xref: /linux/arch/s390/net/bpf_jit_comp.c (revision 10accd2e6890b57db8e717e9aee91b791f90fe14)
1 /*
2  * BPF Jit compiler for s390.
3  *
4  * Minimum build requirements:
5  *
6  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
7  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
8  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
9  *  - PACK_STACK
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <asm/cacheflush.h>
26 #include <asm/dis.h>
27 #include "bpf_jit.h"
28 
29 int bpf_jit_enable __read_mostly;
30 
31 struct bpf_jit {
32 	u32 seen;		/* Flags to remember seen eBPF instructions */
33 	u32 seen_reg[16];	/* Array to remember which registers are used */
34 	u32 *addrs;		/* Array with relative instruction addresses */
35 	u8 *prg_buf;		/* Start of program */
36 	int size;		/* Size of program and literal pool */
37 	int size_prg;		/* Size of program */
38 	int prg;		/* Current position in program */
39 	int lit_start;		/* Start of literal pool */
40 	int lit;		/* Current position in literal pool */
41 	int base_ip;		/* Base address for literal pool */
42 	int ret0_ip;		/* Address of return 0 */
43 	int exit_ip;		/* Address of exit */
44 	int tail_call_start;	/* Tail call start offset */
45 	int labels[1];		/* Labels for local jumps */
46 };
47 
48 #define BPF_SIZE_MAX	0xffff	/* Max size for program (16 bit branches) */
49 
50 #define SEEN_SKB	1	/* skb access */
51 #define SEEN_MEM	2	/* use mem[] for temporary storage */
52 #define SEEN_RET0	4	/* ret0_ip points to a valid return 0 */
53 #define SEEN_LITERAL	8	/* code uses literals */
54 #define SEEN_FUNC	16	/* calls C functions */
55 #define SEEN_TAIL_CALL	32	/* code uses tail calls */
56 #define SEEN_SKB_CHANGE	64	/* code changes skb data */
57 #define SEEN_REG_AX	128	/* code uses constant blinding */
58 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM | SEEN_SKB)
59 
60 /*
61  * s390 registers
62  */
63 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
64 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
65 #define REG_SKB_DATA	(MAX_BPF_JIT_REG + 2)	/* SKB data register */
66 #define REG_L		(MAX_BPF_JIT_REG + 3)	/* Literal pool register */
67 #define REG_15		(MAX_BPF_JIT_REG + 4)	/* Register 15 */
68 #define REG_0		REG_W0			/* Register 0 */
69 #define REG_1		REG_W1			/* Register 1 */
70 #define REG_2		BPF_REG_1		/* Register 2 */
71 #define REG_14		BPF_REG_0		/* Register 14 */
72 
73 /*
74  * Mapping of BPF registers to s390 registers
75  */
76 static const int reg2hex[] = {
77 	/* Return code */
78 	[BPF_REG_0]	= 14,
79 	/* Function parameters */
80 	[BPF_REG_1]	= 2,
81 	[BPF_REG_2]	= 3,
82 	[BPF_REG_3]	= 4,
83 	[BPF_REG_4]	= 5,
84 	[BPF_REG_5]	= 6,
85 	/* Call saved registers */
86 	[BPF_REG_6]	= 7,
87 	[BPF_REG_7]	= 8,
88 	[BPF_REG_8]	= 9,
89 	[BPF_REG_9]	= 10,
90 	/* BPF stack pointer */
91 	[BPF_REG_FP]	= 13,
92 	/* Register for blinding (shared with REG_SKB_DATA) */
93 	[BPF_REG_AX]	= 12,
94 	/* SKB data pointer */
95 	[REG_SKB_DATA]	= 12,
96 	/* Work registers for s390x backend */
97 	[REG_W0]	= 0,
98 	[REG_W1]	= 1,
99 	[REG_L]		= 11,
100 	[REG_15]	= 15,
101 };
102 
103 static inline u32 reg(u32 dst_reg, u32 src_reg)
104 {
105 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
106 }
107 
108 static inline u32 reg_high(u32 reg)
109 {
110 	return reg2hex[reg] << 4;
111 }
112 
113 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
114 {
115 	u32 r1 = reg2hex[b1];
116 
117 	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
118 		jit->seen_reg[r1] = 1;
119 }
120 
121 #define REG_SET_SEEN(b1)					\
122 ({								\
123 	reg_set_seen(jit, b1);					\
124 })
125 
126 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
127 
128 /*
129  * EMIT macros for code generation
130  */
131 
132 #define _EMIT2(op)						\
133 ({								\
134 	if (jit->prg_buf)					\
135 		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
136 	jit->prg += 2;						\
137 })
138 
139 #define EMIT2(op, b1, b2)					\
140 ({								\
141 	_EMIT2(op | reg(b1, b2));				\
142 	REG_SET_SEEN(b1);					\
143 	REG_SET_SEEN(b2);					\
144 })
145 
146 #define _EMIT4(op)						\
147 ({								\
148 	if (jit->prg_buf)					\
149 		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
150 	jit->prg += 4;						\
151 })
152 
153 #define EMIT4(op, b1, b2)					\
154 ({								\
155 	_EMIT4(op | reg(b1, b2));				\
156 	REG_SET_SEEN(b1);					\
157 	REG_SET_SEEN(b2);					\
158 })
159 
160 #define EMIT4_RRF(op, b1, b2, b3)				\
161 ({								\
162 	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
163 	REG_SET_SEEN(b1);					\
164 	REG_SET_SEEN(b2);					\
165 	REG_SET_SEEN(b3);					\
166 })
167 
168 #define _EMIT4_DISP(op, disp)					\
169 ({								\
170 	unsigned int __disp = (disp) & 0xfff;			\
171 	_EMIT4(op | __disp);					\
172 })
173 
174 #define EMIT4_DISP(op, b1, b2, disp)				\
175 ({								\
176 	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
177 		    reg_high(b2) << 8, disp);			\
178 	REG_SET_SEEN(b1);					\
179 	REG_SET_SEEN(b2);					\
180 })
181 
182 #define EMIT4_IMM(op, b1, imm)					\
183 ({								\
184 	unsigned int __imm = (imm) & 0xffff;			\
185 	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
186 	REG_SET_SEEN(b1);					\
187 })
188 
189 #define EMIT4_PCREL(op, pcrel)					\
190 ({								\
191 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
192 	_EMIT4(op | __pcrel);					\
193 })
194 
195 #define _EMIT6(op1, op2)					\
196 ({								\
197 	if (jit->prg_buf) {					\
198 		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
199 		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
200 	}							\
201 	jit->prg += 6;						\
202 })
203 
204 #define _EMIT6_DISP(op1, op2, disp)				\
205 ({								\
206 	unsigned int __disp = (disp) & 0xfff;			\
207 	_EMIT6(op1 | __disp, op2);				\
208 })
209 
210 #define _EMIT6_DISP_LH(op1, op2, disp)				\
211 ({								\
212 	u32 _disp = (u32) disp;					\
213 	unsigned int __disp_h = _disp & 0xff000;		\
214 	unsigned int __disp_l = _disp & 0x00fff;		\
215 	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
216 })
217 
218 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
219 ({								\
220 	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
221 		       reg_high(b3) << 8, op2, disp);		\
222 	REG_SET_SEEN(b1);					\
223 	REG_SET_SEEN(b2);					\
224 	REG_SET_SEEN(b3);					\
225 })
226 
227 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
228 ({								\
229 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
230 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
231 	       op2 | mask << 12);				\
232 	REG_SET_SEEN(b1);					\
233 	REG_SET_SEEN(b2);					\
234 })
235 
236 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
237 ({								\
238 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
239 	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
240 		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
241 	REG_SET_SEEN(b1);					\
242 	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
243 })
244 
245 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
246 ({								\
247 	/* Branch instruction needs 6 bytes */			\
248 	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
249 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
250 	REG_SET_SEEN(b1);					\
251 	REG_SET_SEEN(b2);					\
252 })
253 
254 #define _EMIT6_IMM(op, imm)					\
255 ({								\
256 	unsigned int __imm = (imm);				\
257 	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
258 })
259 
260 #define EMIT6_IMM(op, b1, imm)					\
261 ({								\
262 	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
263 	REG_SET_SEEN(b1);					\
264 })
265 
266 #define EMIT_CONST_U32(val)					\
267 ({								\
268 	unsigned int ret;					\
269 	ret = jit->lit - jit->base_ip;				\
270 	jit->seen |= SEEN_LITERAL;				\
271 	if (jit->prg_buf)					\
272 		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
273 	jit->lit += 4;						\
274 	ret;							\
275 })
276 
277 #define EMIT_CONST_U64(val)					\
278 ({								\
279 	unsigned int ret;					\
280 	ret = jit->lit - jit->base_ip;				\
281 	jit->seen |= SEEN_LITERAL;				\
282 	if (jit->prg_buf)					\
283 		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
284 	jit->lit += 8;						\
285 	ret;							\
286 })
287 
288 #define EMIT_ZERO(b1)						\
289 ({								\
290 	/* llgfr %dst,%dst (zero extend to 64 bit) */		\
291 	EMIT4(0xb9160000, b1, b1);				\
292 	REG_SET_SEEN(b1);					\
293 })
294 
295 /*
296  * Fill whole space with illegal instructions
297  */
298 static void jit_fill_hole(void *area, unsigned int size)
299 {
300 	memset(area, 0, size);
301 }
302 
303 /*
304  * Save registers from "rs" (register start) to "re" (register end) on stack
305  */
306 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
307 {
308 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
309 
310 	if (rs == re)
311 		/* stg %rs,off(%r15) */
312 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
313 	else
314 		/* stmg %rs,%re,off(%r15) */
315 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
316 }
317 
318 /*
319  * Restore registers from "rs" (register start) to "re" (register end) on stack
320  */
321 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
322 {
323 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
324 
325 	if (jit->seen & SEEN_STACK)
326 		off += STK_OFF;
327 
328 	if (rs == re)
329 		/* lg %rs,off(%r15) */
330 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
331 	else
332 		/* lmg %rs,%re,off(%r15) */
333 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
334 }
335 
336 /*
337  * Return first seen register (from start)
338  */
339 static int get_start(struct bpf_jit *jit, int start)
340 {
341 	int i;
342 
343 	for (i = start; i <= 15; i++) {
344 		if (jit->seen_reg[i])
345 			return i;
346 	}
347 	return 0;
348 }
349 
350 /*
351  * Return last seen register (from start) (gap >= 2)
352  */
353 static int get_end(struct bpf_jit *jit, int start)
354 {
355 	int i;
356 
357 	for (i = start; i < 15; i++) {
358 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
359 			return i - 1;
360 	}
361 	return jit->seen_reg[15] ? 15 : 14;
362 }
363 
364 #define REGS_SAVE	1
365 #define REGS_RESTORE	0
366 /*
367  * Save and restore clobbered registers (6-15) on stack.
368  * We save/restore registers in chunks with gap >= 2 registers.
369  */
370 static void save_restore_regs(struct bpf_jit *jit, int op)
371 {
372 
373 	int re = 6, rs;
374 
375 	do {
376 		rs = get_start(jit, re);
377 		if (!rs)
378 			break;
379 		re = get_end(jit, rs + 1);
380 		if (op == REGS_SAVE)
381 			save_regs(jit, rs, re);
382 		else
383 			restore_regs(jit, rs, re);
384 		re++;
385 	} while (re <= 15);
386 }
387 
388 /*
389  * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
390  * we store the SKB header length on the stack and the SKB data
391  * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
392  */
393 static void emit_load_skb_data_hlen(struct bpf_jit *jit)
394 {
395 	/* Header length: llgf %w1,<len>(%b1) */
396 	EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
397 		      offsetof(struct sk_buff, len));
398 	/* s %w1,<data_len>(%b1) */
399 	EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
400 		   offsetof(struct sk_buff, data_len));
401 	/* stg %w1,ST_OFF_HLEN(%r0,%r15) */
402 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
403 	if (!(jit->seen & SEEN_REG_AX))
404 		/* lg %skb_data,data_off(%b1) */
405 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
406 			      BPF_REG_1, offsetof(struct sk_buff, data));
407 }
408 
409 /*
410  * Emit function prologue
411  *
412  * Save registers and create stack frame if necessary.
413  * See stack frame layout desription in "bpf_jit.h"!
414  */
415 static void bpf_jit_prologue(struct bpf_jit *jit)
416 {
417 	if (jit->seen & SEEN_TAIL_CALL) {
418 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
419 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
420 	} else {
421 		/* j tail_call_start: NOP if no tail calls are used */
422 		EMIT4_PCREL(0xa7f40000, 6);
423 		_EMIT2(0);
424 	}
425 	/* Tail calls have to skip above initialization */
426 	jit->tail_call_start = jit->prg;
427 	/* Save registers */
428 	save_restore_regs(jit, REGS_SAVE);
429 	/* Setup literal pool */
430 	if (jit->seen & SEEN_LITERAL) {
431 		/* basr %r13,0 */
432 		EMIT2(0x0d00, REG_L, REG_0);
433 		jit->base_ip = jit->prg;
434 	}
435 	/* Setup stack and backchain */
436 	if (jit->seen & SEEN_STACK) {
437 		if (jit->seen & SEEN_FUNC)
438 			/* lgr %w1,%r15 (backchain) */
439 			EMIT4(0xb9040000, REG_W1, REG_15);
440 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
441 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
442 		/* aghi %r15,-STK_OFF */
443 		EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
444 		if (jit->seen & SEEN_FUNC)
445 			/* stg %w1,152(%r15) (backchain) */
446 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
447 				      REG_15, 152);
448 	}
449 	if (jit->seen & SEEN_SKB)
450 		emit_load_skb_data_hlen(jit);
451 	if (jit->seen & SEEN_SKB_CHANGE)
452 		/* stg %b1,ST_OFF_SKBP(%r0,%r15) */
453 		EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
454 			      STK_OFF_SKBP);
455 }
456 
457 /*
458  * Function epilogue
459  */
460 static void bpf_jit_epilogue(struct bpf_jit *jit)
461 {
462 	/* Return 0 */
463 	if (jit->seen & SEEN_RET0) {
464 		jit->ret0_ip = jit->prg;
465 		/* lghi %b0,0 */
466 		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
467 	}
468 	jit->exit_ip = jit->prg;
469 	/* Load exit code: lgr %r2,%b0 */
470 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
471 	/* Restore registers */
472 	save_restore_regs(jit, REGS_RESTORE);
473 	/* br %r14 */
474 	_EMIT2(0x07fe);
475 }
476 
477 /*
478  * Compile one eBPF instruction into s390x code
479  *
480  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
481  * stack space for the large switch statement.
482  */
483 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
484 {
485 	struct bpf_insn *insn = &fp->insnsi[i];
486 	int jmp_off, last, insn_count = 1;
487 	unsigned int func_addr, mask;
488 	u32 dst_reg = insn->dst_reg;
489 	u32 src_reg = insn->src_reg;
490 	u32 *addrs = jit->addrs;
491 	s32 imm = insn->imm;
492 	s16 off = insn->off;
493 
494 	if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
495 		jit->seen |= SEEN_REG_AX;
496 	switch (insn->code) {
497 	/*
498 	 * BPF_MOV
499 	 */
500 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
501 		/* llgfr %dst,%src */
502 		EMIT4(0xb9160000, dst_reg, src_reg);
503 		break;
504 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
505 		/* lgr %dst,%src */
506 		EMIT4(0xb9040000, dst_reg, src_reg);
507 		break;
508 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
509 		/* llilf %dst,imm */
510 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
511 		break;
512 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
513 		/* lgfi %dst,imm */
514 		EMIT6_IMM(0xc0010000, dst_reg, imm);
515 		break;
516 	/*
517 	 * BPF_LD 64
518 	 */
519 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
520 	{
521 		/* 16 byte instruction that uses two 'struct bpf_insn' */
522 		u64 imm64;
523 
524 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
525 		/* lg %dst,<d(imm)>(%l) */
526 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
527 			      EMIT_CONST_U64(imm64));
528 		insn_count = 2;
529 		break;
530 	}
531 	/*
532 	 * BPF_ADD
533 	 */
534 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
535 		/* ar %dst,%src */
536 		EMIT2(0x1a00, dst_reg, src_reg);
537 		EMIT_ZERO(dst_reg);
538 		break;
539 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
540 		/* agr %dst,%src */
541 		EMIT4(0xb9080000, dst_reg, src_reg);
542 		break;
543 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
544 		if (!imm)
545 			break;
546 		/* alfi %dst,imm */
547 		EMIT6_IMM(0xc20b0000, dst_reg, imm);
548 		EMIT_ZERO(dst_reg);
549 		break;
550 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
551 		if (!imm)
552 			break;
553 		/* agfi %dst,imm */
554 		EMIT6_IMM(0xc2080000, dst_reg, imm);
555 		break;
556 	/*
557 	 * BPF_SUB
558 	 */
559 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
560 		/* sr %dst,%src */
561 		EMIT2(0x1b00, dst_reg, src_reg);
562 		EMIT_ZERO(dst_reg);
563 		break;
564 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
565 		/* sgr %dst,%src */
566 		EMIT4(0xb9090000, dst_reg, src_reg);
567 		break;
568 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
569 		if (!imm)
570 			break;
571 		/* alfi %dst,-imm */
572 		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
573 		EMIT_ZERO(dst_reg);
574 		break;
575 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
576 		if (!imm)
577 			break;
578 		/* agfi %dst,-imm */
579 		EMIT6_IMM(0xc2080000, dst_reg, -imm);
580 		break;
581 	/*
582 	 * BPF_MUL
583 	 */
584 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
585 		/* msr %dst,%src */
586 		EMIT4(0xb2520000, dst_reg, src_reg);
587 		EMIT_ZERO(dst_reg);
588 		break;
589 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
590 		/* msgr %dst,%src */
591 		EMIT4(0xb90c0000, dst_reg, src_reg);
592 		break;
593 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
594 		if (imm == 1)
595 			break;
596 		/* msfi %r5,imm */
597 		EMIT6_IMM(0xc2010000, dst_reg, imm);
598 		EMIT_ZERO(dst_reg);
599 		break;
600 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
601 		if (imm == 1)
602 			break;
603 		/* msgfi %dst,imm */
604 		EMIT6_IMM(0xc2000000, dst_reg, imm);
605 		break;
606 	/*
607 	 * BPF_DIV / BPF_MOD
608 	 */
609 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
610 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
611 	{
612 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
613 
614 		jit->seen |= SEEN_RET0;
615 		/* ltr %src,%src (if src == 0 goto fail) */
616 		EMIT2(0x1200, src_reg, src_reg);
617 		/* jz <ret0> */
618 		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
619 		/* lhi %w0,0 */
620 		EMIT4_IMM(0xa7080000, REG_W0, 0);
621 		/* lr %w1,%dst */
622 		EMIT2(0x1800, REG_W1, dst_reg);
623 		/* dlr %w0,%src */
624 		EMIT4(0xb9970000, REG_W0, src_reg);
625 		/* llgfr %dst,%rc */
626 		EMIT4(0xb9160000, dst_reg, rc_reg);
627 		break;
628 	}
629 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
630 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
631 	{
632 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
633 
634 		jit->seen |= SEEN_RET0;
635 		/* ltgr %src,%src (if src == 0 goto fail) */
636 		EMIT4(0xb9020000, src_reg, src_reg);
637 		/* jz <ret0> */
638 		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
639 		/* lghi %w0,0 */
640 		EMIT4_IMM(0xa7090000, REG_W0, 0);
641 		/* lgr %w1,%dst */
642 		EMIT4(0xb9040000, REG_W1, dst_reg);
643 		/* dlgr %w0,%dst */
644 		EMIT4(0xb9870000, REG_W0, src_reg);
645 		/* lgr %dst,%rc */
646 		EMIT4(0xb9040000, dst_reg, rc_reg);
647 		break;
648 	}
649 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
650 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
651 	{
652 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
653 
654 		if (imm == 1) {
655 			if (BPF_OP(insn->code) == BPF_MOD)
656 				/* lhgi %dst,0 */
657 				EMIT4_IMM(0xa7090000, dst_reg, 0);
658 			break;
659 		}
660 		/* lhi %w0,0 */
661 		EMIT4_IMM(0xa7080000, REG_W0, 0);
662 		/* lr %w1,%dst */
663 		EMIT2(0x1800, REG_W1, dst_reg);
664 		/* dl %w0,<d(imm)>(%l) */
665 		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
666 			      EMIT_CONST_U32(imm));
667 		/* llgfr %dst,%rc */
668 		EMIT4(0xb9160000, dst_reg, rc_reg);
669 		break;
670 	}
671 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
672 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
673 	{
674 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
675 
676 		if (imm == 1) {
677 			if (BPF_OP(insn->code) == BPF_MOD)
678 				/* lhgi %dst,0 */
679 				EMIT4_IMM(0xa7090000, dst_reg, 0);
680 			break;
681 		}
682 		/* lghi %w0,0 */
683 		EMIT4_IMM(0xa7090000, REG_W0, 0);
684 		/* lgr %w1,%dst */
685 		EMIT4(0xb9040000, REG_W1, dst_reg);
686 		/* dlg %w0,<d(imm)>(%l) */
687 		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
688 			      EMIT_CONST_U64(imm));
689 		/* lgr %dst,%rc */
690 		EMIT4(0xb9040000, dst_reg, rc_reg);
691 		break;
692 	}
693 	/*
694 	 * BPF_AND
695 	 */
696 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
697 		/* nr %dst,%src */
698 		EMIT2(0x1400, dst_reg, src_reg);
699 		EMIT_ZERO(dst_reg);
700 		break;
701 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
702 		/* ngr %dst,%src */
703 		EMIT4(0xb9800000, dst_reg, src_reg);
704 		break;
705 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
706 		/* nilf %dst,imm */
707 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
708 		EMIT_ZERO(dst_reg);
709 		break;
710 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
711 		/* ng %dst,<d(imm)>(%l) */
712 		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
713 			      EMIT_CONST_U64(imm));
714 		break;
715 	/*
716 	 * BPF_OR
717 	 */
718 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
719 		/* or %dst,%src */
720 		EMIT2(0x1600, dst_reg, src_reg);
721 		EMIT_ZERO(dst_reg);
722 		break;
723 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
724 		/* ogr %dst,%src */
725 		EMIT4(0xb9810000, dst_reg, src_reg);
726 		break;
727 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
728 		/* oilf %dst,imm */
729 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
730 		EMIT_ZERO(dst_reg);
731 		break;
732 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
733 		/* og %dst,<d(imm)>(%l) */
734 		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
735 			      EMIT_CONST_U64(imm));
736 		break;
737 	/*
738 	 * BPF_XOR
739 	 */
740 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
741 		/* xr %dst,%src */
742 		EMIT2(0x1700, dst_reg, src_reg);
743 		EMIT_ZERO(dst_reg);
744 		break;
745 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
746 		/* xgr %dst,%src */
747 		EMIT4(0xb9820000, dst_reg, src_reg);
748 		break;
749 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
750 		if (!imm)
751 			break;
752 		/* xilf %dst,imm */
753 		EMIT6_IMM(0xc0070000, dst_reg, imm);
754 		EMIT_ZERO(dst_reg);
755 		break;
756 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
757 		/* xg %dst,<d(imm)>(%l) */
758 		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
759 			      EMIT_CONST_U64(imm));
760 		break;
761 	/*
762 	 * BPF_LSH
763 	 */
764 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
765 		/* sll %dst,0(%src) */
766 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
767 		EMIT_ZERO(dst_reg);
768 		break;
769 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
770 		/* sllg %dst,%dst,0(%src) */
771 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
772 		break;
773 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
774 		if (imm == 0)
775 			break;
776 		/* sll %dst,imm(%r0) */
777 		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
778 		EMIT_ZERO(dst_reg);
779 		break;
780 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
781 		if (imm == 0)
782 			break;
783 		/* sllg %dst,%dst,imm(%r0) */
784 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
785 		break;
786 	/*
787 	 * BPF_RSH
788 	 */
789 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
790 		/* srl %dst,0(%src) */
791 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
792 		EMIT_ZERO(dst_reg);
793 		break;
794 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
795 		/* srlg %dst,%dst,0(%src) */
796 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
797 		break;
798 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
799 		if (imm == 0)
800 			break;
801 		/* srl %dst,imm(%r0) */
802 		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
803 		EMIT_ZERO(dst_reg);
804 		break;
805 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
806 		if (imm == 0)
807 			break;
808 		/* srlg %dst,%dst,imm(%r0) */
809 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
810 		break;
811 	/*
812 	 * BPF_ARSH
813 	 */
814 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
815 		/* srag %dst,%dst,0(%src) */
816 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
817 		break;
818 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
819 		if (imm == 0)
820 			break;
821 		/* srag %dst,%dst,imm(%r0) */
822 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
823 		break;
824 	/*
825 	 * BPF_NEG
826 	 */
827 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
828 		/* lcr %dst,%dst */
829 		EMIT2(0x1300, dst_reg, dst_reg);
830 		EMIT_ZERO(dst_reg);
831 		break;
832 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
833 		/* lcgr %dst,%dst */
834 		EMIT4(0xb9130000, dst_reg, dst_reg);
835 		break;
836 	/*
837 	 * BPF_FROM_BE/LE
838 	 */
839 	case BPF_ALU | BPF_END | BPF_FROM_BE:
840 		/* s390 is big endian, therefore only clear high order bytes */
841 		switch (imm) {
842 		case 16: /* dst = (u16) cpu_to_be16(dst) */
843 			/* llghr %dst,%dst */
844 			EMIT4(0xb9850000, dst_reg, dst_reg);
845 			break;
846 		case 32: /* dst = (u32) cpu_to_be32(dst) */
847 			/* llgfr %dst,%dst */
848 			EMIT4(0xb9160000, dst_reg, dst_reg);
849 			break;
850 		case 64: /* dst = (u64) cpu_to_be64(dst) */
851 			break;
852 		}
853 		break;
854 	case BPF_ALU | BPF_END | BPF_FROM_LE:
855 		switch (imm) {
856 		case 16: /* dst = (u16) cpu_to_le16(dst) */
857 			/* lrvr %dst,%dst */
858 			EMIT4(0xb91f0000, dst_reg, dst_reg);
859 			/* srl %dst,16(%r0) */
860 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
861 			/* llghr %dst,%dst */
862 			EMIT4(0xb9850000, dst_reg, dst_reg);
863 			break;
864 		case 32: /* dst = (u32) cpu_to_le32(dst) */
865 			/* lrvr %dst,%dst */
866 			EMIT4(0xb91f0000, dst_reg, dst_reg);
867 			/* llgfr %dst,%dst */
868 			EMIT4(0xb9160000, dst_reg, dst_reg);
869 			break;
870 		case 64: /* dst = (u64) cpu_to_le64(dst) */
871 			/* lrvgr %dst,%dst */
872 			EMIT4(0xb90f0000, dst_reg, dst_reg);
873 			break;
874 		}
875 		break;
876 	/*
877 	 * BPF_ST(X)
878 	 */
879 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
880 		/* stcy %src,off(%dst) */
881 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
882 		jit->seen |= SEEN_MEM;
883 		break;
884 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
885 		/* sthy %src,off(%dst) */
886 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
887 		jit->seen |= SEEN_MEM;
888 		break;
889 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
890 		/* sty %src,off(%dst) */
891 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
892 		jit->seen |= SEEN_MEM;
893 		break;
894 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
895 		/* stg %src,off(%dst) */
896 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
897 		jit->seen |= SEEN_MEM;
898 		break;
899 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
900 		/* lhi %w0,imm */
901 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
902 		/* stcy %w0,off(dst) */
903 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
904 		jit->seen |= SEEN_MEM;
905 		break;
906 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
907 		/* lhi %w0,imm */
908 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
909 		/* sthy %w0,off(dst) */
910 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
911 		jit->seen |= SEEN_MEM;
912 		break;
913 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
914 		/* llilf %w0,imm  */
915 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
916 		/* sty %w0,off(%dst) */
917 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
918 		jit->seen |= SEEN_MEM;
919 		break;
920 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
921 		/* lgfi %w0,imm */
922 		EMIT6_IMM(0xc0010000, REG_W0, imm);
923 		/* stg %w0,off(%dst) */
924 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
925 		jit->seen |= SEEN_MEM;
926 		break;
927 	/*
928 	 * BPF_STX XADD (atomic_add)
929 	 */
930 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
931 		/* laal %w0,%src,off(%dst) */
932 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
933 			      dst_reg, off);
934 		jit->seen |= SEEN_MEM;
935 		break;
936 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
937 		/* laalg %w0,%src,off(%dst) */
938 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
939 			      dst_reg, off);
940 		jit->seen |= SEEN_MEM;
941 		break;
942 	/*
943 	 * BPF_LDX
944 	 */
945 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
946 		/* llgc %dst,0(off,%src) */
947 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
948 		jit->seen |= SEEN_MEM;
949 		break;
950 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
951 		/* llgh %dst,0(off,%src) */
952 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
953 		jit->seen |= SEEN_MEM;
954 		break;
955 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
956 		/* llgf %dst,off(%src) */
957 		jit->seen |= SEEN_MEM;
958 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
959 		break;
960 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
961 		/* lg %dst,0(off,%src) */
962 		jit->seen |= SEEN_MEM;
963 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
964 		break;
965 	/*
966 	 * BPF_JMP / CALL
967 	 */
968 	case BPF_JMP | BPF_CALL:
969 	{
970 		/*
971 		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
972 		 */
973 		const u64 func = (u64)__bpf_call_base + imm;
974 
975 		REG_SET_SEEN(BPF_REG_5);
976 		jit->seen |= SEEN_FUNC;
977 		/* lg %w1,<d(imm)>(%l) */
978 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
979 			      EMIT_CONST_U64(func));
980 		/* basr %r14,%w1 */
981 		EMIT2(0x0d00, REG_14, REG_W1);
982 		/* lgr %b0,%r2: load return value into %b0 */
983 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
984 		if (bpf_helper_changes_skb_data((void *)func)) {
985 			jit->seen |= SEEN_SKB_CHANGE;
986 			/* lg %b1,ST_OFF_SKBP(%r15) */
987 			EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
988 				      REG_15, STK_OFF_SKBP);
989 			emit_load_skb_data_hlen(jit);
990 		}
991 		break;
992 	}
993 	case BPF_JMP | BPF_CALL | BPF_X:
994 		/*
995 		 * Implicit input:
996 		 *  B1: pointer to ctx
997 		 *  B2: pointer to bpf_array
998 		 *  B3: index in bpf_array
999 		 */
1000 		jit->seen |= SEEN_TAIL_CALL;
1001 
1002 		/*
1003 		 * if (index >= array->map.max_entries)
1004 		 *         goto out;
1005 		 */
1006 
1007 		/* llgf %w1,map.max_entries(%b2) */
1008 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1009 			      offsetof(struct bpf_array, map.max_entries));
1010 		/* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1011 		EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1012 				  REG_W1, 0, 0xa);
1013 
1014 		/*
1015 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1016 		 *         goto out;
1017 		 */
1018 
1019 		if (jit->seen & SEEN_STACK)
1020 			off = STK_OFF_TCCNT + STK_OFF;
1021 		else
1022 			off = STK_OFF_TCCNT;
1023 		/* lhi %w0,1 */
1024 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1025 		/* laal %w1,%w0,off(%r15) */
1026 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1027 		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1028 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1029 				      MAX_TAIL_CALL_CNT, 0, 0x2);
1030 
1031 		/*
1032 		 * prog = array->ptrs[index];
1033 		 * if (prog == NULL)
1034 		 *         goto out;
1035 		 */
1036 
1037 		/* sllg %r1,%b3,3: %r1 = index * 8 */
1038 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1039 		/* lg %r1,prog(%b2,%r1) */
1040 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1041 			      REG_1, offsetof(struct bpf_array, ptrs));
1042 		/* clgij %r1,0,0x8,label0 */
1043 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1044 
1045 		/*
1046 		 * Restore registers before calling function
1047 		 */
1048 		save_restore_regs(jit, REGS_RESTORE);
1049 
1050 		/*
1051 		 * goto *(prog->bpf_func + tail_call_start);
1052 		 */
1053 
1054 		/* lg %r1,bpf_func(%r1) */
1055 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1056 			      offsetof(struct bpf_prog, bpf_func));
1057 		/* bc 0xf,tail_call_start(%r1) */
1058 		_EMIT4(0x47f01000 + jit->tail_call_start);
1059 		/* out: */
1060 		jit->labels[0] = jit->prg;
1061 		break;
1062 	case BPF_JMP | BPF_EXIT: /* return b0 */
1063 		last = (i == fp->len - 1) ? 1 : 0;
1064 		if (last && !(jit->seen & SEEN_RET0))
1065 			break;
1066 		/* j <exit> */
1067 		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1068 		break;
1069 	/*
1070 	 * Branch relative (number of skipped instructions) to offset on
1071 	 * condition.
1072 	 *
1073 	 * Condition code to mask mapping:
1074 	 *
1075 	 * CC | Description	   | Mask
1076 	 * ------------------------------
1077 	 * 0  | Operands equal	   |	8
1078 	 * 1  | First operand low  |	4
1079 	 * 2  | First operand high |	2
1080 	 * 3  | Unused		   |	1
1081 	 *
1082 	 * For s390x relative branches: ip = ip + off_bytes
1083 	 * For BPF relative branches:	insn = insn + off_insns + 1
1084 	 *
1085 	 * For example for s390x with offset 0 we jump to the branch
1086 	 * instruction itself (loop) and for BPF with offset 0 we
1087 	 * branch to the instruction behind the branch.
1088 	 */
1089 	case BPF_JMP | BPF_JA: /* if (true) */
1090 		mask = 0xf000; /* j */
1091 		goto branch_oc;
1092 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1093 		mask = 0x2000; /* jh */
1094 		goto branch_ks;
1095 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1096 		mask = 0xa000; /* jhe */
1097 		goto branch_ks;
1098 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1099 		mask = 0x2000; /* jh */
1100 		goto branch_ku;
1101 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1102 		mask = 0xa000; /* jhe */
1103 		goto branch_ku;
1104 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1105 		mask = 0x7000; /* jne */
1106 		goto branch_ku;
1107 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1108 		mask = 0x8000; /* je */
1109 		goto branch_ku;
1110 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1111 		mask = 0x7000; /* jnz */
1112 		/* lgfi %w1,imm (load sign extend imm) */
1113 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1114 		/* ngr %w1,%dst */
1115 		EMIT4(0xb9800000, REG_W1, dst_reg);
1116 		goto branch_oc;
1117 
1118 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1119 		mask = 0x2000; /* jh */
1120 		goto branch_xs;
1121 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1122 		mask = 0xa000; /* jhe */
1123 		goto branch_xs;
1124 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1125 		mask = 0x2000; /* jh */
1126 		goto branch_xu;
1127 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1128 		mask = 0xa000; /* jhe */
1129 		goto branch_xu;
1130 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1131 		mask = 0x7000; /* jne */
1132 		goto branch_xu;
1133 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1134 		mask = 0x8000; /* je */
1135 		goto branch_xu;
1136 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1137 		mask = 0x7000; /* jnz */
1138 		/* ngrk %w1,%dst,%src */
1139 		EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1140 		goto branch_oc;
1141 branch_ks:
1142 		/* lgfi %w1,imm (load sign extend imm) */
1143 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1144 		/* cgrj %dst,%w1,mask,off */
1145 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1146 		break;
1147 branch_ku:
1148 		/* lgfi %w1,imm (load sign extend imm) */
1149 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1150 		/* clgrj %dst,%w1,mask,off */
1151 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1152 		break;
1153 branch_xs:
1154 		/* cgrj %dst,%src,mask,off */
1155 		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1156 		break;
1157 branch_xu:
1158 		/* clgrj %dst,%src,mask,off */
1159 		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1160 		break;
1161 branch_oc:
1162 		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1163 		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1164 		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1165 		break;
1166 	/*
1167 	 * BPF_LD
1168 	 */
1169 	case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1170 	case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1171 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1172 			func_addr = __pa(sk_load_byte_pos);
1173 		else
1174 			func_addr = __pa(sk_load_byte);
1175 		goto call_fn;
1176 	case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1177 	case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1178 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1179 			func_addr = __pa(sk_load_half_pos);
1180 		else
1181 			func_addr = __pa(sk_load_half);
1182 		goto call_fn;
1183 	case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1184 	case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1185 		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1186 			func_addr = __pa(sk_load_word_pos);
1187 		else
1188 			func_addr = __pa(sk_load_word);
1189 		goto call_fn;
1190 call_fn:
1191 		jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1192 		REG_SET_SEEN(REG_14); /* Return address of possible func call */
1193 
1194 		/*
1195 		 * Implicit input:
1196 		 *  BPF_REG_6	 (R7) : skb pointer
1197 		 *  REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
1198 		 *
1199 		 * Calculated input:
1200 		 *  BPF_REG_2	 (R3) : offset of byte(s) to fetch in skb
1201 		 *  BPF_REG_5	 (R6) : return address
1202 		 *
1203 		 * Output:
1204 		 *  BPF_REG_0	 (R14): data read from skb
1205 		 *
1206 		 * Scratch registers (BPF_REG_1-5)
1207 		 */
1208 
1209 		/* Call function: llilf %w1,func_addr  */
1210 		EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1211 
1212 		/* Offset: lgfi %b2,imm */
1213 		EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1214 		if (BPF_MODE(insn->code) == BPF_IND)
1215 			/* agfr %b2,%src (%src is s32 here) */
1216 			EMIT4(0xb9180000, BPF_REG_2, src_reg);
1217 
1218 		/* Reload REG_SKB_DATA if BPF_REG_AX is used */
1219 		if (jit->seen & SEEN_REG_AX)
1220 			/* lg %skb_data,data_off(%b6) */
1221 			EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
1222 				      BPF_REG_6, offsetof(struct sk_buff, data));
1223 		/* basr %b5,%w1 (%b5 is call saved) */
1224 		EMIT2(0x0d00, BPF_REG_5, REG_W1);
1225 
1226 		/*
1227 		 * Note: For fast access we jump directly after the
1228 		 * jnz instruction from bpf_jit.S
1229 		 */
1230 		/* jnz <ret0> */
1231 		EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1232 		break;
1233 	default: /* too complex, give up */
1234 		pr_err("Unknown opcode %02x\n", insn->code);
1235 		return -1;
1236 	}
1237 	return insn_count;
1238 }
1239 
1240 /*
1241  * Compile eBPF program into s390x code
1242  */
1243 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1244 {
1245 	int i, insn_count;
1246 
1247 	jit->lit = jit->lit_start;
1248 	jit->prg = 0;
1249 
1250 	bpf_jit_prologue(jit);
1251 	for (i = 0; i < fp->len; i += insn_count) {
1252 		insn_count = bpf_jit_insn(jit, fp, i);
1253 		if (insn_count < 0)
1254 			return -1;
1255 		jit->addrs[i + 1] = jit->prg; /* Next instruction address */
1256 	}
1257 	bpf_jit_epilogue(jit);
1258 
1259 	jit->lit_start = jit->prg;
1260 	jit->size = jit->lit;
1261 	jit->size_prg = jit->prg;
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Classic BPF function stub. BPF programs will be converted into
1267  * eBPF and then bpf_int_jit_compile() will be called.
1268  */
1269 void bpf_jit_compile(struct bpf_prog *fp)
1270 {
1271 }
1272 
1273 /*
1274  * Compile eBPF program "fp"
1275  */
1276 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1277 {
1278 	struct bpf_prog *tmp, *orig_fp = fp;
1279 	struct bpf_binary_header *header;
1280 	bool tmp_blinded = false;
1281 	struct bpf_jit jit;
1282 	int pass;
1283 
1284 	if (!bpf_jit_enable)
1285 		return orig_fp;
1286 
1287 	tmp = bpf_jit_blind_constants(fp);
1288 	/*
1289 	 * If blinding was requested and we failed during blinding,
1290 	 * we must fall back to the interpreter.
1291 	 */
1292 	if (IS_ERR(tmp))
1293 		return orig_fp;
1294 	if (tmp != fp) {
1295 		tmp_blinded = true;
1296 		fp = tmp;
1297 	}
1298 
1299 	memset(&jit, 0, sizeof(jit));
1300 	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1301 	if (jit.addrs == NULL) {
1302 		fp = orig_fp;
1303 		goto out;
1304 	}
1305 	/*
1306 	 * Three initial passes:
1307 	 *   - 1/2: Determine clobbered registers
1308 	 *   - 3:   Calculate program size and addrs arrray
1309 	 */
1310 	for (pass = 1; pass <= 3; pass++) {
1311 		if (bpf_jit_prog(&jit, fp)) {
1312 			fp = orig_fp;
1313 			goto free_addrs;
1314 		}
1315 	}
1316 	/*
1317 	 * Final pass: Allocate and generate program
1318 	 */
1319 	if (jit.size >= BPF_SIZE_MAX) {
1320 		fp = orig_fp;
1321 		goto free_addrs;
1322 	}
1323 	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1324 	if (!header) {
1325 		fp = orig_fp;
1326 		goto free_addrs;
1327 	}
1328 	if (bpf_jit_prog(&jit, fp)) {
1329 		fp = orig_fp;
1330 		goto free_addrs;
1331 	}
1332 	if (bpf_jit_enable > 1) {
1333 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1334 		if (jit.prg_buf)
1335 			print_fn_code(jit.prg_buf, jit.size_prg);
1336 	}
1337 	if (jit.prg_buf) {
1338 		set_memory_ro((unsigned long)header, header->pages);
1339 		fp->bpf_func = (void *) jit.prg_buf;
1340 		fp->jited = 1;
1341 	}
1342 free_addrs:
1343 	kfree(jit.addrs);
1344 out:
1345 	if (tmp_blinded)
1346 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1347 					   tmp : orig_fp);
1348 	return fp;
1349 }
1350 
1351 /*
1352  * Free eBPF program
1353  */
1354 void bpf_jit_free(struct bpf_prog *fp)
1355 {
1356 	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1357 	struct bpf_binary_header *header = (void *)addr;
1358 
1359 	if (!fp->jited)
1360 		goto free_filter;
1361 
1362 	set_memory_rw(addr, header->pages);
1363 	bpf_jit_binary_free(header);
1364 
1365 free_filter:
1366 	bpf_prog_unlock_free(fp);
1367 }
1368