2427 		bpf_jit_plt(&expected_plt, ret, old_addr);
2428 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2429 			return -EINVAL;
2430 		/* Adjust the call address. */
2431 		bpf_jit_plt(&new_plt, ret, new_addr);
2432 		s390_kernel_write(&plt->target, &new_plt.target,
2433 				  sizeof(void *));
2434 	}
2435 
2436 	/* Adjust the mask of the branch. */
2437 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2438 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2439 
2440 	/* Make the new code visible to the other CPUs. */
2441 	text_poke_sync_lock();
2442 
2443 	return 0;
2444 }
2445 
2446 struct bpf_tramp_jit {
2447 	struct bpf_jit common;
2448 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2449 				 * func_addr's original caller
2450 				 */
2451 	int stack_size;		/* Trampoline stack size */
2452 	int backchain_off;	/* Offset of backchain */
2453 	int stack_args_off;	/* Offset of stack arguments for calling
2454 				 * func_addr, has to be at the top
2455 				 */
2456 	int reg_args_off;	/* Offset of register arguments for calling
2457 				 * func_addr
2458 				 */
2459 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2460 				 * (ctx - 16)
2461 				 */
2462 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2463 				 * (ctx - 8)
2464 				 */
2465 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2466 				 * of BPF arguments followed by return value
2467 				 */
2468 	int retval_off;		/* Offset of return value (see above) */
2469 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2470 				 * for __bpf_prog_enter() return value and
2471 				 * func_addr respectively
2472 				 */
2473 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2474 	int tccnt_off;		/* Offset of saved tailcall counter */
2475 	int r14_off;		/* Offset of saved %r14, has to be at the
2476 				 * bottom */
2477 	int do_fexit;		/* do_fexit: label */
2478 };
2479 
2480 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2481 {
2482 	/* llihf %dst_reg,val_hi */
2483 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2484 	/* oilf %rdst_reg,val_lo */
2485 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2486 }
2487 
2488 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2489 			   const struct btf_func_model *m,
2490 			   struct bpf_tramp_link *tlink, bool save_ret)
2491 {
2492 	struct bpf_jit *jit = &tjit->common;
2493 	int cookie_off = tjit->run_ctx_off +
2494 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2495 	struct bpf_prog *p = tlink->link.prog;
2496 	int patch;
2497 
2498 	/*
2499 	 * run_ctx.cookie = tlink->cookie;
2500 	 */
2501 
2502 	/* %r0 = tlink->cookie */
2503 	load_imm64(jit, REG_W0, tlink->cookie);
2504 	/* stg %r0,cookie_off(%r15) */
2505 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2506 
2507 	/*
2508 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2509 	 *         goto skip;
2510 	 */
2511 
2512 	/* %r1 = __bpf_prog_enter */
2513 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2514 	/* %r2 = p */
2515 	load_imm64(jit, REG_2, (u64)p);
2516 	/* la %r3,run_ctx_off(%r15) */
2517 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2518 	/* %r1() */
2519 	call_r1(jit);
2520 	/* ltgr %r7,%r2 */
2521 	EMIT4(0xb9020000, REG_7, REG_2);
2522 	/* brcl 8,skip */
2523 	patch = jit->prg;
2524 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2525 
2526 	/*
2527 	 * retval = bpf_func(args, p->insnsi);
2528 	 */
2529 
2530 	/* %r1 = p->bpf_func */
2531 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2532 	/* la %r2,bpf_args_off(%r15) */
2533 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2534 	/* %r3 = p->insnsi */
2535 	if (!p->jited)
2536 		load_imm64(jit, REG_3, (u64)p->insnsi);
2537 	/* %r1() */
2538 	call_r1(jit);
2539 	/* stg %r2,retval_off(%r15) */
2540 	if (save_ret) {
2541 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2542 			return -1;
2543 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2544 			      tjit->retval_off);
2545 	}
2546 
2547 	/* skip: */
2548 	if (jit->prg_buf)
2549 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2550 
2551 	/*
2552 	 * __bpf_prog_exit(p, start, &run_ctx);
2553 	 */
2554 
2555 	/* %r1 = __bpf_prog_exit */
2556 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2557 	/* %r2 = p */
2558 	load_imm64(jit, REG_2, (u64)p);
2559 	/* lgr %r3,%r7 */
2560 	EMIT4(0xb9040000, REG_3, REG_7);
2561 	/* la %r4,run_ctx_off(%r15) */
2562 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2563 	/* %r1() */
2564 	call_r1(jit);
2565 
2566 	return 0;
2567 }
2568 
2569 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2570 {
2571 	int stack_offset = tjit->stack_size;
2572 
2573 	tjit->stack_size += size;
2574 	return stack_offset;
2575 }
2576 
2577 /* ABI uses %r2 - %r6 for parameter passing. */
2578 #define MAX_NR_REG_ARGS 5
2579 
2580 /* The "L" field of the "mvc" instruction is 8 bits. */
2581 #define MAX_MVC_SIZE 256
2582 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2583 
2584 /* -mfentry generates a 6-byte nop on s390x. */
2585 #define S390X_PATCH_SIZE 6
2586 
2587 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2588 					 struct bpf_tramp_jit *tjit,
2589 					 const struct btf_func_model *m,
2590 					 u32 flags,
2591 					 struct bpf_tramp_links *tlinks,
2592 					 void *func_addr)
2593 {
2594 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2595 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2596 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2597 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2598 	struct bpf_jit *jit = &tjit->common;
2599 	int arg, bpf_arg_off;
2600 	int i, j;
2601 
2602 	/* Support as many stack arguments as "mvc" instruction can handle. */
2603 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2604 	nr_stack_args = m->nr_args - nr_reg_args;
2605 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2606 		return -ENOTSUPP;
2607 
2608 	/* Return to %r14 in the struct_ops case. */
2609 	if (flags & BPF_TRAMP_F_INDIRECT)
2610 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2611 
2612 	/*
2613 	 * Compute how many arguments we need to pass to BPF programs.
2614 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2615 	 * smaller are packed into 1 or 2 registers; larger arguments are
2616 	 * passed via pointers.
2617 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2618 	 * a register; larger arguments are passed via pointers.
2619 	 * We need to deal with this difference.
2620 	 */
2621 	nr_bpf_args = 0;
2622 	for (i = 0; i < m->nr_args; i++) {
2623 		if (m->arg_size[i] <= 8)
2624 			nr_bpf_args += 1;
2625 		else if (m->arg_size[i] <= 16)
2626 			nr_bpf_args += 2;
2627 		else
2628 			return -ENOTSUPP;
2629 	}
2630 
2631 	/*
2632 	 * Calculate the stack layout.
2633 	 */
2634 
2635 	/*
2636 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2637 	 * ABI requires, put our backchain at the end of the allocated memory.
2638 	 */
2639 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2640 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2641 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2642 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2643 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2644 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2645 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2646 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2647 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2648 	tjit->run_ctx_off = alloc_stack(tjit,
2649 					sizeof(struct bpf_tramp_run_ctx));
2650 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2651 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2652 	/*
2653 	 * In accordance with the s390x ABI, the caller has allocated
2654 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2655 	 * backchain, and the rest we can use.
2656 	 */
2657 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2658 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2659 
2660 	/* lgr %r1,%r15 */
2661 	EMIT4(0xb9040000, REG_1, REG_15);
2662 	/* aghi %r15,-stack_size */
2663 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2664 	/* stg %r1,backchain_off(%r15) */
2665 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2666 		      tjit->backchain_off);
2667 	/* mvc tccnt_off(4,%r15),stack_size+tail_call_cnt(%r15) */
2668 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2669 	       0xf000 | (tjit->stack_size +
2670 			 offsetof(struct prog_frame, tail_call_cnt)));
2671 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2672 	if (nr_reg_args)
2673 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2674 			      REG_2 + (nr_reg_args - 1), REG_15,
2675 			      tjit->reg_args_off);
2676 	for (i = 0, j = 0; i < m->nr_args; i++) {
2677 		if (i < MAX_NR_REG_ARGS)
2678 			arg = REG_2 + i;
2679 		else
2680 			arg = tjit->orig_stack_args_off +
2681 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2682 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2683 		if (m->arg_size[i] <= 8) {
2684 			if (i < MAX_NR_REG_ARGS)
2685 				/* stg %arg,bpf_arg_off(%r15) */
2686 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2687 					      REG_0, REG_15, bpf_arg_off);
2688 			else
2689 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2690 				_EMIT6(0xd207f000 | bpf_arg_off,
2691 				       0xf000 | arg);
2692 			j += 1;
2693 		} else {
2694 			if (i < MAX_NR_REG_ARGS) {
2695 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2696 				_EMIT6(0xd20ff000 | bpf_arg_off,
2697 				       reg2hex[arg] << 12);
2698 			} else {
2699 				/* lg %r1,arg(%r15) */
2700 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2701 					      REG_15, arg);
2702 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2703 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2704 			}
2705 			j += 2;
2706 		}
2707 	}
2708 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2709 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2710 		      tjit->r7_r8_off);
2711 	/* stg %r14,r14_off(%r15) */
2712 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2713 
2714 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2715 		/*
2716 		 * The ftrace trampoline puts the return address (which is the
2717 		 * address of the original function + S390X_PATCH_SIZE) into
2718 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2719 		 * ftrace_init_nop() for details.
2720 		 */
2721 
2722 		/* lgr %r8,%r0 */
2723 		EMIT4(0xb9040000, REG_8, REG_0);
2724 	} else {
2725 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2726 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2727 	}
2728 
2729 	/*
2730 	 * ip = func_addr;
2731 	 * arg_cnt = m->nr_args;
2732 	 */
2733 
2734 	if (flags & BPF_TRAMP_F_IP_ARG) {
2735 		/* %r0 = func_addr */
2736 		load_imm64(jit, REG_0, (u64)func_addr);
2737 		/* stg %r0,ip_off(%r15) */
2738 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2739 			      tjit->ip_off);
2740 	}
2741 	/* lghi %r0,nr_bpf_args */
2742 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2743 	/* stg %r0,arg_cnt_off(%r15) */
2744 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2745 		      tjit->arg_cnt_off);
2746 
2747 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2748 		/*
2749 		 * __bpf_tramp_enter(im);
2750 		 */
2751 
2752 		/* %r1 = __bpf_tramp_enter */
2753 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2754 		/* %r2 = im */
2755 		load_imm64(jit, REG_2, (u64)im);
2756 		/* %r1() */
2757 		call_r1(jit);
2758 	}
2759 
2760 	for (i = 0; i < fentry->nr_links; i++)
2761 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2762 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2763 			return -EINVAL;
2764 
2765 	if (fmod_ret->nr_links) {
2766 		/*
2767 		 * retval = 0;
2768 		 */
2769 
2770 		/* xc retval_off(8,%r15),retval_off(%r15) */
2771 		_EMIT6(0xd707f000 | tjit->retval_off,
2772 		       0xf000 | tjit->retval_off);
2773 
2774 		for (i = 0; i < fmod_ret->nr_links; i++) {
2775 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2776 				return -EINVAL;
2777 
2778 			/*
2779 			 * if (retval)
2780 			 *         goto do_fexit;
2781 			 */
2782 
2783 			/* ltg %r0,retval_off(%r15) */
2784 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2785 				      tjit->retval_off);
2786 			/* brcl 7,do_fexit */
2787 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2788 		}
2789 	}
2790 
2791 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2792 		/*
2793 		 * retval = func_addr(args);
2794 		 */
2795 
2796 		/* lmg %r2,%rN,reg_args_off(%r15) */
2797 		if (nr_reg_args)
2798 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2799 				      REG_2 + (nr_reg_args - 1), REG_15,
2800 				      tjit->reg_args_off);
2801 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2802 		if (nr_stack_args)
2803 			_EMIT6(0xd200f000 |
2804 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2805 				       tjit->stack_args_off,
2806 			       0xf000 | tjit->orig_stack_args_off);
2807 		/* mvc tail_call_cnt(4,%r15),tccnt_off(%r15) */
2808 		_EMIT6(0xd203f000 | offsetof(struct prog_frame, tail_call_cnt),
2809 		       0xf000 | tjit->tccnt_off);
2810 		/* lgr %r1,%r8 */
2811 		EMIT4(0xb9040000, REG_1, REG_8);
2812 		/* %r1() */
2813 		call_r1(jit);
2814 		/* stg %r2,retval_off(%r15) */
2815 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2816 			      tjit->retval_off);
2817 
2818 		im->ip_after_call = jit->prg_buf + jit->prg;
2819 
2820 		/*
2821 		 * The following nop will be patched by bpf_tramp_image_put().
2822 		 */
2823 
2824 		/* brcl 0,im->ip_epilogue */
2825 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2826 	}
2827 
2828 	/* do_fexit: */
2829 	tjit->do_fexit = jit->prg;
2830 	for (i = 0; i < fexit->nr_links; i++)
2831 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2832 			return -EINVAL;
2833 
2834 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2835 		im->ip_epilogue = jit->prg_buf + jit->prg;
2836 
2837 		/*
2838 		 * __bpf_tramp_exit(im);
2839 		 */
2840 
2841 		/* %r1 = __bpf_tramp_exit */
2842 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2843 		/* %r2 = im */
2844 		load_imm64(jit, REG_2, (u64)im);
2845 		/* %r1() */
2846 		call_r1(jit);
2847 	}
2848 
2849 	/* lmg %r2,%rN,reg_args_off(%r15) */
2850 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2851 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2852 			      REG_2 + (nr_reg_args - 1), REG_15,
2853 			      tjit->reg_args_off);
2854 	/* lgr %r1,%r8 */
2855 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2856 		EMIT4(0xb9040000, REG_1, REG_8);
2857 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2858 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2859 		      tjit->r7_r8_off);
2860 	/* lg %r14,r14_off(%r15) */
2861 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2862 	/* lg %r2,retval_off(%r15) */
2863 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2864 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2865 			      tjit->retval_off);
2866 	/* mvc stack_size+tail_call_cnt(4,%r15),tccnt_off(%r15) */
2867 	_EMIT6(0xd203f000 | (tjit->stack_size +
2868 			     offsetof(struct prog_frame, tail_call_cnt)),
2869 	       0xf000 | tjit->tccnt_off);
2870 	/* aghi %r15,stack_size */
2871 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2872 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2873 		EMIT_JUMP_REG(14);
2874 	else
2875 		EMIT_JUMP_REG(1);
2876 
2877 	return 0;
2878 }
2879 
2880 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2881 			     struct bpf_tramp_links *tlinks, void *orig_call)
2882 {
2883 	struct bpf_tramp_image im;
2884 	struct bpf_tramp_jit tjit;
2885 	int ret;
2886 
2887 	memset(&tjit, 0, sizeof(tjit));
2888 
2889 	ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2890 					    tlinks, orig_call);
2891 
2892 	return ret < 0 ? ret : tjit.common.prg;
2893 }
2894 
2895 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2896 				void *image_end, const struct btf_func_model *m,
2897 				u32 flags, struct bpf_tramp_links *tlinks,
2898 				void *func_addr)
2899 {
2900 	struct bpf_tramp_jit tjit;
2901 	int ret;
2902 
2903 	/* Compute offsets, check whether the code fits. */
2904 	memset(&tjit, 0, sizeof(tjit));
2905 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2906 					    tlinks, func_addr);
2907 
2908 	if (ret < 0)
2909 		return ret;
2910 	if (tjit.common.prg > (char *)image_end - (char *)image)
2911 		/*
2912 		 * Use the same error code as for exceeding
2913 		 * BPF_MAX_TRAMP_LINKS.
2914 		 */
2915 		return -E2BIG;
2916 
2917 	tjit.common.prg = 0;
2918 	tjit.common.prg_buf = image;
2919 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2920 					    tlinks, func_addr);
2921 
2922 	return ret < 0 ? ret : tjit.common.prg;
2923 }
2924 
2925 bool bpf_jit_supports_subprog_tailcalls(void)
2926 {
2927 	return true;
2928 }
2929 
2930 bool bpf_jit_supports_arena(void)
2931 {
2932 	return true;
2933 }
2934 
2935 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2936 {
2937 	if (!in_arena)
2938 		return true;
2939 	switch (insn->code) {
2940 	case BPF_STX | BPF_ATOMIC | BPF_B:
2941 	case BPF_STX | BPF_ATOMIC | BPF_H:
2942 	case BPF_STX | BPF_ATOMIC | BPF_W:
2943 	case BPF_STX | BPF_ATOMIC | BPF_DW:
2944 		if (bpf_atomic_is_load_store(insn))
2945 			return false;
2946 	}
2947 	return true;
2948 }
2949 
2950 bool bpf_jit_supports_exceptions(void)
2951 {
2952 	/*
2953 	 * Exceptions require unwinding support, which is always available,
2954 	 * because the kernel is always built with backchain.
2955 	 */
2956 	return true;
2957 }
2958 
2959 void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2960 			 void *cookie)
2961 {
2962 	unsigned long addr, prev_addr = 0;
2963 	struct unwind_state state;
2964 
2965 	unwind_for_each_frame(&state, NULL, NULL, 0) {
2966 		addr = unwind_get_return_address(&state);
2967 		if (!addr)
2968 			break;
2969 		/*
2970 		 * addr is a return address and state.sp is the value of %r15
2971 		 * at this address. exception_cb needs %r15 at entry to the
2972 		 * function containing addr, so take the next state.sp.
2973 		 *
2974 		 * There is no bp, and the exception_cb prog does not need one
2975 		 * to perform a quasi-longjmp. The common code requires a
2976 		 * non-zero bp, so pass sp there as well.
2977 		 */
2978 		if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
2979 					     state.sp))
2980 			break;
2981 		prev_addr = addr;
2982 	}
2983 }
2984