xref: /linux/arch/s390/mm/vmem.c (revision 4e95bc268b915c3a19ec8b9110f61e4ea41a1ed0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Copyright IBM Corp. 2006
4  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
5  */
6 
7 #include <linux/memblock.h>
8 #include <linux/pfn.h>
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/list.h>
12 #include <linux/hugetlb.h>
13 #include <linux/slab.h>
14 #include <asm/cacheflush.h>
15 #include <asm/pgalloc.h>
16 #include <asm/pgtable.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/set_memory.h>
21 
22 static DEFINE_MUTEX(vmem_mutex);
23 
24 struct memory_segment {
25 	struct list_head list;
26 	unsigned long start;
27 	unsigned long size;
28 };
29 
30 static LIST_HEAD(mem_segs);
31 
32 static void __ref *vmem_alloc_pages(unsigned int order)
33 {
34 	unsigned long size = PAGE_SIZE << order;
35 
36 	if (slab_is_available())
37 		return (void *)__get_free_pages(GFP_KERNEL, order);
38 	return (void *) memblock_phys_alloc(size, size);
39 }
40 
41 void *vmem_crst_alloc(unsigned long val)
42 {
43 	unsigned long *table;
44 
45 	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
46 	if (table)
47 		crst_table_init(table, val);
48 	return table;
49 }
50 
51 pte_t __ref *vmem_pte_alloc(void)
52 {
53 	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
54 	pte_t *pte;
55 
56 	if (slab_is_available())
57 		pte = (pte_t *) page_table_alloc(&init_mm);
58 	else
59 		pte = (pte_t *) memblock_phys_alloc(size, size);
60 	if (!pte)
61 		return NULL;
62 	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
63 	return pte;
64 }
65 
66 /*
67  * Add a physical memory range to the 1:1 mapping.
68  */
69 static int vmem_add_mem(unsigned long start, unsigned long size)
70 {
71 	unsigned long pgt_prot, sgt_prot, r3_prot;
72 	unsigned long pages4k, pages1m, pages2g;
73 	unsigned long end = start + size;
74 	unsigned long address = start;
75 	pgd_t *pg_dir;
76 	p4d_t *p4_dir;
77 	pud_t *pu_dir;
78 	pmd_t *pm_dir;
79 	pte_t *pt_dir;
80 	int ret = -ENOMEM;
81 
82 	pgt_prot = pgprot_val(PAGE_KERNEL);
83 	sgt_prot = pgprot_val(SEGMENT_KERNEL);
84 	r3_prot = pgprot_val(REGION3_KERNEL);
85 	if (!MACHINE_HAS_NX) {
86 		pgt_prot &= ~_PAGE_NOEXEC;
87 		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
88 		r3_prot &= ~_REGION_ENTRY_NOEXEC;
89 	}
90 	pages4k = pages1m = pages2g = 0;
91 	while (address < end) {
92 		pg_dir = pgd_offset_k(address);
93 		if (pgd_none(*pg_dir)) {
94 			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
95 			if (!p4_dir)
96 				goto out;
97 			pgd_populate(&init_mm, pg_dir, p4_dir);
98 		}
99 		p4_dir = p4d_offset(pg_dir, address);
100 		if (p4d_none(*p4_dir)) {
101 			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
102 			if (!pu_dir)
103 				goto out;
104 			p4d_populate(&init_mm, p4_dir, pu_dir);
105 		}
106 		pu_dir = pud_offset(p4_dir, address);
107 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
108 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
109 		     !debug_pagealloc_enabled()) {
110 			pud_val(*pu_dir) = address | r3_prot;
111 			address += PUD_SIZE;
112 			pages2g++;
113 			continue;
114 		}
115 		if (pud_none(*pu_dir)) {
116 			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
117 			if (!pm_dir)
118 				goto out;
119 			pud_populate(&init_mm, pu_dir, pm_dir);
120 		}
121 		pm_dir = pmd_offset(pu_dir, address);
122 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
123 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
124 		    !debug_pagealloc_enabled()) {
125 			pmd_val(*pm_dir) = address | sgt_prot;
126 			address += PMD_SIZE;
127 			pages1m++;
128 			continue;
129 		}
130 		if (pmd_none(*pm_dir)) {
131 			pt_dir = vmem_pte_alloc();
132 			if (!pt_dir)
133 				goto out;
134 			pmd_populate(&init_mm, pm_dir, pt_dir);
135 		}
136 
137 		pt_dir = pte_offset_kernel(pm_dir, address);
138 		pte_val(*pt_dir) = address | pgt_prot;
139 		address += PAGE_SIZE;
140 		pages4k++;
141 	}
142 	ret = 0;
143 out:
144 	update_page_count(PG_DIRECT_MAP_4K, pages4k);
145 	update_page_count(PG_DIRECT_MAP_1M, pages1m);
146 	update_page_count(PG_DIRECT_MAP_2G, pages2g);
147 	return ret;
148 }
149 
150 /*
151  * Remove a physical memory range from the 1:1 mapping.
152  * Currently only invalidates page table entries.
153  */
154 static void vmem_remove_range(unsigned long start, unsigned long size)
155 {
156 	unsigned long pages4k, pages1m, pages2g;
157 	unsigned long end = start + size;
158 	unsigned long address = start;
159 	pgd_t *pg_dir;
160 	p4d_t *p4_dir;
161 	pud_t *pu_dir;
162 	pmd_t *pm_dir;
163 	pte_t *pt_dir;
164 
165 	pages4k = pages1m = pages2g = 0;
166 	while (address < end) {
167 		pg_dir = pgd_offset_k(address);
168 		if (pgd_none(*pg_dir)) {
169 			address += PGDIR_SIZE;
170 			continue;
171 		}
172 		p4_dir = p4d_offset(pg_dir, address);
173 		if (p4d_none(*p4_dir)) {
174 			address += P4D_SIZE;
175 			continue;
176 		}
177 		pu_dir = pud_offset(p4_dir, address);
178 		if (pud_none(*pu_dir)) {
179 			address += PUD_SIZE;
180 			continue;
181 		}
182 		if (pud_large(*pu_dir)) {
183 			pud_clear(pu_dir);
184 			address += PUD_SIZE;
185 			pages2g++;
186 			continue;
187 		}
188 		pm_dir = pmd_offset(pu_dir, address);
189 		if (pmd_none(*pm_dir)) {
190 			address += PMD_SIZE;
191 			continue;
192 		}
193 		if (pmd_large(*pm_dir)) {
194 			pmd_clear(pm_dir);
195 			address += PMD_SIZE;
196 			pages1m++;
197 			continue;
198 		}
199 		pt_dir = pte_offset_kernel(pm_dir, address);
200 		pte_clear(&init_mm, address, pt_dir);
201 		address += PAGE_SIZE;
202 		pages4k++;
203 	}
204 	flush_tlb_kernel_range(start, end);
205 	update_page_count(PG_DIRECT_MAP_4K, -pages4k);
206 	update_page_count(PG_DIRECT_MAP_1M, -pages1m);
207 	update_page_count(PG_DIRECT_MAP_2G, -pages2g);
208 }
209 
210 /*
211  * Add a backed mem_map array to the virtual mem_map array.
212  */
213 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
214 		struct vmem_altmap *altmap)
215 {
216 	unsigned long pgt_prot, sgt_prot;
217 	unsigned long address = start;
218 	pgd_t *pg_dir;
219 	p4d_t *p4_dir;
220 	pud_t *pu_dir;
221 	pmd_t *pm_dir;
222 	pte_t *pt_dir;
223 	int ret = -ENOMEM;
224 
225 	pgt_prot = pgprot_val(PAGE_KERNEL);
226 	sgt_prot = pgprot_val(SEGMENT_KERNEL);
227 	if (!MACHINE_HAS_NX) {
228 		pgt_prot &= ~_PAGE_NOEXEC;
229 		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
230 	}
231 	for (address = start; address < end;) {
232 		pg_dir = pgd_offset_k(address);
233 		if (pgd_none(*pg_dir)) {
234 			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
235 			if (!p4_dir)
236 				goto out;
237 			pgd_populate(&init_mm, pg_dir, p4_dir);
238 		}
239 
240 		p4_dir = p4d_offset(pg_dir, address);
241 		if (p4d_none(*p4_dir)) {
242 			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
243 			if (!pu_dir)
244 				goto out;
245 			p4d_populate(&init_mm, p4_dir, pu_dir);
246 		}
247 
248 		pu_dir = pud_offset(p4_dir, address);
249 		if (pud_none(*pu_dir)) {
250 			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
251 			if (!pm_dir)
252 				goto out;
253 			pud_populate(&init_mm, pu_dir, pm_dir);
254 		}
255 
256 		pm_dir = pmd_offset(pu_dir, address);
257 		if (pmd_none(*pm_dir)) {
258 			/* Use 1MB frames for vmemmap if available. We always
259 			 * use large frames even if they are only partially
260 			 * used.
261 			 * Otherwise we would have also page tables since
262 			 * vmemmap_populate gets called for each section
263 			 * separately. */
264 			if (MACHINE_HAS_EDAT1) {
265 				void *new_page;
266 
267 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
268 				if (!new_page)
269 					goto out;
270 				pmd_val(*pm_dir) = __pa(new_page) | sgt_prot;
271 				address = (address + PMD_SIZE) & PMD_MASK;
272 				continue;
273 			}
274 			pt_dir = vmem_pte_alloc();
275 			if (!pt_dir)
276 				goto out;
277 			pmd_populate(&init_mm, pm_dir, pt_dir);
278 		} else if (pmd_large(*pm_dir)) {
279 			address = (address + PMD_SIZE) & PMD_MASK;
280 			continue;
281 		}
282 
283 		pt_dir = pte_offset_kernel(pm_dir, address);
284 		if (pte_none(*pt_dir)) {
285 			void *new_page;
286 
287 			new_page = vmemmap_alloc_block(PAGE_SIZE, node);
288 			if (!new_page)
289 				goto out;
290 			pte_val(*pt_dir) = __pa(new_page) | pgt_prot;
291 		}
292 		address += PAGE_SIZE;
293 	}
294 	ret = 0;
295 out:
296 	return ret;
297 }
298 
299 void vmemmap_free(unsigned long start, unsigned long end,
300 		struct vmem_altmap *altmap)
301 {
302 }
303 
304 /*
305  * Add memory segment to the segment list if it doesn't overlap with
306  * an already present segment.
307  */
308 static int insert_memory_segment(struct memory_segment *seg)
309 {
310 	struct memory_segment *tmp;
311 
312 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
313 	    seg->start + seg->size < seg->start)
314 		return -ERANGE;
315 
316 	list_for_each_entry(tmp, &mem_segs, list) {
317 		if (seg->start >= tmp->start + tmp->size)
318 			continue;
319 		if (seg->start + seg->size <= tmp->start)
320 			continue;
321 		return -ENOSPC;
322 	}
323 	list_add(&seg->list, &mem_segs);
324 	return 0;
325 }
326 
327 /*
328  * Remove memory segment from the segment list.
329  */
330 static void remove_memory_segment(struct memory_segment *seg)
331 {
332 	list_del(&seg->list);
333 }
334 
335 static void __remove_shared_memory(struct memory_segment *seg)
336 {
337 	remove_memory_segment(seg);
338 	vmem_remove_range(seg->start, seg->size);
339 }
340 
341 int vmem_remove_mapping(unsigned long start, unsigned long size)
342 {
343 	struct memory_segment *seg;
344 	int ret;
345 
346 	mutex_lock(&vmem_mutex);
347 
348 	ret = -ENOENT;
349 	list_for_each_entry(seg, &mem_segs, list) {
350 		if (seg->start == start && seg->size == size)
351 			break;
352 	}
353 
354 	if (seg->start != start || seg->size != size)
355 		goto out;
356 
357 	ret = 0;
358 	__remove_shared_memory(seg);
359 	kfree(seg);
360 out:
361 	mutex_unlock(&vmem_mutex);
362 	return ret;
363 }
364 
365 int vmem_add_mapping(unsigned long start, unsigned long size)
366 {
367 	struct memory_segment *seg;
368 	int ret;
369 
370 	mutex_lock(&vmem_mutex);
371 	ret = -ENOMEM;
372 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
373 	if (!seg)
374 		goto out;
375 	seg->start = start;
376 	seg->size = size;
377 
378 	ret = insert_memory_segment(seg);
379 	if (ret)
380 		goto out_free;
381 
382 	ret = vmem_add_mem(start, size);
383 	if (ret)
384 		goto out_remove;
385 	goto out;
386 
387 out_remove:
388 	__remove_shared_memory(seg);
389 out_free:
390 	kfree(seg);
391 out:
392 	mutex_unlock(&vmem_mutex);
393 	return ret;
394 }
395 
396 /*
397  * map whole physical memory to virtual memory (identity mapping)
398  * we reserve enough space in the vmalloc area for vmemmap to hotplug
399  * additional memory segments.
400  */
401 void __init vmem_map_init(void)
402 {
403 	struct memblock_region *reg;
404 
405 	for_each_memblock(memory, reg)
406 		vmem_add_mem(reg->base, reg->size);
407 	__set_memory((unsigned long)_stext,
408 		     (unsigned long)(_etext - _stext) >> PAGE_SHIFT,
409 		     SET_MEMORY_RO | SET_MEMORY_X);
410 	__set_memory((unsigned long)_etext,
411 		     (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT,
412 		     SET_MEMORY_RO);
413 	__set_memory((unsigned long)_sinittext,
414 		     (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT,
415 		     SET_MEMORY_RO | SET_MEMORY_X);
416 	__set_memory(__stext_dma, (__etext_dma - __stext_dma) >> PAGE_SHIFT,
417 		     SET_MEMORY_RO | SET_MEMORY_X);
418 	pr_info("Write protected kernel read-only data: %luk\n",
419 		(unsigned long)(__end_rodata - _stext) >> 10);
420 }
421 
422 /*
423  * Convert memblock.memory  to a memory segment list so there is a single
424  * list that contains all memory segments.
425  */
426 static int __init vmem_convert_memory_chunk(void)
427 {
428 	struct memblock_region *reg;
429 	struct memory_segment *seg;
430 
431 	mutex_lock(&vmem_mutex);
432 	for_each_memblock(memory, reg) {
433 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
434 		if (!seg)
435 			panic("Out of memory...\n");
436 		seg->start = reg->base;
437 		seg->size = reg->size;
438 		insert_memory_segment(seg);
439 	}
440 	mutex_unlock(&vmem_mutex);
441 	return 0;
442 }
443 
444 core_initcall(vmem_convert_memory_chunk);
445